1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
|
use std::marker::PhantomData;
use std::{mem, ptr};
use std::os::raw;
use std::os::raw::c_char;
use cose::SignatureAlgorithm;
type SECItemType = raw::c_uint; // TODO: actually an enum - is this the right size?
const SI_BUFFER: SECItemType = 0; // called siBuffer in NSS
#[repr(C)]
struct SECItem {
typ: SECItemType,
data: *const u8,
len: raw::c_uint,
}
impl SECItem {
fn maybe_new(data: &[u8]) -> Result<SECItem, NSSError> {
if data.len() > u32::max_value() as usize {
return Err(NSSError::InputTooLarge);
}
Ok(SECItem {
typ: SI_BUFFER,
data: data.as_ptr(),
len: data.len() as u32,
})
}
fn maybe_from_parts(data: *const u8, len: usize) -> Result<SECItem, NSSError> {
if len > u32::max_value() as usize {
return Err(NSSError::InputTooLarge);
}
Ok(SECItem {
typ: SI_BUFFER,
data: data,
len: len as u32,
})
}
}
/// Many NSS APIs take constant data input as SECItems. Some, however, output data as SECItems.
/// To represent this, we define another type of mutable SECItem.
#[repr(C)]
struct SECItemMut<'a> {
typ: SECItemType,
data: *mut u8,
len: raw::c_uint,
_marker: PhantomData<&'a mut Vec<u8>>,
}
impl<'a> SECItemMut<'a> {
/// Given a mutable reference to a Vec<u8> that has a particular allocated capacity, create a
/// SECItemMut that points to the vec and has the same capacity.
/// The input vec is not expected to have any actual contents, and in any case is cleared.
fn maybe_from_empty_preallocated_vec(vec: &'a mut Vec<u8>) -> Result<SECItemMut<'a>, NSSError> {
if vec.capacity() > u32::max_value() as usize {
return Err(NSSError::InputTooLarge);
}
vec.clear();
Ok(SECItemMut {
typ: SI_BUFFER,
data: vec.as_mut_ptr(),
len: vec.capacity() as u32,
_marker: PhantomData,
})
}
}
#[repr(C)]
struct CkRsaPkcsPssParams {
// Called CK_RSA_PKCS_PSS_PARAMS in NSS
hash_alg: CkMechanismType, // Called hashAlg in NSS
mgf: CkRsaPkcsMgfType,
s_len: raw::c_ulong, // Called sLen in NSS
}
impl CkRsaPkcsPssParams {
fn new() -> CkRsaPkcsPssParams {
CkRsaPkcsPssParams {
hash_alg: CKM_SHA256,
mgf: CKG_MGF1_SHA256,
s_len: 32,
}
}
fn get_params_item(&self) -> Result<SECItem, NSSError> {
// This isn't entirely NSS' fault, but it mostly is.
let params_ptr: *const CkRsaPkcsPssParams = self;
let params_ptr: *const u8 = params_ptr as *const u8;
let params_secitem =
SECItem::maybe_from_parts(params_ptr, mem::size_of::<CkRsaPkcsPssParams>())?;
Ok(params_secitem)
}
}
type CkMechanismType = raw::c_ulong; // called CK_MECHANISM_TYPE in NSS
const CKM_ECDSA: CkMechanismType = 0x0000_1041;
const CKM_RSA_PKCS_PSS: CkMechanismType = 0x0000_000D;
const CKM_SHA256: CkMechanismType = 0x0000_0250;
type CkRsaPkcsMgfType = raw::c_ulong; // called CK_RSA_PKCS_MGF_TYPE in NSS
const CKG_MGF1_SHA256: CkRsaPkcsMgfType = 0x0000_0002;
type SECStatus = raw::c_int; // TODO: enum - right size?
const SEC_SUCCESS: SECStatus = 0; // Called SECSuccess in NSS
const SEC_FAILURE: SECStatus = -1; // Called SECFailure in NSS
enum SECKEYPublicKey {}
enum SECKEYPrivateKey {}
enum PK11SlotInfo {}
enum CERTCertificate {}
enum CERTCertDBHandle {}
const SHA256_LENGTH: usize = 32;
const SHA384_LENGTH: usize = 48;
const SHA512_LENGTH: usize = 64;
// TODO: ugh this will probably have a platform-specific name...
#[link(name = "nss3")]
extern "C" {
fn PK11_HashBuf(
hashAlg: HashAlgorithm,
out: *mut u8,
data_in: *const u8, // called "in" in NSS
len: raw::c_int,
) -> SECStatus;
fn PK11_VerifyWithMechanism(
key: *const SECKEYPublicKey,
mechanism: CkMechanismType,
param: *const SECItem,
sig: *const SECItem,
hash: *const SECItem,
wincx: *const raw::c_void,
) -> SECStatus;
fn SECKEY_DestroyPublicKey(pubk: *const SECKEYPublicKey);
fn CERT_GetDefaultCertDB() -> *const CERTCertDBHandle;
fn CERT_DestroyCertificate(cert: *mut CERTCertificate);
fn CERT_NewTempCertificate(
handle: *const CERTCertDBHandle,
derCert: *const SECItem,
nickname: *const c_char,
isperm: bool,
copyDER: bool,
) -> *mut CERTCertificate;
fn CERT_ExtractPublicKey(cert: *const CERTCertificate) -> *const SECKEYPublicKey;
fn PK11_ImportDERPrivateKeyInfoAndReturnKey(
slot: *mut PK11SlotInfo,
derPKI: *const SECItem,
nickname: *const SECItem,
publicValue: *const SECItem,
isPerm: bool,
isPrivate: bool,
keyUsage: u32,
privk: *mut *mut SECKEYPrivateKey,
wincx: *const u8,
) -> SECStatus;
fn PK11_GetInternalSlot() -> *mut PK11SlotInfo;
fn PK11_FreeSlot(slot: *mut PK11SlotInfo);
fn PK11_SignatureLen(key: *const SECKEYPrivateKey) -> usize;
fn PK11_SignWithMechanism(
key: *const SECKEYPrivateKey,
mech: CkMechanismType,
param: *const SECItem,
sig: *mut SECItemMut,
hash: *const SECItem,
) -> SECStatus;
}
/// An error type describing errors that may be encountered during verification.
#[derive(Debug, PartialEq)]
pub enum NSSError {
ImportCertError,
DecodingPKCS8Failed,
InputTooLarge,
LibraryFailure,
SignatureVerificationFailed,
SigningFailed,
ExtractPublicKeyFailed,
}
// https://searchfox.org/nss/rev/990c2e793aa731cd66238c6c4f00b9473943bc66/lib/util/secoidt.h#274
#[derive(Debug, PartialEq, Clone)]
#[repr(C)]
enum HashAlgorithm {
SHA256 = 191,
SHA384 = 192,
SHA512 = 193,
}
fn hash(payload: &[u8], signature_algorithm: &SignatureAlgorithm) -> Result<Vec<u8>, NSSError> {
if payload.len() > raw::c_int::max_value() as usize {
return Err(NSSError::InputTooLarge);
}
let (hash_algorithm, digest_length) = match *signature_algorithm {
SignatureAlgorithm::ES256 => (HashAlgorithm::SHA256, SHA256_LENGTH),
SignatureAlgorithm::ES384 => (HashAlgorithm::SHA384, SHA384_LENGTH),
SignatureAlgorithm::ES512 => (HashAlgorithm::SHA512, SHA512_LENGTH),
SignatureAlgorithm::PS256 => (HashAlgorithm::SHA256, SHA256_LENGTH),
};
let mut hash_buf = vec![0; digest_length];
let len: raw::c_int = payload.len() as raw::c_int;
let hash_result =
unsafe { PK11_HashBuf(hash_algorithm, hash_buf.as_mut_ptr(), payload.as_ptr(), len) };
if hash_result != SEC_SUCCESS {
return Err(NSSError::LibraryFailure);
}
Ok(hash_buf)
}
/// Main entrypoint for verification. Given a signature algorithm, the bytes of a subject public key
/// info, a payload, and a signature over the payload, returns a result based on the outcome of
/// decoding the subject public key info and running the signature verification algorithm on the
/// signed data.
pub fn verify_signature(
signature_algorithm: &SignatureAlgorithm,
cert: &[u8],
payload: &[u8],
signature: &[u8],
) -> Result<(), NSSError> {
let slot = unsafe { PK11_GetInternalSlot() };
if slot.is_null() {
return Err(NSSError::LibraryFailure);
}
defer!(unsafe {
PK11_FreeSlot(slot);
});
let hash_buf = hash(payload, signature_algorithm).unwrap();
let hash_item = SECItem::maybe_new(hash_buf.as_slice())?;
// Import DER cert into NSS.
let der_cert = SECItem::maybe_new(cert)?;
let db_handle = unsafe { CERT_GetDefaultCertDB() };
if db_handle.is_null() {
// TODO #28
return Err(NSSError::LibraryFailure);
}
let nss_cert =
unsafe { CERT_NewTempCertificate(db_handle, &der_cert, ptr::null(), false, true) };
if nss_cert.is_null() {
return Err(NSSError::ImportCertError);
}
defer!(unsafe {
CERT_DestroyCertificate(nss_cert);
});
let key = unsafe { CERT_ExtractPublicKey(nss_cert) };
if key.is_null() {
return Err(NSSError::ExtractPublicKeyFailed);
}
defer!(unsafe {
SECKEY_DestroyPublicKey(key);
});
let signature_item = SECItem::maybe_new(signature)?;
let mechanism = match *signature_algorithm {
SignatureAlgorithm::ES256 => CKM_ECDSA,
SignatureAlgorithm::ES384 => CKM_ECDSA,
SignatureAlgorithm::ES512 => CKM_ECDSA,
SignatureAlgorithm::PS256 => CKM_RSA_PKCS_PSS,
};
let rsa_pss_params = CkRsaPkcsPssParams::new();
let rsa_pss_params_item = rsa_pss_params.get_params_item()?;
let params_item = match *signature_algorithm {
SignatureAlgorithm::ES256 => ptr::null(),
SignatureAlgorithm::ES384 => ptr::null(),
SignatureAlgorithm::ES512 => ptr::null(),
SignatureAlgorithm::PS256 => &rsa_pss_params_item,
};
let null_cx_ptr: *const raw::c_void = ptr::null();
let result = unsafe {
PK11_VerifyWithMechanism(
key,
mechanism,
params_item,
&signature_item,
&hash_item,
null_cx_ptr,
)
};
match result {
SEC_SUCCESS => Ok(()),
SEC_FAILURE => Err(NSSError::SignatureVerificationFailed),
_ => Err(NSSError::LibraryFailure),
}
}
pub fn sign(
signature_algorithm: &SignatureAlgorithm,
pk8: &[u8],
payload: &[u8],
) -> Result<Vec<u8>, NSSError> {
let slot = unsafe { PK11_GetInternalSlot() };
if slot.is_null() {
return Err(NSSError::LibraryFailure);
}
defer!(unsafe {
PK11_FreeSlot(slot);
});
let pkcs8item = SECItem::maybe_new(pk8)?;
let mut key: *mut SECKEYPrivateKey = ptr::null_mut();
let ku_all = 0xFF;
let rv = unsafe {
PK11_ImportDERPrivateKeyInfoAndReturnKey(
slot,
&pkcs8item,
ptr::null(),
ptr::null(),
false,
false,
ku_all,
&mut key,
ptr::null(),
)
};
if rv != SEC_SUCCESS || key.is_null() {
return Err(NSSError::DecodingPKCS8Failed);
}
let mechanism = match *signature_algorithm {
SignatureAlgorithm::ES256 => CKM_ECDSA,
SignatureAlgorithm::ES384 => CKM_ECDSA,
SignatureAlgorithm::ES512 => CKM_ECDSA,
SignatureAlgorithm::PS256 => CKM_RSA_PKCS_PSS,
};
let rsa_pss_params = CkRsaPkcsPssParams::new();
let rsa_pss_params_item = rsa_pss_params.get_params_item()?;
let params_item = match *signature_algorithm {
SignatureAlgorithm::ES256 => ptr::null(),
SignatureAlgorithm::ES384 => ptr::null(),
SignatureAlgorithm::ES512 => ptr::null(),
SignatureAlgorithm::PS256 => &rsa_pss_params_item,
};
let signature_len = unsafe { PK11_SignatureLen(key) };
// Allocate enough space for the signature.
let mut signature: Vec<u8> = Vec::with_capacity(signature_len);
let hash_buf = hash(payload, signature_algorithm).unwrap();
let hash_item = SECItem::maybe_new(hash_buf.as_slice())?;
{
// Get a mutable SECItem on the preallocated signature buffer. PK11_SignWithMechanism will
// fill the SECItem's buf with the bytes of the signature.
let mut signature_item = SECItemMut::maybe_from_empty_preallocated_vec(&mut signature)?;
let rv = unsafe {
PK11_SignWithMechanism(key, mechanism, params_item, &mut signature_item, &hash_item)
};
if rv != SEC_SUCCESS || signature_item.len as usize != signature_len {
return Err(NSSError::SigningFailed);
}
}
unsafe {
// Now that the bytes of the signature have been filled out, set its length.
signature.set_len(signature_len);
}
Ok(signature)
}
|