1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
use super::assert_future;
use crate::future::{Either, FutureExt};
use core::pin::Pin;
use futures_core::future::{FusedFuture, Future};
use futures_core::task::{Context, Poll};
/// Future for the [`select()`] function.
#[must_use = "futures do nothing unless you `.await` or poll them"]
#[derive(Debug)]
pub struct Select<A, B> {
inner: Option<(A, B)>,
}
impl<A: Unpin, B: Unpin> Unpin for Select<A, B> {}
/// Waits for either one of two differently-typed futures to complete.
///
/// This function will return a new future which awaits for either one of both
/// futures to complete. The returned future will finish with both the value
/// resolved and a future representing the completion of the other work.
///
/// Note that this function consumes the receiving futures and returns a
/// wrapped version of them.
///
/// Also note that if both this and the second future have the same
/// output type you can use the `Either::factor_first` method to
/// conveniently extract out the value at the end.
///
/// # Examples
///
/// A simple example
///
/// ```
/// # futures::executor::block_on(async {
/// use futures::{
/// pin_mut,
/// future::Either,
/// future::self,
/// };
///
/// // These two futures have different types even though their outputs have the same type.
/// let future1 = async {
/// future::pending::<()>().await; // will never finish
/// 1
/// };
/// let future2 = async {
/// future::ready(2).await
/// };
///
/// // 'select' requires Future + Unpin bounds
/// pin_mut!(future1);
/// pin_mut!(future2);
///
/// let value = match future::select(future1, future2).await {
/// Either::Left((value1, _)) => value1, // `value1` is resolved from `future1`
/// // `_` represents `future2`
/// Either::Right((value2, _)) => value2, // `value2` is resolved from `future2`
/// // `_` represents `future1`
/// };
///
/// assert!(value == 2);
/// # });
/// ```
///
/// A more complex example
///
/// ```
/// use futures::future::{self, Either, Future, FutureExt};
///
/// // A poor-man's join implemented on top of select
///
/// fn join<A, B>(a: A, b: B) -> impl Future<Output=(A::Output, B::Output)>
/// where A: Future + Unpin,
/// B: Future + Unpin,
/// {
/// future::select(a, b).then(|either| {
/// match either {
/// Either::Left((x, b)) => b.map(move |y| (x, y)).left_future(),
/// Either::Right((y, a)) => a.map(move |x| (x, y)).right_future(),
/// }
/// })
/// }
/// ```
pub fn select<A, B>(future1: A, future2: B) -> Select<A, B>
where
A: Future + Unpin,
B: Future + Unpin,
{
assert_future::<Either<(A::Output, B), (B::Output, A)>, _>(Select {
inner: Some((future1, future2)),
})
}
impl<A, B> Future for Select<A, B>
where
A: Future + Unpin,
B: Future + Unpin,
{
type Output = Either<(A::Output, B), (B::Output, A)>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let (mut a, mut b) = self.inner.take().expect("cannot poll Select twice");
if let Poll::Ready(val) = a.poll_unpin(cx) {
return Poll::Ready(Either::Left((val, b)));
}
if let Poll::Ready(val) = b.poll_unpin(cx) {
return Poll::Ready(Either::Right((val, a)));
}
self.inner = Some((a, b));
Poll::Pending
}
}
impl<A, B> FusedFuture for Select<A, B>
where
A: Future + Unpin,
B: Future + Unpin,
{
fn is_terminated(&self) -> bool {
self.inner.is_none()
}
}
|