summaryrefslogtreecommitdiffstats
path: root/third_party/rust/naga/src/proc/mod.rs
blob: a775272a1930103303b8e32f5ff5338ce62064f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/*!
[`Module`](super::Module) processing functionality.
*/

pub mod index;
mod layouter;
mod namer;
mod terminator;
mod typifier;

use std::cmp::PartialEq;

pub use index::{BoundsCheckPolicies, BoundsCheckPolicy, IndexableLength, IndexableLengthError};
pub use layouter::{Alignment, LayoutError, LayoutErrorInner, Layouter, TypeLayout};
pub use namer::{EntryPointIndex, NameKey, Namer};
pub use terminator::ensure_block_returns;
pub use typifier::{ResolveContext, ResolveError, TypeResolution};

impl From<super::StorageFormat> for super::ScalarKind {
    fn from(format: super::StorageFormat) -> Self {
        use super::{ScalarKind as Sk, StorageFormat as Sf};
        match format {
            Sf::R8Unorm => Sk::Float,
            Sf::R8Snorm => Sk::Float,
            Sf::R8Uint => Sk::Uint,
            Sf::R8Sint => Sk::Sint,
            Sf::R16Uint => Sk::Uint,
            Sf::R16Sint => Sk::Sint,
            Sf::R16Float => Sk::Float,
            Sf::Rg8Unorm => Sk::Float,
            Sf::Rg8Snorm => Sk::Float,
            Sf::Rg8Uint => Sk::Uint,
            Sf::Rg8Sint => Sk::Sint,
            Sf::R32Uint => Sk::Uint,
            Sf::R32Sint => Sk::Sint,
            Sf::R32Float => Sk::Float,
            Sf::Rg16Uint => Sk::Uint,
            Sf::Rg16Sint => Sk::Sint,
            Sf::Rg16Float => Sk::Float,
            Sf::Rgba8Unorm => Sk::Float,
            Sf::Rgba8Snorm => Sk::Float,
            Sf::Rgba8Uint => Sk::Uint,
            Sf::Rgba8Sint => Sk::Sint,
            Sf::Rgb10a2Unorm => Sk::Float,
            Sf::Rg11b10Float => Sk::Float,
            Sf::Rg32Uint => Sk::Uint,
            Sf::Rg32Sint => Sk::Sint,
            Sf::Rg32Float => Sk::Float,
            Sf::Rgba16Uint => Sk::Uint,
            Sf::Rgba16Sint => Sk::Sint,
            Sf::Rgba16Float => Sk::Float,
            Sf::Rgba32Uint => Sk::Uint,
            Sf::Rgba32Sint => Sk::Sint,
            Sf::Rgba32Float => Sk::Float,
            Sf::R16Unorm => Sk::Float,
            Sf::R16Snorm => Sk::Float,
            Sf::Rg16Unorm => Sk::Float,
            Sf::Rg16Snorm => Sk::Float,
            Sf::Rgba16Unorm => Sk::Float,
            Sf::Rgba16Snorm => Sk::Float,
        }
    }
}

impl super::ScalarValue {
    pub const fn scalar_kind(&self) -> super::ScalarKind {
        match *self {
            Self::Uint(_) => super::ScalarKind::Uint,
            Self::Sint(_) => super::ScalarKind::Sint,
            Self::Float(_) => super::ScalarKind::Float,
            Self::Bool(_) => super::ScalarKind::Bool,
        }
    }
}

impl super::ScalarKind {
    pub const fn is_numeric(self) -> bool {
        match self {
            crate::ScalarKind::Sint | crate::ScalarKind::Uint | crate::ScalarKind::Float => true,
            crate::ScalarKind::Bool => false,
        }
    }
}

pub const POINTER_SPAN: u32 = 4;

impl super::TypeInner {
    pub const fn scalar_kind(&self) -> Option<super::ScalarKind> {
        match *self {
            super::TypeInner::Scalar { kind, .. } | super::TypeInner::Vector { kind, .. } => {
                Some(kind)
            }
            super::TypeInner::Matrix { .. } => Some(super::ScalarKind::Float),
            _ => None,
        }
    }

    pub const fn pointer_space(&self) -> Option<crate::AddressSpace> {
        match *self {
            Self::Pointer { space, .. } => Some(space),
            Self::ValuePointer { space, .. } => Some(space),
            _ => None,
        }
    }

    /// Get the size of this type.
    pub fn size(&self, constants: &super::Arena<super::Constant>) -> u32 {
        match *self {
            Self::Scalar { kind: _, width } | Self::Atomic { kind: _, width } => width as u32,
            Self::Vector {
                size,
                kind: _,
                width,
            } => size as u32 * width as u32,
            // matrices are treated as arrays of aligned columns
            Self::Matrix {
                columns,
                rows,
                width,
            } => Alignment::from(rows) * width as u32 * columns as u32,
            Self::Pointer { .. } | Self::ValuePointer { .. } => POINTER_SPAN,
            Self::Array {
                base: _,
                size,
                stride,
            } => {
                let count = match size {
                    super::ArraySize::Constant(handle) => {
                        constants[handle].to_array_length().unwrap_or(1)
                    }
                    // A dynamically-sized array has to have at least one element
                    super::ArraySize::Dynamic => 1,
                };
                count * stride
            }
            Self::Struct { span, .. } => span,
            Self::Image { .. }
            | Self::Sampler { .. }
            | Self::AccelerationStructure
            | Self::RayQuery
            | Self::BindingArray { .. } => 0,
        }
    }

    /// Return the canonical form of `self`, or `None` if it's already in
    /// canonical form.
    ///
    /// Certain types have multiple representations in `TypeInner`. This
    /// function converts all forms of equivalent types to a single
    /// representative of their class, so that simply applying `Eq` to the
    /// result indicates whether the types are equivalent, as far as Naga IR is
    /// concerned.
    pub fn canonical_form(
        &self,
        types: &crate::UniqueArena<crate::Type>,
    ) -> Option<crate::TypeInner> {
        use crate::TypeInner as Ti;
        match *self {
            Ti::Pointer { base, space } => match types[base].inner {
                Ti::Scalar { kind, width } => Some(Ti::ValuePointer {
                    size: None,
                    kind,
                    width,
                    space,
                }),
                Ti::Vector { size, kind, width } => Some(Ti::ValuePointer {
                    size: Some(size),
                    kind,
                    width,
                    space,
                }),
                _ => None,
            },
            _ => None,
        }
    }

    /// Compare `self` and `rhs` as types.
    ///
    /// This is mostly the same as `<TypeInner as Eq>::eq`, but it treats
    /// `ValuePointer` and `Pointer` types as equivalent.
    ///
    /// When you know that one side of the comparison is never a pointer, it's
    /// fine to not bother with canonicalization, and just compare `TypeInner`
    /// values with `==`.
    pub fn equivalent(
        &self,
        rhs: &crate::TypeInner,
        types: &crate::UniqueArena<crate::Type>,
    ) -> bool {
        let left = self.canonical_form(types);
        let right = rhs.canonical_form(types);
        left.as_ref().unwrap_or(self) == right.as_ref().unwrap_or(rhs)
    }

    pub fn is_dynamically_sized(&self, types: &crate::UniqueArena<crate::Type>) -> bool {
        use crate::TypeInner as Ti;
        match *self {
            Ti::Array { size, .. } => size == crate::ArraySize::Dynamic,
            Ti::Struct { ref members, .. } => members
                .last()
                .map(|last| types[last.ty].inner.is_dynamically_sized(types))
                .unwrap_or(false),
            _ => false,
        }
    }
}

impl super::AddressSpace {
    pub fn access(self) -> crate::StorageAccess {
        use crate::StorageAccess as Sa;
        match self {
            crate::AddressSpace::Function
            | crate::AddressSpace::Private
            | crate::AddressSpace::WorkGroup => Sa::LOAD | Sa::STORE,
            crate::AddressSpace::Uniform => Sa::LOAD,
            crate::AddressSpace::Storage { access } => access,
            crate::AddressSpace::Handle => Sa::LOAD,
            crate::AddressSpace::PushConstant => Sa::LOAD,
        }
    }
}

impl super::MathFunction {
    pub const fn argument_count(&self) -> usize {
        match *self {
            // comparison
            Self::Abs => 1,
            Self::Min => 2,
            Self::Max => 2,
            Self::Clamp => 3,
            Self::Saturate => 1,
            // trigonometry
            Self::Cos => 1,
            Self::Cosh => 1,
            Self::Sin => 1,
            Self::Sinh => 1,
            Self::Tan => 1,
            Self::Tanh => 1,
            Self::Acos => 1,
            Self::Asin => 1,
            Self::Atan => 1,
            Self::Atan2 => 2,
            Self::Asinh => 1,
            Self::Acosh => 1,
            Self::Atanh => 1,
            Self::Radians => 1,
            Self::Degrees => 1,
            // decomposition
            Self::Ceil => 1,
            Self::Floor => 1,
            Self::Round => 1,
            Self::Fract => 1,
            Self::Trunc => 1,
            Self::Modf => 2,
            Self::Frexp => 2,
            Self::Ldexp => 2,
            // exponent
            Self::Exp => 1,
            Self::Exp2 => 1,
            Self::Log => 1,
            Self::Log2 => 1,
            Self::Pow => 2,
            // geometry
            Self::Dot => 2,
            Self::Outer => 2,
            Self::Cross => 2,
            Self::Distance => 2,
            Self::Length => 1,
            Self::Normalize => 1,
            Self::FaceForward => 3,
            Self::Reflect => 2,
            Self::Refract => 3,
            // computational
            Self::Sign => 1,
            Self::Fma => 3,
            Self::Mix => 3,
            Self::Step => 2,
            Self::SmoothStep => 3,
            Self::Sqrt => 1,
            Self::InverseSqrt => 1,
            Self::Inverse => 1,
            Self::Transpose => 1,
            Self::Determinant => 1,
            // bits
            Self::CountTrailingZeros => 1,
            Self::CountLeadingZeros => 1,
            Self::CountOneBits => 1,
            Self::ReverseBits => 1,
            Self::ExtractBits => 3,
            Self::InsertBits => 4,
            Self::FindLsb => 1,
            Self::FindMsb => 1,
            // data packing
            Self::Pack4x8snorm => 1,
            Self::Pack4x8unorm => 1,
            Self::Pack2x16snorm => 1,
            Self::Pack2x16unorm => 1,
            Self::Pack2x16float => 1,
            // data unpacking
            Self::Unpack4x8snorm => 1,
            Self::Unpack4x8unorm => 1,
            Self::Unpack2x16snorm => 1,
            Self::Unpack2x16unorm => 1,
            Self::Unpack2x16float => 1,
        }
    }
}

impl crate::Expression {
    /// Returns true if the expression is considered emitted at the start of a function.
    pub const fn needs_pre_emit(&self) -> bool {
        match *self {
            Self::Constant(_)
            | Self::FunctionArgument(_)
            | Self::GlobalVariable(_)
            | Self::LocalVariable(_) => true,
            _ => false,
        }
    }

    /// Return true if this expression is a dynamic array index, for [`Access`].
    ///
    /// This method returns true if this expression is a dynamically computed
    /// index, and as such can only be used to index matrices and arrays when
    /// they appear behind a pointer. See the documentation for [`Access`] for
    /// details.
    ///
    /// Note, this does not check the _type_ of the given expression. It's up to
    /// the caller to establish that the `Access` expression is well-typed
    /// through other means, like [`ResolveContext`].
    ///
    /// [`Access`]: crate::Expression::Access
    /// [`ResolveContext`]: crate::proc::ResolveContext
    pub fn is_dynamic_index(&self, module: &crate::Module) -> bool {
        if let Self::Constant(handle) = *self {
            let constant = &module.constants[handle];
            constant.specialization.is_some()
        } else {
            true
        }
    }
}

impl crate::Function {
    /// Return the global variable being accessed by the expression `pointer`.
    ///
    /// Assuming that `pointer` is a series of `Access` and `AccessIndex`
    /// expressions that ultimately access some part of a `GlobalVariable`,
    /// return a handle for that global.
    ///
    /// If the expression does not ultimately access a global variable, return
    /// `None`.
    pub fn originating_global(
        &self,
        mut pointer: crate::Handle<crate::Expression>,
    ) -> Option<crate::Handle<crate::GlobalVariable>> {
        loop {
            pointer = match self.expressions[pointer] {
                crate::Expression::Access { base, .. } => base,
                crate::Expression::AccessIndex { base, .. } => base,
                crate::Expression::GlobalVariable(handle) => return Some(handle),
                crate::Expression::LocalVariable(_) => return None,
                crate::Expression::FunctionArgument(_) => return None,
                // There are no other expressions that produce pointer values.
                _ => unreachable!(),
            }
        }
    }
}

impl crate::SampleLevel {
    pub const fn implicit_derivatives(&self) -> bool {
        match *self {
            Self::Auto | Self::Bias(_) => true,
            Self::Zero | Self::Exact(_) | Self::Gradient { .. } => false,
        }
    }
}

impl crate::Constant {
    /// Interpret this constant as an array length, and return it as a `u32`.
    ///
    /// Ignore any specialization available for this constant; return its
    /// unspecialized value.
    ///
    /// If the constant has an inappropriate kind (non-scalar or non-integer) or
    /// value (negative, out of range for u32), return `None`. This usually
    /// indicates an error, but only the caller has enough information to report
    /// the error helpfully: in back ends, it's a validation error, but in front
    /// ends, it may indicate ill-formed input (for example, a SPIR-V
    /// `OpArrayType` referring to an inappropriate `OpConstant`). So we return
    /// `Option` and let the caller sort things out.
    pub(crate) fn to_array_length(&self) -> Option<u32> {
        match self.inner {
            crate::ConstantInner::Scalar { value, width: _ } => match value {
                crate::ScalarValue::Uint(value) => value.try_into().ok(),
                // Accept a signed integer size to avoid
                // requiring an explicit uint
                // literal. Type inference should make
                // this unnecessary.
                crate::ScalarValue::Sint(value) => value.try_into().ok(),
                _ => None,
            },
            // caught by type validation
            crate::ConstantInner::Composite { .. } => None,
        }
    }
}

impl crate::Binding {
    pub const fn to_built_in(&self) -> Option<crate::BuiltIn> {
        match *self {
            crate::Binding::BuiltIn(built_in) => Some(built_in),
            Self::Location { .. } => None,
        }
    }
}

//TODO: should we use an existing crate for hashable floats?
impl PartialEq for crate::ScalarValue {
    fn eq(&self, other: &Self) -> bool {
        match (*self, *other) {
            (Self::Uint(a), Self::Uint(b)) => a == b,
            (Self::Sint(a), Self::Sint(b)) => a == b,
            (Self::Float(a), Self::Float(b)) => a.to_bits() == b.to_bits(),
            (Self::Bool(a), Self::Bool(b)) => a == b,
            _ => false,
        }
    }
}
impl Eq for crate::ScalarValue {}
impl std::hash::Hash for crate::ScalarValue {
    fn hash<H: std::hash::Hasher>(&self, hasher: &mut H) {
        match *self {
            Self::Sint(v) => v.hash(hasher),
            Self::Uint(v) => v.hash(hasher),
            Self::Float(v) => v.to_bits().hash(hasher),
            Self::Bool(v) => v.hash(hasher),
        }
    }
}

impl super::SwizzleComponent {
    pub const XYZW: [Self; 4] = [Self::X, Self::Y, Self::Z, Self::W];

    pub const fn index(&self) -> u32 {
        match *self {
            Self::X => 0,
            Self::Y => 1,
            Self::Z => 2,
            Self::W => 3,
        }
    }
    pub const fn from_index(idx: u32) -> Self {
        match idx {
            0 => Self::X,
            1 => Self::Y,
            2 => Self::Z,
            _ => Self::W,
        }
    }
}

impl super::ImageClass {
    pub const fn is_multisampled(self) -> bool {
        match self {
            crate::ImageClass::Sampled { multi, .. } | crate::ImageClass::Depth { multi } => multi,
            crate::ImageClass::Storage { .. } => false,
        }
    }

    pub const fn is_mipmapped(self) -> bool {
        match self {
            crate::ImageClass::Sampled { multi, .. } | crate::ImageClass::Depth { multi } => !multi,
            crate::ImageClass::Storage { .. } => false,
        }
    }
}

#[test]
fn test_matrix_size() {
    let constants = crate::Arena::new();
    assert_eq!(
        crate::TypeInner::Matrix {
            columns: crate::VectorSize::Tri,
            rows: crate::VectorSize::Tri,
            width: 4
        }
        .size(&constants),
        48,
    );
}