1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::cell::RefCell;
use std::convert::TryFrom;
use std::rc::{Rc, Weak};
use std::time::Duration;
#[cfg(windows)]
use winapi::shared::minwindef::UINT;
#[cfg(windows)]
use winapi::um::timeapi::{timeBeginPeriod, timeEndPeriod};
/// A quantized `Duration`. This currently just produces 16 discrete values
/// corresponding to whole milliseconds. Future implementations might choose
/// a different allocation, such as a logarithmic scale.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
struct Period(u8);
impl Period {
const MAX: Period = Period(16);
const MIN: Period = Period(1);
#[cfg(windows)]
fn as_uint(&self) -> UINT {
UINT::from(self.0)
}
#[cfg(target_os = "macos")]
fn scaled(&self, scale: f64) -> f64 {
scale * f64::from(self.0)
}
}
impl From<Duration> for Period {
fn from(p: Duration) -> Self {
let rounded = u8::try_from(p.as_millis()).unwrap_or(Self::MAX.0);
Self(rounded.clamp(Self::MIN.0, Self::MAX.0))
}
}
/// This counts instances of `Period`, except those of `Period::MAX`.
#[derive(Default)]
struct PeriodSet {
counts: [usize; (Period::MAX.0 - Period::MIN.0) as usize],
}
impl PeriodSet {
fn idx(&mut self, p: Period) -> &mut usize {
debug_assert!(p >= Period::MIN);
&mut self.counts[usize::from(p.0 - Period::MIN.0)]
}
fn add(&mut self, p: Period) {
if p != Period::MAX {
*self.idx(p) += 1;
}
}
fn remove(&mut self, p: Period) {
if p != Period::MAX {
debug_assert_ne!(*self.idx(p), 0);
*self.idx(p) -= 1;
}
}
fn min(&self) -> Option<Period> {
for (i, v) in self.counts.iter().enumerate() {
if *v > 0 {
return Some(Period(u8::try_from(i).unwrap() + Period::MIN.0));
}
}
None
}
}
#[cfg(target_os = "macos")]
#[allow(non_camel_case_types)]
mod mac {
use std::mem::size_of;
use std::ptr::addr_of_mut;
// These are manually extracted from the many bindings generated
// by bindgen when provided with the simple header:
// #include <mach/mach_init.h>
// #include <mach/mach_time.h>
// #include <mach/thread_policy.h>
// #include <pthread.h>
type __darwin_natural_t = ::std::os::raw::c_uint;
type __darwin_mach_port_name_t = __darwin_natural_t;
type __darwin_mach_port_t = __darwin_mach_port_name_t;
type mach_port_t = __darwin_mach_port_t;
type thread_t = mach_port_t;
type natural_t = __darwin_natural_t;
type thread_policy_flavor_t = natural_t;
type integer_t = ::std::os::raw::c_int;
type thread_policy_t = *mut integer_t;
type mach_msg_type_number_t = natural_t;
type boolean_t = ::std::os::raw::c_uint;
type kern_return_t = ::std::os::raw::c_int;
#[repr(C)]
#[derive(Debug, Copy, Clone, Default)]
struct mach_timebase_info {
numer: u32,
denom: u32,
}
type mach_timebase_info_t = *mut mach_timebase_info;
type mach_timebase_info_data_t = mach_timebase_info;
extern "C" {
fn mach_timebase_info(info: mach_timebase_info_t) -> kern_return_t;
}
#[repr(C)]
#[derive(Debug, Copy, Clone, Default)]
pub struct thread_time_constraint_policy {
period: u32,
computation: u32,
constraint: u32,
preemptible: boolean_t,
}
const THREAD_TIME_CONSTRAINT_POLICY: thread_policy_flavor_t = 2;
const THREAD_TIME_CONSTRAINT_POLICY_COUNT: mach_msg_type_number_t =
(size_of::<thread_time_constraint_policy>() / size_of::<integer_t>())
as mach_msg_type_number_t;
// These function definitions are taken from a comment in <thread_policy.h>.
// Why they are inaccessible is unknown, but they work as declared.
extern "C" {
fn thread_policy_set(
thread: thread_t,
flavor: thread_policy_flavor_t,
policy_info: thread_policy_t,
count: mach_msg_type_number_t,
) -> kern_return_t;
fn thread_policy_get(
thread: thread_t,
flavor: thread_policy_flavor_t,
policy_info: thread_policy_t,
count: *mut mach_msg_type_number_t,
get_default: *mut boolean_t,
) -> kern_return_t;
}
enum _opaque_pthread_t {} // An opaque type is fine here.
type __darwin_pthread_t = *mut _opaque_pthread_t;
type pthread_t = __darwin_pthread_t;
extern "C" {
fn pthread_self() -> pthread_t;
fn pthread_mach_thread_np(thread: pthread_t) -> mach_port_t;
}
/// Set a thread time policy.
pub fn set_thread_policy(mut policy: thread_time_constraint_policy) {
let _ = unsafe {
thread_policy_set(
pthread_mach_thread_np(pthread_self()),
THREAD_TIME_CONSTRAINT_POLICY,
addr_of_mut!(policy) as _, // horror!
THREAD_TIME_CONSTRAINT_POLICY_COUNT,
)
};
}
pub fn get_scale() -> f64 {
const NANOS_PER_MSEC: f64 = 1_000_000.0;
let mut timebase_info = mach_timebase_info_data_t::default();
unsafe {
mach_timebase_info(&mut timebase_info);
}
f64::from(timebase_info.denom) * NANOS_PER_MSEC / f64::from(timebase_info.numer)
}
/// Create a realtime policy and set it.
pub fn set_realtime(base: f64) {
let policy = thread_time_constraint_policy {
period: base as u32, // Base interval
computation: (base * 0.5) as u32,
constraint: (base * 1.0) as u32,
preemptible: 1,
};
set_thread_policy(policy);
}
/// Get the default policy.
pub fn get_default_policy() -> thread_time_constraint_policy {
let mut policy = thread_time_constraint_policy::default();
let mut count = THREAD_TIME_CONSTRAINT_POLICY_COUNT;
let mut get_default = 0;
let _ = unsafe {
thread_policy_get(
pthread_mach_thread_np(pthread_self()),
THREAD_TIME_CONSTRAINT_POLICY,
addr_of_mut!(policy) as _, // horror!
&mut count,
&mut get_default,
)
};
policy
}
}
/// A handle for a high-resolution timer of a specific period.
pub struct Handle {
hrt: Rc<RefCell<Time>>,
active: Period,
hysteresis: [Period; Self::HISTORY],
hysteresis_index: usize,
}
impl Handle {
const HISTORY: usize = 8;
fn new(hrt: Rc<RefCell<Time>>, active: Period) -> Self {
Self {
hrt,
active,
hysteresis: [Period::MAX; Self::HISTORY],
hysteresis_index: 0,
}
}
/// Update shortcut. Equivalent to dropping the current reference and
/// calling `HrTime::get` again with the new period, except that this applies
/// a little hysteresis that smoothes out fluctuations.
pub fn update(&mut self, period: Duration) {
self.hysteresis[self.hysteresis_index] = Period::from(period);
self.hysteresis_index += 1;
self.hysteresis_index %= self.hysteresis.len();
let mut first = Period::MAX;
let mut second = Period::MAX;
for i in &self.hysteresis {
if *i < first {
second = first;
first = *i;
} else if *i < second {
second = *i;
}
}
if second != self.active {
let mut b = self.hrt.borrow_mut();
b.periods.remove(self.active);
self.active = second;
b.periods.add(self.active);
b.update();
}
}
}
impl Drop for Handle {
fn drop(&mut self) {
self.hrt.borrow_mut().remove(self.active);
}
}
/// Holding an instance of this indicates that high resolution timers are enabled.
pub struct Time {
periods: PeriodSet,
active: Option<Period>,
#[cfg(target_os = "macos")]
scale: f64,
#[cfg(target_os = "macos")]
deflt: mac::thread_time_constraint_policy,
}
impl Time {
fn new() -> Self {
Self {
periods: PeriodSet::default(),
active: None,
#[cfg(target_os = "macos")]
scale: mac::get_scale(),
#[cfg(target_os = "macos")]
deflt: mac::get_default_policy(),
}
}
#[allow(clippy::unused_self)] // Only on some platforms is it unused.
fn start(&self) {
#[cfg(target_os = "macos")]
{
if let Some(p) = self.active {
mac::set_realtime(p.scaled(self.scale));
} else {
mac::set_thread_policy(self.deflt.clone());
}
}
#[cfg(windows)]
{
if let Some(p) = self.active {
assert_eq!(0, unsafe { timeBeginPeriod(p.as_uint()) });
}
}
}
#[allow(clippy::unused_self)] // Only on some platforms is it unused.
fn stop(&self) {
#[cfg(windows)]
{
if let Some(p) = self.active {
assert_eq!(0, unsafe { timeEndPeriod(p.as_uint()) });
}
}
}
fn update(&mut self) {
let next = self.periods.min();
if next != self.active {
self.stop();
self.active = next;
self.start();
}
}
fn add(&mut self, p: Period) {
self.periods.add(p);
self.update();
}
fn remove(&mut self, p: Period) {
self.periods.remove(p);
self.update();
}
/// Enable high resolution time. Returns a thread-bound handle that
/// needs to be held until the high resolution time is no longer needed.
/// The handle can also be used to update the resolution.
#[must_use]
pub fn get(period: Duration) -> Handle {
thread_local! {
static HR_TIME: RefCell<Weak<RefCell<Time>>> = RefCell::default();
}
HR_TIME.with(|r| {
let mut b = r.borrow_mut();
let hrt = b.upgrade().unwrap_or_else(|| {
let hrt = Rc::new(RefCell::new(Time::new()));
*b = Rc::downgrade(&hrt);
hrt
});
let p = Period::from(period);
hrt.borrow_mut().add(p);
Handle::new(hrt, p)
})
}
}
impl Drop for Time {
fn drop(&mut self) {
self.stop();
#[cfg(target_os = "macos")]
{
if self.active.is_some() {
mac::set_thread_policy(self.deflt);
}
}
}
}
#[cfg(test)]
mod test {
use super::Time;
use std::thread::{sleep, spawn};
use std::time::{Duration, Instant};
const ONE: Duration = Duration::from_millis(1);
const ONE_AND_A_BIT: Duration = Duration::from_micros(1500);
/// A limit for when high resolution timers are disabled.
const GENEROUS: Duration = Duration::from_millis(30);
fn validate_delays(max_lag: Duration) -> Result<(), ()> {
const DELAYS: &[u64] = &[1, 2, 3, 5, 8, 10, 12, 15, 20, 25, 30];
let durations = DELAYS.iter().map(|&d| Duration::from_millis(d));
let mut s = Instant::now();
for d in durations {
sleep(d);
let e = Instant::now();
let actual = e - s;
let lag = actual - d;
println!("sleep({:?}) \u{2192} {:?} \u{394}{:?}", d, actual, lag);
if lag > max_lag {
return Err(());
}
s = Instant::now();
}
Ok(())
}
/// Validate the delays twice. Sometimes the first run can stall.
/// Reliability in CI is more important than reliable timers.
fn check_delays(max_lag: Duration) {
if validate_delays(max_lag).is_err() {
sleep(Duration::from_millis(50));
validate_delays(max_lag).unwrap();
}
}
/// Note that you have to run this test alone or other tests will
/// grab the high resolution timer and this will run faster.
#[test]
fn baseline() {
check_delays(GENEROUS);
}
#[test]
fn one_ms() {
let _hrt = Time::get(ONE);
check_delays(ONE_AND_A_BIT);
}
#[test]
fn multithread_baseline() {
let thr = spawn(move || {
baseline();
});
baseline();
thr.join().unwrap();
}
#[test]
fn one_ms_multi() {
let thr = spawn(move || {
one_ms();
});
one_ms();
thr.join().unwrap();
}
#[test]
fn mixed_multi() {
let thr = spawn(move || {
one_ms();
});
let _hrt = Time::get(Duration::from_millis(4));
check_delays(Duration::from_millis(5));
thr.join().unwrap();
}
#[test]
fn update() {
let mut hrt = Time::get(Duration::from_millis(4));
check_delays(Duration::from_millis(5));
hrt.update(ONE);
check_delays(ONE_AND_A_BIT);
}
#[test]
fn update_multi() {
let thr = spawn(move || {
update();
});
update();
thr.join().unwrap();
}
#[test]
fn max() {
let _hrt = Time::get(Duration::from_secs(1));
check_delays(GENEROUS);
}
}
|