1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
|
// Copyright (c) 2020 Apple Inc.
// SPDX-License-Identifier: MPL-2.0
//! Finite field arithmetic.
//!
//! Each field has an associated parameter called the "generator" that generates a multiplicative
//! subgroup of order `2^n` for some `n`.
#[cfg(feature = "crypto-dependencies")]
use crate::prng::{Prng, PrngError};
use crate::{
codec::{CodecError, Decode, Encode},
fp::{FP128, FP32, FP64, FP96},
};
use serde::{
de::{DeserializeOwned, Visitor},
Deserialize, Deserializer, Serialize, Serializer,
};
use std::{
cmp::min,
convert::{TryFrom, TryInto},
fmt::{self, Debug, Display, Formatter},
hash::{Hash, Hasher},
io::{Cursor, Read},
marker::PhantomData,
ops::{Add, AddAssign, BitAnd, Div, DivAssign, Mul, MulAssign, Neg, Shl, Shr, Sub, SubAssign},
};
/// Possible errors from finite field operations.
#[derive(Debug, thiserror::Error)]
pub enum FieldError {
/// Input sizes do not match.
#[error("input sizes do not match")]
InputSizeMismatch,
/// Returned when decoding a `FieldElement` from a short byte string.
#[error("short read from bytes")]
ShortRead,
/// Returned when decoding a `FieldElement` from a byte string encoding an integer larger than
/// or equal to the field modulus.
#[error("read from byte slice exceeds modulus")]
ModulusOverflow,
/// Error while performing I/O.
#[error("I/O error")]
Io(#[from] std::io::Error),
/// Error encoding or decoding a field.
#[error("Codec error")]
Codec(#[from] CodecError),
/// Error converting to `FieldElement::Integer`.
#[error("Integer TryFrom error")]
IntegerTryFrom,
/// Error converting `FieldElement::Integer` into something else.
#[error("Integer TryInto error")]
IntegerTryInto,
}
/// Byte order for encoding FieldElement values into byte sequences.
#[derive(Clone, Copy, Debug)]
enum ByteOrder {
/// Big endian byte order.
BigEndian,
/// Little endian byte order.
LittleEndian,
}
/// Objects with this trait represent an element of `GF(p)` for some prime `p`.
pub trait FieldElement:
Sized
+ Debug
+ Copy
+ PartialEq
+ Eq
+ Add<Output = Self>
+ AddAssign
+ Sub<Output = Self>
+ SubAssign
+ Mul<Output = Self>
+ MulAssign
+ Div<Output = Self>
+ DivAssign
+ Neg<Output = Self>
+ Display
+ From<<Self as FieldElement>::Integer>
+ for<'a> TryFrom<&'a [u8], Error = FieldError>
// NOTE Ideally we would require `Into<[u8; Self::ENCODED_SIZE]>` instead of `Into<Vec<u8>>`,
// since the former avoids a heap allocation and can easily be converted into Vec<u8>, but that
// isn't possible yet[1]. However we can provide the impl on FieldElement implementations.
// [1]: https://github.com/rust-lang/rust/issues/60551
+ Into<Vec<u8>>
+ Serialize
+ DeserializeOwned
+ Encode
+ Decode
+ 'static // NOTE This bound is needed for downcasting a `dyn Gadget<F>>` to a concrete type.
{
/// Size in bytes of the encoding of a value.
const ENCODED_SIZE: usize;
/// The error returned if converting `usize` to an `Integer` fails.
type IntegerTryFromError: std::error::Error;
/// The error returend if converting an `Integer` to a `u64` fails.
type TryIntoU64Error: std::error::Error;
/// The integer representation of the field element.
type Integer: Copy
+ Debug
+ Eq
+ Ord
+ BitAnd<Output = <Self as FieldElement>::Integer>
+ Div<Output = <Self as FieldElement>::Integer>
+ Shl<Output = <Self as FieldElement>::Integer>
+ Shr<Output = <Self as FieldElement>::Integer>
+ Add<Output = <Self as FieldElement>::Integer>
+ Sub<Output = <Self as FieldElement>::Integer>
+ From<Self>
+ TryFrom<usize, Error = Self::IntegerTryFromError>
+ TryInto<u64, Error = Self::TryIntoU64Error>;
/// Modular exponentation, i.e., `self^exp (mod p)`.
fn pow(&self, exp: Self::Integer) -> Self;
/// Modular inversion, i.e., `self^-1 (mod p)`. If `self` is 0, then the output is undefined.
fn inv(&self) -> Self;
/// Returns the prime modulus `p`.
fn modulus() -> Self::Integer;
/// Interprets the next [`Self::ENCODED_SIZE`] bytes from the input slice as an element of the
/// field. The `m` most significant bits are cleared, where `m` is equal to the length of
/// [`Self::Integer`] in bits minus the length of the modulus in bits.
///
/// # Errors
///
/// An error is returned if the provided slice is too small to encode a field element or if the
/// result encodes an integer larger than or equal to the field modulus.
///
/// # Warnings
///
/// This function should only be used within [`prng::Prng`] to convert a random byte string into
/// a field element. Use [`Self::decode`] to deserialize field elements. Use
/// [`field::rand`] or [`prng::Prng`] to randomly generate field elements.
#[doc(hidden)]
fn try_from_random(bytes: &[u8]) -> Result<Self, FieldError>;
/// Returns the size of the multiplicative subgroup generated by `generator()`.
fn generator_order() -> Self::Integer;
/// Returns the generator of the multiplicative subgroup of size `generator_order()`.
fn generator() -> Self;
/// Returns the `2^l`-th principal root of unity for any `l <= 20`. Note that the `2^0`-th
/// prinicpal root of unity is 1 by definition.
fn root(l: usize) -> Option<Self>;
/// Returns the additive identity.
fn zero() -> Self;
/// Returns the multiplicative identity.
fn one() -> Self;
/// Convert a slice of field elements into a vector of bytes.
///
/// # Notes
///
/// Ideally we would implement `From<&[F: FieldElement]> for Vec<u8>` or the corresponding
/// `Into`, but the orphan rule and the stdlib's blanket implementations of `Into` make this
/// impossible.
fn slice_into_byte_vec(values: &[Self]) -> Vec<u8> {
let mut vec = Vec::with_capacity(values.len() * Self::ENCODED_SIZE);
for elem in values {
vec.append(&mut (*elem).into());
}
vec
}
/// Convert a slice of bytes into a vector of field elements. The slice is interpreted as a
/// sequence of [`Self::ENCODED_SIZE`]-byte sequences.
///
/// # Errors
///
/// Returns an error if the length of the provided byte slice is not a multiple of the size of a
/// field element, or if any of the values in the byte slice are invalid encodings of a field
/// element, because the encoded integer is larger than or equal to the field modulus.
///
/// # Notes
///
/// Ideally we would implement `From<&[u8]> for Vec<F: FieldElement>` or the corresponding
/// `Into`, but the orphan rule and the stdlib's blanket implementations of `Into` make this
/// impossible.
fn byte_slice_into_vec(bytes: &[u8]) -> Result<Vec<Self>, FieldError> {
if bytes.len() % Self::ENCODED_SIZE != 0 {
return Err(FieldError::ShortRead);
}
let mut vec = Vec::with_capacity(bytes.len() / Self::ENCODED_SIZE);
for chunk in bytes.chunks_exact(Self::ENCODED_SIZE) {
vec.push(Self::get_decoded(chunk)?);
}
Ok(vec)
}
}
/// Methods common to all `FieldElement` implementations that are private to the crate.
pub(crate) trait FieldElementExt: FieldElement {
/// Encode `input` as `bits`-bit vector of elements of `Self` if it's small enough
/// to be represented with that many bits.
///
/// # Arguments
///
/// * `input` - The field element to encode
/// * `bits` - The number of bits to use for the encoding
fn encode_into_bitvector_representation(
input: &Self::Integer,
bits: usize,
) -> Result<Vec<Self>, FieldError> {
// Create a mutable copy of `input`. In each iteration of the following loop we take the
// least significant bit, and shift input to the right by one bit.
let mut i = *input;
let one = Self::Integer::from(Self::one());
let mut encoded = Vec::with_capacity(bits);
for _ in 0..bits {
let w = Self::from(i & one);
encoded.push(w);
i = i >> one;
}
// If `i` is still not zero, this means that it cannot be encoded by `bits` bits.
if i != Self::Integer::from(Self::zero()) {
return Err(FieldError::InputSizeMismatch);
}
Ok(encoded)
}
/// Decode the bitvector-represented value `input` into a simple representation as a single
/// field element.
///
/// # Errors
///
/// This function errors if `2^input.len() - 1` does not fit into the field `Self`.
fn decode_from_bitvector_representation(input: &[Self]) -> Result<Self, FieldError> {
if !Self::valid_integer_bitlength(input.len()) {
return Err(FieldError::ModulusOverflow);
}
let mut decoded = Self::zero();
for (l, bit) in input.iter().enumerate() {
let w = Self::Integer::try_from(1 << l).map_err(|_| FieldError::IntegerTryFrom)?;
decoded += Self::from(w) * *bit;
}
Ok(decoded)
}
/// Interpret `i` as [`Self::Integer`] if it's representable in that type and smaller than the
/// field modulus.
fn valid_integer_try_from<N>(i: N) -> Result<Self::Integer, FieldError>
where
Self::Integer: TryFrom<N>,
{
let i_int = Self::Integer::try_from(i).map_err(|_| FieldError::IntegerTryFrom)?;
if Self::modulus() <= i_int {
return Err(FieldError::ModulusOverflow);
}
Ok(i_int)
}
/// Check if the largest number representable with `bits` bits (i.e. 2^bits - 1) is
/// representable in this field.
fn valid_integer_bitlength(bits: usize) -> bool {
if let Ok(bits_int) = Self::Integer::try_from(bits) {
if Self::modulus() >> bits_int != Self::Integer::from(Self::zero()) {
return true;
}
}
false
}
}
impl<F: FieldElement> FieldElementExt for F {}
/// serde Visitor implementation used to generically deserialize `FieldElement`
/// values from byte arrays.
struct FieldElementVisitor<F: FieldElement> {
phantom: PhantomData<F>,
}
impl<'de, F: FieldElement> Visitor<'de> for FieldElementVisitor<F> {
type Value = F;
fn expecting(&self, formatter: &mut Formatter) -> fmt::Result {
formatter.write_fmt(format_args!("an array of {} bytes", F::ENCODED_SIZE))
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
Self::Value::try_from(v).map_err(E::custom)
}
fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
where
A: serde::de::SeqAccess<'de>,
{
let mut bytes = vec![];
while let Some(byte) = seq.next_element()? {
bytes.push(byte);
}
self.visit_bytes(&bytes)
}
}
macro_rules! make_field {
(
$(#[$meta:meta])*
$elem:ident, $int:ident, $fp:ident, $encoding_size:literal, $encoding_order:expr,
) => {
$(#[$meta])*
///
/// This structure represents a field element in a prime order field. The concrete
/// representation of the element is via the Montgomery domain. For an element n in GF(p),
/// we store n * R^-1 mod p (where R is a given power of two). This representation enables
/// using a more efficient (and branchless) multiplication algorithm, at the expense of
/// having to convert elements between their Montgomery domain representation and natural
/// representation. For calculations with many multiplications or exponentiations, this is
/// worthwhile.
///
/// As an invariant, this integer representing the field element in the Montgomery domain
/// must be less than the prime p.
#[derive(Clone, Copy, PartialOrd, Ord, Default)]
pub struct $elem(u128);
impl $elem {
/// Attempts to instantiate an `$elem` from the first `Self::ENCODED_SIZE` bytes in the
/// provided slice. The decoded value will be bitwise-ANDed with `mask` before reducing
/// it using the field modulus.
///
/// # Errors
///
/// An error is returned if the provided slice is not long enough to encode a field
/// element or if the decoded value is greater than the field prime.
///
/// # Notes
///
/// We cannot use `u128::from_le_bytes` or `u128::from_be_bytes` because those functions
/// expect inputs to be exactly 16 bytes long. Our encoding of most field elements is
/// more compact, and does not have to correspond to the size of an integer type. For
/// instance,`Field96`'s encoding is 12 bytes, even though it is a 16 byte `u128` in
/// memory.
fn try_from_bytes(bytes: &[u8], mask: u128) -> Result<Self, FieldError> {
if Self::ENCODED_SIZE > bytes.len() {
return Err(FieldError::ShortRead);
}
let mut int = 0;
for i in 0..Self::ENCODED_SIZE {
let j = match $encoding_order {
ByteOrder::LittleEndian => i,
ByteOrder::BigEndian => Self::ENCODED_SIZE - i - 1,
};
int |= (bytes[j] as u128) << (i << 3);
}
int &= mask;
if int >= $fp.p {
return Err(FieldError::ModulusOverflow);
}
// FieldParameters::montgomery() will return a value that has been fully reduced
// mod p, satisfying the invariant on Self.
Ok(Self($fp.montgomery(int)))
}
}
impl PartialEq for $elem {
fn eq(&self, rhs: &Self) -> bool {
// The fields included in this comparison MUST match the fields
// used in Hash::hash
// https://doc.rust-lang.org/std/hash/trait.Hash.html#hash-and-eq
// Check the invariant that the integer representation is fully reduced.
debug_assert!(self.0 < $fp.p);
debug_assert!(rhs.0 < $fp.p);
self.0 == rhs.0
}
}
impl Hash for $elem {
fn hash<H: Hasher>(&self, state: &mut H) {
// The fields included in this hash MUST match the fields used
// in PartialEq::eq
// https://doc.rust-lang.org/std/hash/trait.Hash.html#hash-and-eq
// Check the invariant that the integer representation is fully reduced.
debug_assert!(self.0 < $fp.p);
self.0.hash(state);
}
}
impl Eq for $elem {}
impl Add for $elem {
type Output = $elem;
fn add(self, rhs: Self) -> Self {
// FieldParameters::add() returns a value that has been fully reduced
// mod p, satisfying the invariant on Self.
Self($fp.add(self.0, rhs.0))
}
}
impl Add for &$elem {
type Output = $elem;
fn add(self, rhs: Self) -> $elem {
*self + *rhs
}
}
impl AddAssign for $elem {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl Sub for $elem {
type Output = $elem;
fn sub(self, rhs: Self) -> Self {
// We know that self.0 and rhs.0 are both less than p, thus FieldParameters::sub()
// returns a value less than p, satisfying the invariant on Self.
Self($fp.sub(self.0, rhs.0))
}
}
impl Sub for &$elem {
type Output = $elem;
fn sub(self, rhs: Self) -> $elem {
*self - *rhs
}
}
impl SubAssign for $elem {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl Mul for $elem {
type Output = $elem;
fn mul(self, rhs: Self) -> Self {
// FieldParameters::mul() always returns a value less than p, so the invariant on
// Self is satisfied.
Self($fp.mul(self.0, rhs.0))
}
}
impl Mul for &$elem {
type Output = $elem;
fn mul(self, rhs: Self) -> $elem {
*self * *rhs
}
}
impl MulAssign for $elem {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl Div for $elem {
type Output = $elem;
#[allow(clippy::suspicious_arithmetic_impl)]
fn div(self, rhs: Self) -> Self {
self * rhs.inv()
}
}
impl Div for &$elem {
type Output = $elem;
fn div(self, rhs: Self) -> $elem {
*self / *rhs
}
}
impl DivAssign for $elem {
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs;
}
}
impl Neg for $elem {
type Output = $elem;
fn neg(self) -> Self {
// FieldParameters::neg() will return a value less than p because self.0 is less
// than p, and neg() dispatches to sub().
Self($fp.neg(self.0))
}
}
impl Neg for &$elem {
type Output = $elem;
fn neg(self) -> $elem {
-(*self)
}
}
impl From<$int> for $elem {
fn from(x: $int) -> Self {
// FieldParameters::montgomery() will return a value that has been fully reduced
// mod p, satisfying the invariant on Self.
Self($fp.montgomery(u128::try_from(x).unwrap()))
}
}
impl From<$elem> for $int {
fn from(x: $elem) -> Self {
$int::try_from($fp.residue(x.0)).unwrap()
}
}
impl PartialEq<$int> for $elem {
fn eq(&self, rhs: &$int) -> bool {
$fp.residue(self.0) == u128::try_from(*rhs).unwrap()
}
}
impl<'a> TryFrom<&'a [u8]> for $elem {
type Error = FieldError;
fn try_from(bytes: &[u8]) -> Result<Self, FieldError> {
Self::try_from_bytes(bytes, u128::MAX)
}
}
impl From<$elem> for [u8; $elem::ENCODED_SIZE] {
fn from(elem: $elem) -> Self {
let int = $fp.residue(elem.0);
let mut slice = [0; $elem::ENCODED_SIZE];
for i in 0..$elem::ENCODED_SIZE {
let j = match $encoding_order {
ByteOrder::LittleEndian => i,
ByteOrder::BigEndian => $elem::ENCODED_SIZE - i - 1,
};
slice[j] = ((int >> (i << 3)) & 0xff) as u8;
}
slice
}
}
impl From<$elem> for Vec<u8> {
fn from(elem: $elem) -> Self {
<[u8; $elem::ENCODED_SIZE]>::from(elem).to_vec()
}
}
impl Display for $elem {
fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
write!(f, "{}", $fp.residue(self.0))
}
}
impl Debug for $elem {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", $fp.residue(self.0))
}
}
// We provide custom [`serde::Serialize`] and [`serde::Deserialize`] implementations because
// the derived implementations would represent `FieldElement` values as the backing `u128`,
// which is not what we want because (1) we can be more efficient in all cases and (2) in
// some circumstances, [some serializers don't support `u128`](https://github.com/serde-rs/json/issues/625).
impl Serialize for $elem {
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
let bytes: [u8; $elem::ENCODED_SIZE] = (*self).into();
serializer.serialize_bytes(&bytes)
}
}
impl<'de> Deserialize<'de> for $elem {
fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<$elem, D::Error> {
deserializer.deserialize_bytes(FieldElementVisitor { phantom: PhantomData })
}
}
impl Encode for $elem {
fn encode(&self, bytes: &mut Vec<u8>) {
let slice = <[u8; $elem::ENCODED_SIZE]>::from(*self);
bytes.extend_from_slice(&slice);
}
}
impl Decode for $elem {
fn decode(bytes: &mut Cursor<&[u8]>) -> Result<Self, CodecError> {
let mut value = [0u8; $elem::ENCODED_SIZE];
bytes.read_exact(&mut value)?;
$elem::try_from_bytes(&value, u128::MAX).map_err(|e| {
CodecError::Other(Box::new(e) as Box<dyn std::error::Error + 'static + Send + Sync>)
})
}
}
impl FieldElement for $elem {
const ENCODED_SIZE: usize = $encoding_size;
type Integer = $int;
type IntegerTryFromError = <Self::Integer as TryFrom<usize>>::Error;
type TryIntoU64Error = <Self::Integer as TryInto<u64>>::Error;
fn pow(&self, exp: Self::Integer) -> Self {
// FieldParameters::pow() relies on mul(), and will always return a value less
// than p.
Self($fp.pow(self.0, u128::try_from(exp).unwrap()))
}
fn inv(&self) -> Self {
// FieldParameters::inv() ultimately relies on mul(), and will always return a
// value less than p.
Self($fp.inv(self.0))
}
fn modulus() -> Self::Integer {
$fp.p as $int
}
fn try_from_random(bytes: &[u8]) -> Result<Self, FieldError> {
$elem::try_from_bytes(bytes, $fp.bit_mask)
}
fn generator() -> Self {
Self($fp.g)
}
fn generator_order() -> Self::Integer {
1 << (Self::Integer::try_from($fp.num_roots).unwrap())
}
fn root(l: usize) -> Option<Self> {
if l < min($fp.roots.len(), $fp.num_roots+1) {
Some(Self($fp.roots[l]))
} else {
None
}
}
fn zero() -> Self {
Self(0)
}
fn one() -> Self {
Self($fp.roots[0])
}
}
};
}
make_field!(
/// `GF(4293918721)`, a 32-bit field.
Field32,
u32,
FP32,
4,
ByteOrder::BigEndian,
);
make_field!(
/// Same as Field32, but encoded in little endian for compatibility with Prio v2.
FieldPrio2,
u32,
FP32,
4,
ByteOrder::LittleEndian,
);
make_field!(
/// `GF(18446744069414584321)`, a 64-bit field.
Field64,
u64,
FP64,
8,
ByteOrder::BigEndian,
);
make_field!(
/// `GF(79228148845226978974766202881)`, a 96-bit field.
Field96,
u128,
FP96,
12,
ByteOrder::BigEndian,
);
make_field!(
/// `GF(340282366920938462946865773367900766209)`, a 128-bit field.
Field128,
u128,
FP128,
16,
ByteOrder::BigEndian,
);
/// Merge two vectors of fields by summing other_vector into accumulator.
///
/// # Errors
///
/// Fails if the two vectors do not have the same length.
#[cfg(any(test, feature = "prio2"))]
pub(crate) fn merge_vector<F: FieldElement>(
accumulator: &mut [F],
other_vector: &[F],
) -> Result<(), FieldError> {
if accumulator.len() != other_vector.len() {
return Err(FieldError::InputSizeMismatch);
}
for (a, o) in accumulator.iter_mut().zip(other_vector.iter()) {
*a += *o;
}
Ok(())
}
/// Outputs an additive secret sharing of the input.
#[cfg(feature = "crypto-dependencies")]
pub(crate) fn split_vector<F: FieldElement>(
inp: &[F],
num_shares: usize,
) -> Result<Vec<Vec<F>>, PrngError> {
if num_shares == 0 {
return Ok(vec![]);
}
let mut outp = Vec::with_capacity(num_shares);
outp.push(inp.to_vec());
for _ in 1..num_shares {
let share: Vec<F> = random_vector(inp.len())?;
for (x, y) in outp[0].iter_mut().zip(&share) {
*x -= *y;
}
outp.push(share);
}
Ok(outp)
}
/// Generate a vector of uniform random field elements.
#[cfg(feature = "crypto-dependencies")]
pub fn random_vector<F: FieldElement>(len: usize) -> Result<Vec<F>, PrngError> {
Ok(Prng::new()?.take(len).collect())
}
#[cfg(test)]
mod tests {
use super::*;
use crate::fp::MAX_ROOTS;
use crate::prng::Prng;
use assert_matches::assert_matches;
use std::collections::hash_map::DefaultHasher;
#[test]
fn test_endianness() {
let little_endian_encoded: [u8; FieldPrio2::ENCODED_SIZE] =
FieldPrio2(0x12_34_56_78).into();
let mut big_endian_encoded: [u8; Field32::ENCODED_SIZE] = Field32(0x12_34_56_78).into();
big_endian_encoded.reverse();
assert_eq!(little_endian_encoded, big_endian_encoded);
}
#[test]
fn test_accumulate() {
let mut lhs = vec![Field32(1); 10];
let rhs = vec![Field32(2); 10];
merge_vector(&mut lhs, &rhs).unwrap();
lhs.iter().for_each(|f| assert_eq!(*f, Field32(3)));
rhs.iter().for_each(|f| assert_eq!(*f, Field32(2)));
let wrong_len = vec![Field32::zero(); 9];
let result = merge_vector(&mut lhs, &wrong_len);
assert_matches!(result, Err(FieldError::InputSizeMismatch));
}
fn hash_helper<H: Hash>(input: H) -> u64 {
let mut hasher = DefaultHasher::new();
input.hash(&mut hasher);
hasher.finish()
}
// Some of the checks in this function, like `assert_eq!(one - one, zero)`
// or `assert_eq!(two / two, one)` trip this clippy lint for tautological
// comparisons, but we have a legitimate need to verify these basics. We put
// the #[allow] on the whole function since "attributes on expressions are
// experimental" https://github.com/rust-lang/rust/issues/15701
#[allow(clippy::eq_op)]
fn field_element_test<F: FieldElement + Hash>() {
let mut prng: Prng<F, _> = Prng::new().unwrap();
let int_modulus = F::modulus();
let int_one = F::Integer::try_from(1).unwrap();
let zero = F::zero();
let one = F::one();
let two = F::from(F::Integer::try_from(2).unwrap());
let four = F::from(F::Integer::try_from(4).unwrap());
// add
assert_eq!(F::from(int_modulus - int_one) + one, zero);
assert_eq!(one + one, two);
assert_eq!(two + F::from(int_modulus), two);
// sub
assert_eq!(zero - one, F::from(int_modulus - int_one));
assert_eq!(one - one, zero);
assert_eq!(two - F::from(int_modulus), two);
assert_eq!(one - F::from(int_modulus - int_one), two);
// add + sub
for _ in 0..100 {
let f = prng.get();
let g = prng.get();
assert_eq!(f + g - f - g, zero);
assert_eq!(f + g - g, f);
assert_eq!(f + g - f, g);
}
// mul
assert_eq!(two * two, four);
assert_eq!(two * one, two);
assert_eq!(two * zero, zero);
assert_eq!(one * F::from(int_modulus), zero);
// div
assert_eq!(four / two, two);
assert_eq!(two / two, one);
assert_eq!(zero / two, zero);
assert_eq!(two / zero, zero); // Undefined behavior
assert_eq!(zero.inv(), zero); // Undefined behavior
// mul + div
for _ in 0..100 {
let f = prng.get();
if f == zero {
continue;
}
assert_eq!(f * f.inv(), one);
assert_eq!(f.inv() * f, one);
}
// pow
assert_eq!(two.pow(F::Integer::try_from(0).unwrap()), one);
assert_eq!(two.pow(int_one), two);
assert_eq!(two.pow(F::Integer::try_from(2).unwrap()), four);
assert_eq!(two.pow(int_modulus - int_one), one);
assert_eq!(two.pow(int_modulus), two);
// roots
let mut int_order = F::generator_order();
for l in 0..MAX_ROOTS + 1 {
assert_eq!(
F::generator().pow(int_order),
F::root(l).unwrap(),
"failure for F::root({})",
l
);
int_order = int_order >> int_one;
}
// serialization
let test_inputs = vec![zero, one, prng.get(), F::from(int_modulus - int_one)];
for want in test_inputs.iter() {
let mut bytes = vec![];
want.encode(&mut bytes);
assert_eq!(bytes.len(), F::ENCODED_SIZE);
let got = F::get_decoded(&bytes).unwrap();
assert_eq!(got, *want);
}
let serialized_vec = F::slice_into_byte_vec(&test_inputs);
let deserialized = F::byte_slice_into_vec(&serialized_vec).unwrap();
assert_eq!(deserialized, test_inputs);
// equality and hash: Generate many elements, confirm they are not equal, and confirm
// various products that should be equal have the same hash. Three is chosen as a generator
// here because it happens to generate fairly large subgroups of (Z/pZ)* for all four
// primes.
let three = F::from(F::Integer::try_from(3).unwrap());
let mut powers_of_three = Vec::with_capacity(500);
let mut power = one;
for _ in 0..500 {
powers_of_three.push(power);
power *= three;
}
// Check all these elements are mutually not equal.
for i in 0..powers_of_three.len() {
let first = &powers_of_three[i];
for second in &powers_of_three[0..i] {
assert_ne!(first, second);
}
}
// Check that 3^i is the same whether it's calculated with pow() or repeated
// multiplication, with both equality and hash equality.
for (i, power) in powers_of_three.iter().enumerate() {
let result = three.pow(F::Integer::try_from(i).unwrap());
assert_eq!(result, *power);
let hash1 = hash_helper(power);
let hash2 = hash_helper(result);
assert_eq!(hash1, hash2);
}
// Check that 3^n = (3^i)*(3^(n-i)), via both equality and hash equality.
let expected_product = powers_of_three[powers_of_three.len() - 1];
let expected_hash = hash_helper(expected_product);
for i in 0..powers_of_three.len() {
let a = powers_of_three[i];
let b = powers_of_three[powers_of_three.len() - 1 - i];
let product = a * b;
assert_eq!(product, expected_product);
assert_eq!(hash_helper(product), expected_hash);
}
// Construct an element from a number that needs to be reduced, and test comparisons on it,
// confirming that FieldParameters::montgomery() reduced it correctly.
let p = F::from(int_modulus);
assert_eq!(p, zero);
assert_eq!(hash_helper(p), hash_helper(zero));
let p_plus_one = F::from(int_modulus + F::Integer::try_from(1).unwrap());
assert_eq!(p_plus_one, one);
assert_eq!(hash_helper(p_plus_one), hash_helper(one));
}
#[test]
fn test_field32() {
field_element_test::<Field32>();
}
#[test]
fn test_field_priov2() {
field_element_test::<FieldPrio2>();
}
#[test]
fn test_field64() {
field_element_test::<Field64>();
}
#[test]
fn test_field96() {
field_element_test::<Field96>();
}
#[test]
fn test_field128() {
field_element_test::<Field128>();
}
}
|