1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
|
use crate::future::Future;
use crate::runtime::task::core::{Cell, Core, CoreStage, Header, Trailer};
use crate::runtime::task::state::Snapshot;
use crate::runtime::task::waker::waker_ref;
use crate::runtime::task::{JoinError, Notified, Schedule, Task};
use std::mem;
use std::mem::ManuallyDrop;
use std::panic;
use std::ptr::NonNull;
use std::task::{Context, Poll, Waker};
/// Typed raw task handle.
pub(super) struct Harness<T: Future, S: 'static> {
cell: NonNull<Cell<T, S>>,
}
impl<T, S> Harness<T, S>
where
T: Future,
S: 'static,
{
pub(super) unsafe fn from_raw(ptr: NonNull<Header>) -> Harness<T, S> {
Harness {
cell: ptr.cast::<Cell<T, S>>(),
}
}
fn header_ptr(&self) -> NonNull<Header> {
self.cell.cast()
}
fn header(&self) -> &Header {
unsafe { &self.cell.as_ref().header }
}
fn trailer(&self) -> &Trailer {
unsafe { &self.cell.as_ref().trailer }
}
fn core(&self) -> &Core<T, S> {
unsafe { &self.cell.as_ref().core }
}
}
impl<T, S> Harness<T, S>
where
T: Future,
S: Schedule,
{
/// Polls the inner future. A ref-count is consumed.
///
/// All necessary state checks and transitions are performed.
/// Panics raised while polling the future are handled.
pub(super) fn poll(self) {
// We pass our ref-count to `poll_inner`.
match self.poll_inner() {
PollFuture::Notified => {
// The `poll_inner` call has given us two ref-counts back.
// We give one of them to a new task and call `yield_now`.
self.core()
.scheduler
.yield_now(Notified(self.get_new_task()));
// The remaining ref-count is now dropped. We kept the extra
// ref-count until now to ensure that even if the `yield_now`
// call drops the provided task, the task isn't deallocated
// before after `yield_now` returns.
self.drop_reference();
}
PollFuture::Complete => {
self.complete();
}
PollFuture::Dealloc => {
self.dealloc();
}
PollFuture::Done => (),
}
}
/// Polls the task and cancel it if necessary. This takes ownership of a
/// ref-count.
///
/// If the return value is Notified, the caller is given ownership of two
/// ref-counts.
///
/// If the return value is Complete, the caller is given ownership of a
/// single ref-count, which should be passed on to `complete`.
///
/// If the return value is Dealloc, then this call consumed the last
/// ref-count and the caller should call `dealloc`.
///
/// Otherwise the ref-count is consumed and the caller should not access
/// `self` again.
fn poll_inner(&self) -> PollFuture {
use super::state::{TransitionToIdle, TransitionToRunning};
match self.header().state.transition_to_running() {
TransitionToRunning::Success => {
let header_ptr = self.header_ptr();
let waker_ref = waker_ref::<T, S>(&header_ptr);
let cx = Context::from_waker(&*waker_ref);
let res = poll_future(&self.core().stage, cx);
if res == Poll::Ready(()) {
// The future completed. Move on to complete the task.
return PollFuture::Complete;
}
match self.header().state.transition_to_idle() {
TransitionToIdle::Ok => PollFuture::Done,
TransitionToIdle::OkNotified => PollFuture::Notified,
TransitionToIdle::OkDealloc => PollFuture::Dealloc,
TransitionToIdle::Cancelled => {
// The transition to idle failed because the task was
// cancelled during the poll.
cancel_task(&self.core().stage);
PollFuture::Complete
}
}
}
TransitionToRunning::Cancelled => {
cancel_task(&self.core().stage);
PollFuture::Complete
}
TransitionToRunning::Failed => PollFuture::Done,
TransitionToRunning::Dealloc => PollFuture::Dealloc,
}
}
/// Forcibly shuts down the task.
///
/// Attempt to transition to `Running` in order to forcibly shutdown the
/// task. If the task is currently running or in a state of completion, then
/// there is nothing further to do. When the task completes running, it will
/// notice the `CANCELLED` bit and finalize the task.
pub(super) fn shutdown(self) {
if !self.header().state.transition_to_shutdown() {
// The task is concurrently running. No further work needed.
self.drop_reference();
return;
}
// By transitioning the lifecycle to `Running`, we have permission to
// drop the future.
cancel_task(&self.core().stage);
self.complete();
}
pub(super) fn dealloc(self) {
// Release the join waker, if there is one.
self.trailer().waker.with_mut(drop);
// Check causality
self.core().stage.with_mut(drop);
unsafe {
drop(Box::from_raw(self.cell.as_ptr()));
}
}
// ===== join handle =====
/// Read the task output into `dst`.
pub(super) fn try_read_output(self, dst: &mut Poll<super::Result<T::Output>>, waker: &Waker) {
if can_read_output(self.header(), self.trailer(), waker) {
*dst = Poll::Ready(self.core().stage.take_output());
}
}
/// Try to set the waker notified when the task is complete. Returns true if
/// the task has already completed. If this call returns false, then the
/// waker will not be notified.
pub(super) fn try_set_join_waker(self, waker: &Waker) -> bool {
can_read_output(self.header(), self.trailer(), waker)
}
pub(super) fn drop_join_handle_slow(self) {
// Try to unset `JOIN_INTEREST`. This must be done as a first step in
// case the task concurrently completed.
if self.header().state.unset_join_interested().is_err() {
// It is our responsibility to drop the output. This is critical as
// the task output may not be `Send` and as such must remain with
// the scheduler or `JoinHandle`. i.e. if the output remains in the
// task structure until the task is deallocated, it may be dropped
// by a Waker on any arbitrary thread.
//
// Panics are delivered to the user via the `JoinHandle`. Given that
// they are dropping the `JoinHandle`, we assume they are not
// interested in the panic and swallow it.
let _ = panic::catch_unwind(panic::AssertUnwindSafe(|| {
self.core().stage.drop_future_or_output();
}));
}
// Drop the `JoinHandle` reference, possibly deallocating the task
self.drop_reference();
}
/// Remotely aborts the task.
///
/// The caller should hold a ref-count, but we do not consume it.
///
/// This is similar to `shutdown` except that it asks the runtime to perform
/// the shutdown. This is necessary to avoid the shutdown happening in the
/// wrong thread for non-Send tasks.
pub(super) fn remote_abort(self) {
if self.header().state.transition_to_notified_and_cancel() {
// The transition has created a new ref-count, which we turn into
// a Notified and pass to the task.
//
// Since the caller holds a ref-count, the task cannot be destroyed
// before the call to `schedule` returns even if the call drops the
// `Notified` internally.
self.core()
.scheduler
.schedule(Notified(self.get_new_task()));
}
}
// ===== waker behavior =====
/// This call consumes a ref-count and notifies the task. This will create a
/// new Notified and submit it if necessary.
///
/// The caller does not need to hold a ref-count besides the one that was
/// passed to this call.
pub(super) fn wake_by_val(self) {
use super::state::TransitionToNotifiedByVal;
match self.header().state.transition_to_notified_by_val() {
TransitionToNotifiedByVal::Submit => {
// The caller has given us a ref-count, and the transition has
// created a new ref-count, so we now hold two. We turn the new
// ref-count Notified and pass it to the call to `schedule`.
//
// The old ref-count is retained for now to ensure that the task
// is not dropped during the call to `schedule` if the call
// drops the task it was given.
self.core()
.scheduler
.schedule(Notified(self.get_new_task()));
// Now that we have completed the call to schedule, we can
// release our ref-count.
self.drop_reference();
}
TransitionToNotifiedByVal::Dealloc => {
self.dealloc();
}
TransitionToNotifiedByVal::DoNothing => {}
}
}
/// This call notifies the task. It will not consume any ref-counts, but the
/// caller should hold a ref-count. This will create a new Notified and
/// submit it if necessary.
pub(super) fn wake_by_ref(&self) {
use super::state::TransitionToNotifiedByRef;
match self.header().state.transition_to_notified_by_ref() {
TransitionToNotifiedByRef::Submit => {
// The transition above incremented the ref-count for a new task
// and the caller also holds a ref-count. The caller's ref-count
// ensures that the task is not destroyed even if the new task
// is dropped before `schedule` returns.
self.core()
.scheduler
.schedule(Notified(self.get_new_task()));
}
TransitionToNotifiedByRef::DoNothing => {}
}
}
pub(super) fn drop_reference(self) {
if self.header().state.ref_dec() {
self.dealloc();
}
}
#[cfg(all(tokio_unstable, feature = "tracing"))]
pub(super) fn id(&self) -> Option<&tracing::Id> {
self.header().id.as_ref()
}
// ====== internal ======
/// Completes the task. This method assumes that the state is RUNNING.
fn complete(self) {
// The future has completed and its output has been written to the task
// stage. We transition from running to complete.
let snapshot = self.header().state.transition_to_complete();
// We catch panics here in case dropping the future or waking the
// JoinHandle panics.
let _ = panic::catch_unwind(panic::AssertUnwindSafe(|| {
if !snapshot.is_join_interested() {
// The `JoinHandle` is not interested in the output of
// this task. It is our responsibility to drop the
// output.
self.core().stage.drop_future_or_output();
} else if snapshot.has_join_waker() {
// Notify the join handle. The previous transition obtains the
// lock on the waker cell.
self.trailer().wake_join();
}
}));
// The task has completed execution and will no longer be scheduled.
let num_release = self.release();
if self.header().state.transition_to_terminal(num_release) {
self.dealloc();
}
}
/// Releases the task from the scheduler. Returns the number of ref-counts
/// that should be decremented.
fn release(&self) -> usize {
// We don't actually increment the ref-count here, but the new task is
// never destroyed, so that's ok.
let me = ManuallyDrop::new(self.get_new_task());
if let Some(task) = self.core().scheduler.release(&me) {
mem::forget(task);
2
} else {
1
}
}
/// Creates a new task that holds its own ref-count.
///
/// # Safety
///
/// Any use of `self` after this call must ensure that a ref-count to the
/// task holds the task alive until after the use of `self`. Passing the
/// returned Task to any method on `self` is unsound if dropping the Task
/// could drop `self` before the call on `self` returned.
fn get_new_task(&self) -> Task<S> {
// safety: The header is at the beginning of the cell, so this cast is
// safe.
unsafe { Task::from_raw(self.cell.cast()) }
}
}
fn can_read_output(header: &Header, trailer: &Trailer, waker: &Waker) -> bool {
// Load a snapshot of the current task state
let snapshot = header.state.load();
debug_assert!(snapshot.is_join_interested());
if !snapshot.is_complete() {
// The waker must be stored in the task struct.
let res = if snapshot.has_join_waker() {
// There already is a waker stored in the struct. If it matches
// the provided waker, then there is no further work to do.
// Otherwise, the waker must be swapped.
let will_wake = unsafe {
// Safety: when `JOIN_INTEREST` is set, only `JOIN_HANDLE`
// may mutate the `waker` field.
trailer.will_wake(waker)
};
if will_wake {
// The task is not complete **and** the waker is up to date,
// there is nothing further that needs to be done.
return false;
}
// Unset the `JOIN_WAKER` to gain mutable access to the `waker`
// field then update the field with the new join worker.
//
// This requires two atomic operations, unsetting the bit and
// then resetting it. If the task transitions to complete
// concurrently to either one of those operations, then setting
// the join waker fails and we proceed to reading the task
// output.
header
.state
.unset_waker()
.and_then(|snapshot| set_join_waker(header, trailer, waker.clone(), snapshot))
} else {
set_join_waker(header, trailer, waker.clone(), snapshot)
};
match res {
Ok(_) => return false,
Err(snapshot) => {
assert!(snapshot.is_complete());
}
}
}
true
}
fn set_join_waker(
header: &Header,
trailer: &Trailer,
waker: Waker,
snapshot: Snapshot,
) -> Result<Snapshot, Snapshot> {
assert!(snapshot.is_join_interested());
assert!(!snapshot.has_join_waker());
// Safety: Only the `JoinHandle` may set the `waker` field. When
// `JOIN_INTEREST` is **not** set, nothing else will touch the field.
unsafe {
trailer.set_waker(Some(waker));
}
// Update the `JoinWaker` state accordingly
let res = header.state.set_join_waker();
// If the state could not be updated, then clear the join waker
if res.is_err() {
unsafe {
trailer.set_waker(None);
}
}
res
}
enum PollFuture {
Complete,
Notified,
Done,
Dealloc,
}
/// Cancels the task and store the appropriate error in the stage field.
fn cancel_task<T: Future>(stage: &CoreStage<T>) {
// Drop the future from a panic guard.
let res = panic::catch_unwind(panic::AssertUnwindSafe(|| {
stage.drop_future_or_output();
}));
match res {
Ok(()) => {
stage.store_output(Err(JoinError::cancelled()));
}
Err(panic) => {
stage.store_output(Err(JoinError::panic(panic)));
}
}
}
/// Polls the future. If the future completes, the output is written to the
/// stage field.
fn poll_future<T: Future>(core: &CoreStage<T>, cx: Context<'_>) -> Poll<()> {
// Poll the future.
let output = panic::catch_unwind(panic::AssertUnwindSafe(|| {
struct Guard<'a, T: Future> {
core: &'a CoreStage<T>,
}
impl<'a, T: Future> Drop for Guard<'a, T> {
fn drop(&mut self) {
// If the future panics on poll, we drop it inside the panic
// guard.
self.core.drop_future_or_output();
}
}
let guard = Guard { core };
let res = guard.core.poll(cx);
mem::forget(guard);
res
}));
// Prepare output for being placed in the core stage.
let output = match output {
Ok(Poll::Pending) => return Poll::Pending,
Ok(Poll::Ready(output)) => Ok(output),
Err(panic) => Err(JoinError::panic(panic)),
};
// Catch and ignore panics if the future panics on drop.
let _ = panic::catch_unwind(panic::AssertUnwindSafe(|| {
core.store_output(output);
}));
Poll::Ready(())
}
|