summaryrefslogtreecommitdiffstats
path: root/third_party/rust/uniffi_bindgen/src/interface/mod.rs
blob: 3daf50ef4afb3800ad4db63bc72b6e3061cf98c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

//! # Component Interface Definition.
//!
//! This module provides an abstract representation of the interface provided by a UniFFI Rust Component,
//! in high-level terms suitable for translation into target consumer languages such as Kotlin
//! and Swift. It also provides facilities for parsing a WebIDL interface definition file into such a
//! representation.
//!
//! The entrypoint to this crate is the `ComponentInterface` struct, which holds a complete definition
//! of the interface provided by a component, in two parts:
//!
//!    * The high-level consumer API, in terms of objects and records and methods and so-on
//!    * The low-level FFI contract through which the foreign language code can call into Rust.
//!
//! That's really the key concept of this crate so it's worth repeating: a `ComponentInterface` completely
//! defines the shape and semantics of an interface between the Rust-based implementation of a component
//! and its foreign language consumers, including details like:
//!
//!    * The names of all symbols in the compiled object file
//!    * The type and arity of all exported functions
//!    * The layout and conventions used for all arguments and return types
//!
//! If you have a dynamic library compiled from a Rust Component using this crate, and a foreign
//! language binding generated from the same `ComponentInterface` using the same version of this
//! module, then there should be no opportunities for them to disagree on how the two sides should
//! interact.
//!
//! General and incomplete TODO list for this thing:
//!
//!   * It should prevent user error and the possibility of generating bad code by doing (at least)
//!     the following checks:
//!       * No duplicate names (types, methods, args, etc)
//!       * No shadowing of builtin names, or names we use in code generation
//!     We expect that if the user actually does one of these things, then they *should* get a compile
//!     error when trying to build the component, because the codegen will be invalid. But we can't
//!     guarantee that there's not some edge-case where it produces valid-but-incorrect code.
//!
//!   * There is a *lot* of cloning going on, in the spirit of "first make it work". There's probably
//!     a good opportunity here for e.g. interned strings, but we're nowhere near the point were we need
//!     that kind of optimization just yet.
//!
//!   * Error messages and general developer experience leave a lot to be desired.

use std::{
    collections::{btree_map::Entry, BTreeMap, HashSet},
    convert::TryFrom,
    iter,
};

use anyhow::{bail, ensure, Result};

pub mod types;
pub use types::Type;
use types::{TypeIterator, TypeUniverse};

mod attributes;
mod callbacks;
pub use callbacks::CallbackInterface;
mod enum_;
pub use enum_::Enum;
mod error;
pub use error::Error;
mod function;
pub use function::{Argument, Function};
mod literal;
pub use literal::{Literal, Radix};
mod namespace;
pub use namespace::Namespace;
mod object;
pub use object::{Constructor, Method, Object};
mod record;
pub use record::{Field, Record};

pub mod ffi;
pub use ffi::{FfiArgument, FfiFunction, FfiType};
use uniffi_meta::{Checksum, FnMetadata, MethodMetadata, ObjectMetadata};

/// This needs to match the major/minor version of the `uniffi` crate.  See
/// `docs/uniffi-versioning.md` for details.
///
/// Once we get to 1.0, then we should reformat this to only include the major version number.
const UNIFFI_CONTRACT_VERSION: &str = "0.22";

/// The main public interface for this module, representing the complete details of an interface exposed
/// by a rust component and the details of consuming it via an extern-C FFI layer.
///
#[derive(Debug, Default, Checksum)]
pub struct ComponentInterface {
    /// This always points to `UNIFFI_CONTRACT_VERSION`.  By including it in the checksum, we
    /// prevent consumers from combining scaffolding and bindings that were created with different
    /// `uniffi` versions.
    uniffi_version: &'static str,
    /// All of the types used in the interface.
    // We can't checksum `self.types`, but its contents are implied by the other fields
    // anyway, so it's safe to ignore it.
    #[checksum_ignore]
    pub(super) types: TypeUniverse,
    /// The unique prefix that we'll use for namespacing when exposing this component's API.
    namespace: String,
    /// The internal unique prefix used to namespace FFI symbols
    #[checksum_ignore]
    ffi_namespace: String,
    /// The high-level API provided by the component.
    enums: BTreeMap<String, Enum>,
    records: BTreeMap<String, Record>,
    functions: Vec<Function>,
    objects: Vec<Object>,
    callback_interfaces: Vec<CallbackInterface>,
    errors: BTreeMap<String, Error>,
}

impl ComponentInterface {
    /// Parse a `ComponentInterface` from a string containing a WebIDL definition.
    pub fn from_webidl(idl: &str) -> Result<Self> {
        let mut ci = Self {
            uniffi_version: UNIFFI_CONTRACT_VERSION,
            ..Default::default()
        };
        // There's some lifetime thing with the errors returned from weedle::Definitions::parse
        // that my own lifetime is too short to worry about figuring out; unwrap and move on.

        // Note we use `weedle::Definitions::parse` instead of `weedle::parse` so
        // on parse errors we can see how far weedle got, which helps locate the problem.
        use weedle::Parse; // this trait must be in scope for parse to work.
        let (remaining, defns) = weedle::Definitions::parse(idl.trim()).unwrap();
        if !remaining.is_empty() {
            println!("Error parsing the IDL. Text remaining to be parsed is:");
            println!("{remaining}");
            bail!("parse error");
        }
        // Unconditionally add the String type, which is used by the panic handling
        ci.types.add_known_type(&Type::String)?;
        // We process the WebIDL definitions in two passes.
        // First, go through and look for all the named types.
        ci.types.add_type_definitions_from(defns.as_slice())?;
        // With those names resolved, we can build a complete representation of the API.
        APIBuilder::process(&defns, &mut ci)?;

        // The FFI namespace must not be computed on the fly because it could otherwise be
        // influenced by things added later from proc-macro metadata. Those have their own
        // namespacing mechanism.
        assert!(!ci.namespace.is_empty());
        ci.ffi_namespace = format!("{}_{:x}", ci.namespace, ci.checksum());

        // The following two methods will be called later anyways, but we call them here because
        // it's convenient for UDL-only tests.
        ci.check_consistency()?;
        // Now that the high-level API is settled, we can derive the low-level FFI.
        ci.derive_ffi_funcs()?;

        Ok(ci)
    }

    /// The string namespace within which this API should be presented to the caller.
    ///
    /// This string would typically be used to prefix function names in the FFI, to build
    /// a package or module name for the foreign language, etc.
    pub fn namespace(&self) -> &str {
        self.namespace.as_str()
    }

    /// Get the definitions for every Enum type in the interface.
    pub fn enum_definitions(&self) -> impl Iterator<Item = &Enum> {
        self.enums.values()
    }

    /// Get an Enum definition by name, or None if no such Enum is defined.
    pub fn get_enum_definition(&self, name: &str) -> Option<&Enum> {
        self.enums.get(name)
    }

    /// Get the definitions for every Record type in the interface.
    pub fn record_definitions(&self) -> impl Iterator<Item = &Record> {
        self.records.values()
    }

    /// Get a Record definition by name, or None if no such Record is defined.
    pub fn get_record_definition(&self, name: &str) -> Option<&Record> {
        self.records.get(name)
    }

    /// Get the definitions for every Function in the interface.
    pub fn function_definitions(&self) -> &[Function] {
        &self.functions
    }

    /// Get a Function definition by name, or None if no such Function is defined.
    pub fn get_function_definition(&self, name: &str) -> Option<&Function> {
        // TODO: probably we could store these internally in a HashMap to make this easier?
        self.functions.iter().find(|f| f.name == name)
    }

    /// Get the definitions for every Object type in the interface.
    pub fn object_definitions(&self) -> &[Object] {
        &self.objects
    }

    /// Get an Object definition by name, or None if no such Object is defined.
    pub fn get_object_definition(&self, name: &str) -> Option<&Object> {
        // TODO: probably we could store these internally in a HashMap to make this easier?
        self.objects.iter().find(|o| o.name == name)
    }

    /// Get the definitions for every Callback Interface type in the interface.
    pub fn callback_interface_definitions(&self) -> &[CallbackInterface] {
        &self.callback_interfaces
    }

    /// Get a Callback interface definition by name, or None if no such interface is defined.
    pub fn get_callback_interface_definition(&self, name: &str) -> Option<&CallbackInterface> {
        // TODO: probably we could store these internally in a HashMap to make this easier?
        self.callback_interfaces.iter().find(|o| o.name == name)
    }

    /// Get the definitions for every Error type in the interface.
    pub fn error_definitions(&self) -> impl Iterator<Item = &Error> {
        self.errors.values()
    }

    /// Get an Error definition by name, or None if no such Error is defined.
    pub fn get_error_definition(&self, name: &str) -> Option<&Error> {
        self.errors.get(name)
    }

    /// Should we generate read (and lift) functions for errors?
    ///
    /// This is a workaround for the fact that lower/write can't be generated for some errors,
    /// specifically errors that are defined as flat in the UDL, but actually have fields in the
    /// Rust source.
    pub fn should_generate_error_read(&self, error: &Error) -> bool {
        // We can and should always generate read() methods for fielded errors
        let fielded = !error.is_flat();
        // For flat errors, we should only generate read() methods if we need them to support
        // callback interface errors
        let used_in_callback_interface = self
            .callback_interface_definitions()
            .iter()
            .flat_map(|cb| cb.methods())
            .any(|m| m.throws_type() == Some(error.type_()));

        fielded || used_in_callback_interface
    }

    /// Get details about all `Type::External` types
    pub fn iter_external_types(&self) -> impl Iterator<Item = (&String, &String)> {
        self.types.iter_known_types().filter_map(|t| match t {
            Type::External { name, crate_name } => Some((name, crate_name)),
            _ => None,
        })
    }

    /// Get details about all `Type::Custom` types
    pub fn iter_custom_types(&self) -> impl Iterator<Item = (&String, &Type)> {
        self.types.iter_known_types().filter_map(|t| match t {
            Type::Custom { name, builtin } => Some((name, &**builtin)),
            _ => None,
        })
    }

    /// Iterate over all known types in the interface.
    pub fn iter_types(&self) -> impl Iterator<Item = &Type> {
        self.types.iter_known_types()
    }

    /// Get a specific type
    pub fn get_type(&self, name: &str) -> Option<Type> {
        self.types.get_type_definition(name)
    }

    /// Iterate over all types contained in the given item.
    ///
    /// This method uses `iter_types` to iterate over the types contained within the given type,
    /// but additionally recurses into the definition of user-defined types like records and enums
    /// to yield the types that *they* contain.
    fn iter_types_in_item<'a>(&'a self, item: &'a Type) -> impl Iterator<Item = &'a Type> + 'a {
        RecursiveTypeIterator::new(self, item)
    }

    /// Check whether the given item contains any (possibly nested) Type::Object references.
    ///
    /// This is important to know in language bindings that cannot integrate object types
    /// tightly with the host GC, and hence need to perform manual destruction of objects.
    pub fn item_contains_object_references(&self, item: &Type) -> bool {
        self.iter_types_in_item(item)
            .any(|t| matches!(t, Type::Object(_)))
    }

    /// Check whether the given item contains any (possibly nested) unsigned types
    pub fn item_contains_unsigned_types(&self, item: &Type) -> bool {
        self.iter_types_in_item(item)
            .any(|t| matches!(t, Type::UInt8 | Type::UInt16 | Type::UInt32 | Type::UInt64))
    }

    /// Check whether the interface contains any optional types
    pub fn contains_optional_types(&self) -> bool {
        self.types
            .iter_known_types()
            .any(|t| matches!(t, Type::Optional(_)))
    }

    /// Check whether the interface contains any sequence types
    pub fn contains_sequence_types(&self) -> bool {
        self.types
            .iter_known_types()
            .any(|t| matches!(t, Type::Sequence(_)))
    }

    /// Check whether the interface contains any map types
    pub fn contains_map_types(&self) -> bool {
        self.types
            .iter_known_types()
            .any(|t| matches!(t, Type::Map(_, _)))
    }

    /// Calculate a numeric checksum for this ComponentInterface.
    ///
    /// The checksum can be used to guard against accidentally using foreign-language bindings
    /// generated from one version of an interface with the compiled Rust code from a different
    /// version of that interface. It offers the following properties:
    ///
    ///   - Two ComponentIntefaces generated from the same WebIDL file, using the same version of uniffi
    ///     and the same version of Rust, will always have the same checksum value.
    ///   - Two ComponentInterfaces will, with high probability, have different checksum values if:
    ///         - They were generated from two different WebIDL files.
    ///         - They were generated by two different versions of uniffi
    ///
    /// Note that this is designed to prevent accidents, not attacks, so there is no need for the
    /// checksum to be cryptographically secure.
    pub fn checksum(&self) -> u16 {
        uniffi_meta::checksum(self)
    }

    /// The namespace to use in FFI-level function definitions.
    ///
    /// The value returned by this method is used as a prefix to namespace all UDL-defined FFI
    /// functions used in this ComponentInterface.
    ///
    /// Since these names are an internal implementation detail that is not typically visible to
    /// consumers, we take the opportunity to add an additional safety guard by including a 4-hex-char
    /// checksum in each name. If foreign-language bindings attempt to load and use a version of the
    /// Rust code compiled from a different UDL definition than the one used for the bindings themselves,
    /// then there is a high probability of checksum mismatch and they will fail to link against the
    /// compiled Rust code. The result will be an ugly inscrutable link-time error, but that is a lot
    /// better than triggering potentially arbitrary memory unsafety!
    pub fn ffi_namespace(&self) -> &str {
        assert!(!self.ffi_namespace.is_empty());
        &self.ffi_namespace
    }

    /// Builtin FFI function for allocating a new `RustBuffer`.
    /// This is needed so that the foreign language bindings can create buffers in which to pass
    /// complex data types across the FFI.
    pub fn ffi_rustbuffer_alloc(&self) -> FfiFunction {
        FfiFunction {
            name: format!("ffi_{}_rustbuffer_alloc", self.ffi_namespace()),
            arguments: vec![FfiArgument {
                name: "size".to_string(),
                type_: FfiType::Int32,
            }],
            return_type: Some(FfiType::RustBuffer(None)),
        }
    }

    /// Builtin FFI function for copying foreign-owned bytes
    /// This is needed so that the foreign language bindings can create buffers in which to pass
    /// complex data types across the FFI.
    pub fn ffi_rustbuffer_from_bytes(&self) -> FfiFunction {
        FfiFunction {
            name: format!("ffi_{}_rustbuffer_from_bytes", self.ffi_namespace()),
            arguments: vec![FfiArgument {
                name: "bytes".to_string(),
                type_: FfiType::ForeignBytes,
            }],
            return_type: Some(FfiType::RustBuffer(None)),
        }
    }

    /// Builtin FFI function for freeing a `RustBuffer`.
    /// This is needed so that the foreign language bindings can free buffers in which they received
    /// complex data types returned across the FFI.
    pub fn ffi_rustbuffer_free(&self) -> FfiFunction {
        FfiFunction {
            name: format!("ffi_{}_rustbuffer_free", self.ffi_namespace()),
            arguments: vec![FfiArgument {
                name: "buf".to_string(),
                type_: FfiType::RustBuffer(None),
            }],
            return_type: None,
        }
    }

    /// Builtin FFI function for reserving extra space in a `RustBuffer`.
    /// This is needed so that the foreign language bindings can grow buffers used for passing
    /// complex data types across the FFI.
    pub fn ffi_rustbuffer_reserve(&self) -> FfiFunction {
        FfiFunction {
            name: format!("ffi_{}_rustbuffer_reserve", self.ffi_namespace()),
            arguments: vec![
                FfiArgument {
                    name: "buf".to_string(),
                    type_: FfiType::RustBuffer(None),
                },
                FfiArgument {
                    name: "additional".to_string(),
                    type_: FfiType::Int32,
                },
            ],
            return_type: Some(FfiType::RustBuffer(None)),
        }
    }

    /// List the definitions of all FFI functions in the interface.
    ///
    /// The set of FFI functions is derived automatically from the set of higher-level types
    /// along with the builtin FFI helper functions.
    pub fn iter_ffi_function_definitions(&self) -> impl Iterator<Item = FfiFunction> + '_ {
        self.iter_user_ffi_function_definitions()
            .cloned()
            .chain(self.iter_rust_buffer_ffi_function_definitions())
    }

    /// List all FFI functions definitions for user-defined interfaces
    ///
    /// This includes FFI functions for:
    ///   - Top-level functions
    ///   - Object methods
    ///   - Callback interfaces
    pub fn iter_user_ffi_function_definitions(&self) -> impl Iterator<Item = &FfiFunction> + '_ {
        iter::empty()
            .chain(
                self.objects
                    .iter()
                    .flat_map(|obj| obj.iter_ffi_function_definitions()),
            )
            .chain(
                self.callback_interfaces
                    .iter()
                    .map(|cb| cb.ffi_init_callback()),
            )
            .chain(self.functions.iter().map(|f| &f.ffi_func))
    }

    /// List all FFI functions definitions for RustBuffer functionality
    pub fn iter_rust_buffer_ffi_function_definitions(&self) -> impl Iterator<Item = FfiFunction> {
        [
            self.ffi_rustbuffer_alloc(),
            self.ffi_rustbuffer_from_bytes(),
            self.ffi_rustbuffer_free(),
            self.ffi_rustbuffer_reserve(),
        ]
        .into_iter()
    }

    //
    // Private methods for building a ComponentInterface.
    //

    /// Resolve a weedle type expression into a `Type`.
    ///
    /// This method uses the current state of our `TypeUniverse` to turn a weedle type expression
    /// into a concrete `Type` (or error if the type expression is not well defined). It abstracts
    /// away the complexity of walking weedle's type struct hierarchy by dispatching to the `TypeResolver`
    /// trait.
    fn resolve_type_expression<T: types::TypeResolver>(&mut self, expr: T) -> Result<Type> {
        self.types.resolve_type_expression(expr)
    }

    /// Resolve a weedle `ReturnType` expression into an optional `Type`.
    ///
    /// This method is similar to `resolve_type_expression`, but tailored specifically for return types.
    /// It can return `None` to represent a non-existent return value.
    fn resolve_return_type_expression(
        &mut self,
        expr: &weedle::types::ReturnType<'_>,
    ) -> Result<Option<Type>> {
        Ok(match expr {
            weedle::types::ReturnType::Undefined(_) => None,
            weedle::types::ReturnType::Type(t) => {
                // Older versions of WebIDL used `void` for functions that don't return a value,
                // while newer versions have replaced it with `undefined`. Special-case this for
                // backwards compatibility for our consumers.
                use weedle::types::{NonAnyType::Identifier, SingleType::NonAny, Type::Single};
                match t {
                    Single(NonAny(Identifier(id))) if id.type_.0 == "void" => None,
                    _ => Some(self.resolve_type_expression(t)?),
                }
            }
        })
    }

    /// Called by `APIBuilder` impls to add a newly-parsed namespace definition to the `ComponentInterface`.
    fn add_namespace_definition(&mut self, defn: Namespace) -> Result<()> {
        if !self.namespace.is_empty() {
            bail!("duplicate namespace definition");
        }
        self.namespace = defn.name;
        Ok(())
    }

    /// Called by `APIBuilder` impls to add a newly-parsed enum definition to the `ComponentInterface`.
    pub(super) fn add_enum_definition(&mut self, defn: Enum) -> Result<()> {
        match self.enums.entry(defn.name().to_owned()) {
            Entry::Vacant(v) => {
                v.insert(defn);
            }
            Entry::Occupied(o) => {
                let existing_def = o.get();
                if defn != *existing_def {
                    bail!(
                        "Mismatching definition for enum `{}`!\n\
                        existing definition: {existing_def:#?},\n\
                        new definition: {defn:#?}",
                        defn.name(),
                    );
                }
            }
        }

        Ok(())
    }

    /// Called by `APIBuilder` impls to add a newly-parsed record definition to the `ComponentInterface`.
    pub(super) fn add_record_definition(&mut self, defn: Record) -> Result<()> {
        match self.records.entry(defn.name().to_owned()) {
            Entry::Vacant(v) => {
                v.insert(defn);
            }
            Entry::Occupied(o) => {
                let existing_def = o.get();
                if defn != *existing_def {
                    bail!(
                        "Mismatching definition for record `{}`!\n\
                         existing definition: {existing_def:#?},\n\
                         new definition: {defn:#?}",
                        defn.name(),
                    );
                }
            }
        }

        Ok(())
    }

    fn add_function_impl(&mut self, defn: Function) -> Result<()> {
        // Since functions are not a first-class type, we have to check for duplicates here
        // rather than relying on the type-finding pass to catch them.
        if self.functions.iter().any(|f| f.name == defn.name) {
            bail!("duplicate function definition: \"{}\"", defn.name);
        }
        if !matches!(self.types.get_type_definition(defn.name()), None) {
            bail!("Conflicting type definition for \"{}\"", defn.name());
        }
        self.functions.push(defn);

        Ok(())
    }

    /// Called by `APIBuilder` impls to add a newly-parsed function definition to the `ComponentInterface`.
    fn add_function_definition(&mut self, defn: Function) -> Result<()> {
        for arg in &defn.arguments {
            self.types.add_known_type(&arg.type_)?;
        }
        if let Some(ty) = &defn.return_type {
            self.types.add_known_type(ty)?;
        }

        self.add_function_impl(defn)
    }

    pub(super) fn add_fn_meta(&mut self, meta: FnMetadata) -> Result<()> {
        self.add_function_impl(meta.into())
    }

    pub(super) fn add_method_meta(&mut self, meta: MethodMetadata) {
        let object = get_or_insert_object(&mut self.objects, &meta.self_name);
        let defn: Method = meta.into();
        object.methods.push(defn);
    }

    pub(super) fn add_object_free_fn(&mut self, meta: ObjectMetadata) {
        let object = get_or_insert_object(&mut self.objects, &meta.name);
        object.ffi_func_free.name = meta.free_ffi_symbol_name();
    }

    /// Called by `APIBuilder` impls to add a newly-parsed object definition to the `ComponentInterface`.
    fn add_object_definition(&mut self, defn: Object) {
        // Note that there will be no duplicates thanks to the previous type-finding pass.
        self.objects.push(defn);
    }

    /// Called by `APIBuilder` impls to add a newly-parsed callback interface definition to the `ComponentInterface`.
    fn add_callback_interface_definition(&mut self, defn: CallbackInterface) {
        // Note that there will be no duplicates thanks to the previous type-finding pass.
        self.callback_interfaces.push(defn);
    }

    /// Called by `APIBuilder` impls to add a newly-parsed error definition to the `ComponentInterface`.
    pub(super) fn add_error_definition(&mut self, defn: Error) -> Result<()> {
        match self.errors.entry(defn.name().to_owned()) {
            Entry::Vacant(v) => {
                v.insert(defn);
            }
            Entry::Occupied(o) => {
                let existing_def = o.get();
                if defn != *existing_def {
                    bail!(
                        "Mismatching definition for error `{}`!\n\
                         existing definition: {existing_def:#?},\n\
                         new definition: {defn:#?}",
                        defn.name(),
                    );
                }
            }
        }

        Ok(())
    }

    /// Resolve unresolved types within proc-macro function / method signatures.
    pub fn resolve_types(&mut self) -> Result<()> {
        fn handle_unresolved_in(
            ty: &mut Type,
            f: impl Fn(&str) -> Result<Type> + Clone,
        ) -> Result<()> {
            match ty {
                Type::Unresolved { name } => {
                    *ty = f(name)?;
                }
                Type::Optional(inner) => {
                    handle_unresolved_in(inner, f)?;
                }
                Type::Sequence(inner) => {
                    handle_unresolved_in(inner, f)?;
                }
                Type::Map(k, v) => {
                    handle_unresolved_in(k, f.clone())?;
                    handle_unresolved_in(v, f)?;
                }
                _ => {}
            }

            Ok(())
        }

        let fn_sig_types = self.functions.iter_mut().flat_map(|fun| {
            fun.arguments
                .iter_mut()
                .map(|arg| &mut arg.type_)
                .chain(&mut fun.return_type)
        });
        let method_sig_types = self.objects.iter_mut().flat_map(|obj| {
            obj.methods.iter_mut().flat_map(|m| {
                m.arguments
                    .iter_mut()
                    .map(|arg| &mut arg.type_)
                    .chain(&mut m.return_type)
            })
        });

        let record_fields_types = self
            .records
            .values_mut()
            .flat_map(|r| r.fields.iter_mut().map(|f| &mut f.type_));
        let enum_fields_types = self.enums.values_mut().flat_map(|e| {
            e.variants
                .iter_mut()
                .flat_map(|r| r.fields.iter_mut().map(|f| &mut f.type_))
        });

        let possibly_unresolved_types = fn_sig_types
            .chain(method_sig_types)
            .chain(record_fields_types)
            .chain(enum_fields_types);

        for ty in possibly_unresolved_types {
            handle_unresolved_in(ty, |unresolved_ty_name| {
                match self.types.get_type_definition(unresolved_ty_name) {
                    Some(def) => {
                        assert!(
                            !matches!(&def, Type::Unresolved { .. }),
                            "unresolved types must not be part of TypeUniverse"
                        );
                        Ok(def)
                    }
                    None => bail!("Failed to resolve type `{unresolved_ty_name}`"),
                }
            })?;

            // The proc-macro scanning metadata code doesn't add known types
            // when they could contain unresolved types, so we have to do it
            // here after replacing unresolveds.
            self.types.add_known_type(ty)?;
        }

        Ok(())
    }

    /// Perform global consistency checks on the declared interface.
    ///
    /// This method checks for consistency problems in the declared interface
    /// as a whole, and which can only be detected after we've finished defining
    /// the entire interface.
    pub fn check_consistency(&self) -> Result<()> {
        if self.namespace.is_empty() {
            bail!("missing namespace definition");
        }

        // To keep codegen tractable, enum variant names must not shadow type names.
        for e in self.enums.values() {
            for variant in &e.variants {
                if self.types.get_type_definition(variant.name()).is_some() {
                    bail!(
                        "Enum variant names must not shadow type names: \"{}\"",
                        variant.name()
                    )
                }
            }
        }

        for ty in self.iter_types() {
            match ty {
                Type::Object(name) => {
                    ensure!(
                        self.objects.iter().any(|o| o.name == *name),
                        "Object `{name}` has no definition",
                    );
                }
                Type::Record(name) => {
                    ensure!(
                        self.records.contains_key(name),
                        "Record `{name}` has no definition",
                    );
                }
                Type::Enum(name) => {
                    ensure!(
                        self.enums.contains_key(name),
                        "Enum `{name}` has no definition",
                    );
                }
                Type::Unresolved { name } => {
                    bail!("Type `{name}` should be resolved at this point");
                }
                _ => {}
            }
        }

        Ok(())
    }

    /// Automatically derive the low-level FFI functions from the high-level types in the interface.
    ///
    /// This should only be called after the high-level types have been completed defined, otherwise
    /// the resulting set will be missing some entries.
    pub fn derive_ffi_funcs(&mut self) -> Result<()> {
        let ci_prefix = self.ffi_namespace().to_owned();
        for func in self.functions.iter_mut() {
            func.derive_ffi_func(&ci_prefix)?;
        }
        for obj in self.objects.iter_mut() {
            obj.derive_ffi_funcs(&ci_prefix)?;
        }
        for callback in self.callback_interfaces.iter_mut() {
            callback.derive_ffi_funcs(&ci_prefix);
        }
        Ok(())
    }
}

fn get_or_insert_object<'a>(objects: &'a mut Vec<Object>, name: &str) -> &'a mut Object {
    // The find-based way of writing this currently runs into a borrow checker
    // error, so we use position
    match objects.iter_mut().position(|o| o.name == name) {
        Some(idx) => &mut objects[idx],
        None => {
            objects.push(Object::new(name.to_owned()));
            objects.last_mut().unwrap()
        }
    }
}

/// Stateful iterator for yielding all types contained in a given type.
///
/// This struct is the implementation of [`ComponentInterface::iter_types_in_item`] and should be
/// considered an opaque implementation detail. It's a separate struct because I couldn't
/// figure out a way to implement it using iterators and closures that would make the lifetimes
/// work out correctly.
///
/// The idea here is that we want to yield all the types from `iter_types` on a given type, and
/// additionally we want to recurse into the definition of any user-provided types like records,
/// enums, etc so we can also yield the types contained therein.
///
/// To guard against infinite recursion, we maintain a list of previously-seen user-defined
/// types, ensuring that we recurse into the definition of those types only once. To simplify
/// the implementation, we maintain a queue of pending user-defined types that we have seen
/// but not yet recursed into. (Ironically, the use of an explicit queue means our implementation
/// is not actually recursive...)
struct RecursiveTypeIterator<'a> {
    /// The [`ComponentInterface`] from which this iterator was created.
    ci: &'a ComponentInterface,
    /// The currently-active iterator from which we're yielding.
    current: TypeIterator<'a>,
    /// A set of names of user-defined types that we have already seen.
    seen: HashSet<&'a str>,
    /// A queue of user-defined types that we need to recurse into.
    pending: Vec<&'a Type>,
}

impl<'a> RecursiveTypeIterator<'a> {
    /// Allocate a new `RecursiveTypeIterator` over the given item.
    fn new(ci: &'a ComponentInterface, item: &'a Type) -> RecursiveTypeIterator<'a> {
        RecursiveTypeIterator {
            ci,
            // We begin by iterating over the types from the item itself.
            current: item.iter_types(),
            seen: Default::default(),
            pending: Default::default(),
        }
    }

    /// Add a new type to the queue of pending types, if not previously seen.
    fn add_pending_type(&mut self, type_: &'a Type) {
        match type_ {
            Type::Record(nm)
            | Type::Enum(nm)
            | Type::Error(nm)
            | Type::Object(nm)
            | Type::CallbackInterface(nm) => {
                if !self.seen.contains(nm.as_str()) {
                    self.pending.push(type_);
                    self.seen.insert(nm.as_str());
                }
            }
            _ => (),
        }
    }

    /// Advance the iterator to recurse into the next pending type, if any.
    ///
    /// This method is called when the current iterator is empty, and it will select
    /// the next pending type from the queue and start iterating over its contained types.
    /// The return value will be the first item from the new iterator.
    fn advance_to_next_type(&mut self) -> Option<&'a Type> {
        if let Some(next_type) = self.pending.pop() {
            // This is a little awkward because the various definition lookup methods return an `Option<T>`.
            // In the unlikely event that one of them returns `None` then, rather than trying to advance
            // to a non-existent type, we just leave the existing iterator in place and allow the recursive
            // call to `next()` to try again with the next pending type.
            let next_iter = match next_type {
                Type::Record(nm) => self.ci.get_record_definition(nm).map(Record::iter_types),
                Type::Enum(nm) => self.ci.get_enum_definition(nm).map(Enum::iter_types),
                Type::Error(nm) => self.ci.get_error_definition(nm).map(Error::iter_types),
                Type::Object(nm) => self.ci.get_object_definition(nm).map(Object::iter_types),
                Type::CallbackInterface(nm) => self
                    .ci
                    .get_callback_interface_definition(nm)
                    .map(CallbackInterface::iter_types),
                _ => None,
            };
            if let Some(next_iter) = next_iter {
                self.current = next_iter;
            }
            // Advance the new iterator to its first item. If the new iterator happens to be empty,
            // this will recurse back in to `advance_to_next_type` until we find one that isn't.
            self.next()
        } else {
            // We've completely finished the iteration over all pending types.
            None
        }
    }
}

impl<'a> Iterator for RecursiveTypeIterator<'a> {
    type Item = &'a Type;
    fn next(&mut self) -> Option<Self::Item> {
        if let Some(type_) = self.current.next() {
            self.add_pending_type(type_);
            Some(type_)
        } else {
            self.advance_to_next_type()
        }
    }
}

/// Trait to help build a `ComponentInterface` from WedIDL syntax nodes.
///
/// This trait does structural matching on the various weedle AST nodes and
/// uses them to build up the records, enums, objects etc in the provided
/// `ComponentInterface`.
trait APIBuilder {
    fn process(&self, ci: &mut ComponentInterface) -> Result<()>;
}

/// Add to a `ComponentInterface` from a list of weedle definitions,
/// by processing each in turn.
impl<T: APIBuilder> APIBuilder for Vec<T> {
    fn process(&self, ci: &mut ComponentInterface) -> Result<()> {
        for item in self {
            item.process(ci)?;
        }
        Ok(())
    }
}

/// Add to a `ComponentInterface` from a weedle definition.
/// This is conceptually the root of the parser, and dispatches to implementations
/// for the various specific WebIDL types that we support.
impl APIBuilder for weedle::Definition<'_> {
    fn process(&self, ci: &mut ComponentInterface) -> Result<()> {
        match self {
            weedle::Definition::Namespace(d) => d.process(ci)?,
            weedle::Definition::Enum(d) => {
                // We check if the enum represents an error...
                let attrs = attributes::EnumAttributes::try_from(d.attributes.as_ref())?;
                if attrs.contains_error_attr() {
                    let err = d.convert(ci)?;
                    ci.add_error_definition(err)?;
                } else {
                    let e = d.convert(ci)?;
                    ci.add_enum_definition(e)?;
                }
            }
            weedle::Definition::Dictionary(d) => {
                let rec = d.convert(ci)?;
                ci.add_record_definition(rec)?;
            }
            weedle::Definition::Interface(d) => {
                let attrs = attributes::InterfaceAttributes::try_from(d.attributes.as_ref())?;
                if attrs.contains_enum_attr() {
                    let e = d.convert(ci)?;
                    ci.add_enum_definition(e)?;
                } else if attrs.contains_error_attr() {
                    let e = d.convert(ci)?;
                    ci.add_error_definition(e)?;
                } else {
                    let obj = d.convert(ci)?;
                    ci.add_object_definition(obj);
                }
            }
            weedle::Definition::CallbackInterface(d) => {
                let obj = d.convert(ci)?;
                ci.add_callback_interface_definition(obj);
            }
            // everything needed for typedefs is done in finder.rs.
            weedle::Definition::Typedef(_) => {}
            _ => bail!("don't know how to deal with {:?}", self),
        }
        Ok(())
    }
}

/// Trait to help convert WedIDL syntax nodes into `ComponentInterface` objects.
///
/// This trait does structural matching on the various weedle AST nodes and converts
/// them into appropriate structs that we can use to build up the contents of a
/// `ComponentInterface`. It is basically the `TryFrom` trait except that the conversion
/// always happens in the context of a given `ComponentInterface`, which is used for
/// resolving e.g. type definitions.
///
/// The difference between this trait and `APIBuilder` is that `APIConverter` treats the
/// `ComponentInterface` as a read-only data source for resolving types, while `APIBuilder`
/// actually mutates the `ComponentInterface` to add new definitions.
trait APIConverter<T> {
    fn convert(&self, ci: &mut ComponentInterface) -> Result<T>;
}

/// Convert a list of weedle items into a list of `ComponentInterface` items,
/// by doing a direct item-by-item mapping.
impl<U, T: APIConverter<U>> APIConverter<Vec<U>> for Vec<T> {
    fn convert(&self, ci: &mut ComponentInterface) -> Result<Vec<U>> {
        self.iter().map(|v| v.convert(ci)).collect::<Result<_>>()
    }
}

fn convert_type(s: &uniffi_meta::Type) -> Type {
    use uniffi_meta::Type as Ty;

    match s {
        Ty::U8 => Type::UInt8,
        Ty::U16 => Type::UInt16,
        Ty::U32 => Type::UInt32,
        Ty::U64 => Type::UInt64,
        Ty::I8 => Type::Int8,
        Ty::I16 => Type::Int16,
        Ty::I32 => Type::Int32,
        Ty::I64 => Type::Int64,
        Ty::F32 => Type::Float32,
        Ty::F64 => Type::Float64,
        Ty::Bool => Type::Boolean,
        Ty::String => Type::String,
        Ty::Option { inner_type } => Type::Optional(convert_type(inner_type).into()),
        Ty::Vec { inner_type } => Type::Sequence(convert_type(inner_type).into()),
        Ty::HashMap {
            key_type,
            value_type,
        } => Type::Map(
            convert_type(key_type).into(),
            convert_type(value_type).into(),
        ),
        Ty::ArcObject { object_name } => Type::Object(object_name.clone()),
        Ty::Unresolved { name } => Type::Unresolved { name: name.clone() },
    }
}

#[cfg(test)]
mod test {
    use super::*;

    // Note that much of the functionality of `ComponentInterface` is tested via its interactions
    // with specific member types, in the sub-modules defining those member types.

    const UDL1: &str = r#"
        namespace foobar{};
        enum Test {
            "test_me",
        };
    "#;

    const UDL2: &str = r#"
        namespace hello {
            u64 world();
        };
        dictionary Test {
            boolean me;
        };
    "#;

    #[test]
    fn test_checksum_always_matches_for_same_webidl() {
        for udl in &[UDL1, UDL2] {
            let ci1 = ComponentInterface::from_webidl(udl).unwrap();
            let ci2 = ComponentInterface::from_webidl(udl).unwrap();
            assert_eq!(ci1.checksum(), ci2.checksum());
        }
    }

    #[test]
    fn test_checksum_differs_for_different_webidl() {
        // There is a small probability of this test spuriously failing due to hash collision.
        // If it happens often enough to be a problem, probably this whole "checksum" thing
        // is not working out as intended.
        let ci1 = ComponentInterface::from_webidl(UDL1).unwrap();
        let ci2 = ComponentInterface::from_webidl(UDL2).unwrap();
        assert_ne!(ci1.checksum(), ci2.checksum());
    }

    #[test]
    fn test_checksum_differs_for_different_uniffi_version() {
        // There is a small probability of this test spuriously failing due to hash collision.
        // If it happens often enough to be a problem, probably this whole "checksum" thing
        // is not working out as intended.
        for udl in &[UDL1, UDL2] {
            let ci1 = ComponentInterface::from_webidl(udl).unwrap();
            let mut ci2 = ComponentInterface::from_webidl(udl).unwrap();
            ci2.uniffi_version = "99.99";
            assert_ne!(ci1.checksum(), ci2.checksum());
        }
    }

    #[test]
    fn test_duplicate_type_names_are_an_error() {
        const UDL: &str = r#"
            namespace test{};
            interface Testing {
                constructor();
            };
            dictionary Testing {
                u32 field;
            };
        "#;
        let err = ComponentInterface::from_webidl(UDL).unwrap_err();
        assert_eq!(
            err.to_string(),
            "Conflicting type definition for `Testing`! \
             existing definition: Object(\"Testing\"), \
             new definition: Record(\"Testing\")"
        );

        const UDL2: &str = r#"
            namespace test{};
            enum Testing {
                "one", "two"
            };
            [Error]
            enum Testing { "three", "four" };
        "#;
        let err = ComponentInterface::from_webidl(UDL2).unwrap_err();
        assert_eq!(
            err.to_string(),
            "Conflicting type definition for `Testing`! \
             existing definition: Enum(\"Testing\"), \
             new definition: Error(\"Testing\")"
        );

        const UDL3: &str = r#"
            namespace test{
                u32 Testing();
            };
            enum Testing {
                "one", "two"
            };
        "#;
        let err = ComponentInterface::from_webidl(UDL3).unwrap_err();
        assert_eq!(
            err.to_string(),
            "Conflicting type definition for \"Testing\""
        );
    }

    #[test]
    fn test_enum_variant_names_dont_shadow_types() {
        // There are some edge-cases during codegen where we don't know how to disambiguate
        // between an enum variant reference and a top-level type reference, so we
        // disallow it in order to give a more scrutable error to the consumer.
        const UDL: &str = r#"
            namespace test{};
            interface Testing {
                constructor();
            };
            [Enum]
            interface HardToCodegenFor {
                Testing();
                OtherVariant(u32 field);
            };
        "#;
        let err = ComponentInterface::from_webidl(UDL).unwrap_err();
        assert_eq!(
            err.to_string(),
            "Enum variant names must not shadow type names: \"Testing\""
        );
    }

    #[test]
    fn test_contains_optional_types() {
        let mut ci = ComponentInterface {
            ..Default::default()
        };

        // check that `contains_optional_types` returns false when there is no Optional type in the interface
        assert!(!ci.contains_optional_types());

        // check that `contains_optional_types` returns true when there is an Optional type in the interface
        assert!(ci
            .types
            .add_type_definition("TestOptional{}", Type::Optional(Box::new(Type::String)))
            .is_ok());
        assert!(ci.contains_optional_types());
    }

    #[test]
    fn test_contains_sequence_types() {
        let mut ci = ComponentInterface {
            ..Default::default()
        };

        // check that `contains_sequence_types` returns false when there is no Sequence type in the interface
        assert!(!ci.contains_sequence_types());

        // check that `contains_sequence_types` returns true when there is a Sequence type in the interface
        assert!(ci
            .types
            .add_type_definition("TestSequence{}", Type::Sequence(Box::new(Type::UInt64)))
            .is_ok());
        assert!(ci.contains_sequence_types());
    }

    #[test]
    fn test_contains_map_types() {
        let mut ci = ComponentInterface {
            ..Default::default()
        };

        // check that `contains_map_types` returns false when there is no Map type in the interface
        assert!(!ci.contains_map_types());

        // check that `contains_map_types` returns true when there is a Map type in the interface
        assert!(ci
            .types
            .add_type_definition(
                "Map{}",
                Type::Map(Box::new(Type::String), Box::new(Type::Boolean))
            )
            .is_ok());
        assert!(ci.contains_map_types());
    }

    #[test]
    fn test_no_infinite_recursion_when_walking_types() {
        const UDL: &str = r#"
            namespace test{};
            interface Testing {
                void tester(Testing foo);
            };
        "#;
        let ci = ComponentInterface::from_webidl(UDL).unwrap();
        assert!(!ci.item_contains_unsigned_types(&Type::Object("Testing".into())));
    }

    #[test]
    fn test_correct_recursion_when_walking_types() {
        const UDL: &str = r#"
            namespace test{};
            interface TestObj {
                void tester(TestRecord foo);
            };
            dictionary TestRecord {
                NestedRecord bar;
            };
            dictionary NestedRecord {
                u64 baz;
            };
        "#;
        let ci = ComponentInterface::from_webidl(UDL).unwrap();
        assert!(ci.item_contains_unsigned_types(&Type::Object("TestObj".into())));
    }
}