diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
commit | 43a97878ce14b72f0981164f87f2e35e14151312 (patch) | |
tree | 620249daf56c0258faa40cbdcf9cfba06de2a846 /media/ffvpx/libavcodec/jrevdct.c | |
parent | Initial commit. (diff) | |
download | firefox-upstream.tar.xz firefox-upstream.zip |
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'media/ffvpx/libavcodec/jrevdct.c')
-rw-r--r-- | media/ffvpx/libavcodec/jrevdct.c | 1172 |
1 files changed, 1172 insertions, 0 deletions
diff --git a/media/ffvpx/libavcodec/jrevdct.c b/media/ffvpx/libavcodec/jrevdct.c new file mode 100644 index 0000000000..7f1863515f --- /dev/null +++ b/media/ffvpx/libavcodec/jrevdct.c @@ -0,0 +1,1172 @@ +/* + * This file is part of the Independent JPEG Group's software. + * + * The authors make NO WARRANTY or representation, either express or implied, + * with respect to this software, its quality, accuracy, merchantability, or + * fitness for a particular purpose. This software is provided "AS IS", and + * you, its user, assume the entire risk as to its quality and accuracy. + * + * This software is copyright (C) 1991, 1992, Thomas G. Lane. + * All Rights Reserved except as specified below. + * + * Permission is hereby granted to use, copy, modify, and distribute this + * software (or portions thereof) for any purpose, without fee, subject to + * these conditions: + * (1) If any part of the source code for this software is distributed, then + * this README file must be included, with this copyright and no-warranty + * notice unaltered; and any additions, deletions, or changes to the original + * files must be clearly indicated in accompanying documentation. + * (2) If only executable code is distributed, then the accompanying + * documentation must state that "this software is based in part on the work + * of the Independent JPEG Group". + * (3) Permission for use of this software is granted only if the user accepts + * full responsibility for any undesirable consequences; the authors accept + * NO LIABILITY for damages of any kind. + * + * These conditions apply to any software derived from or based on the IJG + * code, not just to the unmodified library. If you use our work, you ought + * to acknowledge us. + * + * Permission is NOT granted for the use of any IJG author's name or company + * name in advertising or publicity relating to this software or products + * derived from it. This software may be referred to only as "the Independent + * JPEG Group's software". + * + * We specifically permit and encourage the use of this software as the basis + * of commercial products, provided that all warranty or liability claims are + * assumed by the product vendor. + * + * This file contains the basic inverse-DCT transformation subroutine. + * + * This implementation is based on an algorithm described in + * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT + * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, + * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. + * The primary algorithm described there uses 11 multiplies and 29 adds. + * We use their alternate method with 12 multiplies and 32 adds. + * The advantage of this method is that no data path contains more than one + * multiplication; this allows a very simple and accurate implementation in + * scaled fixed-point arithmetic, with a minimal number of shifts. + * + * I've made lots of modifications to attempt to take advantage of the + * sparse nature of the DCT matrices we're getting. Although the logic + * is cumbersome, it's straightforward and the resulting code is much + * faster. + * + * A better way to do this would be to pass in the DCT block as a sparse + * matrix, perhaps with the difference cases encoded. + */ + +/** + * @file + * Independent JPEG Group's LLM idct. + */ + +#include <stddef.h> +#include <stdint.h> + +#include "libavutil/intreadwrite.h" + +#include "dct.h" +#include "idctdsp.h" + +#define EIGHT_BIT_SAMPLES + +#define DCTSIZE 8 +#define DCTSIZE2 64 + +#define GLOBAL + +#define RIGHT_SHIFT(x, n) ((x) >> (n)) + +typedef int16_t DCTBLOCK[DCTSIZE2]; + +#define CONST_BITS 13 + +/* + * This routine is specialized to the case DCTSIZE = 8. + */ + +#if DCTSIZE != 8 + Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ +#endif + + +/* + * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT + * on each column. Direct algorithms are also available, but they are + * much more complex and seem not to be any faster when reduced to code. + * + * The poop on this scaling stuff is as follows: + * + * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) + * larger than the true IDCT outputs. The final outputs are therefore + * a factor of N larger than desired; since N=8 this can be cured by + * a simple right shift at the end of the algorithm. The advantage of + * this arrangement is that we save two multiplications per 1-D IDCT, + * because the y0 and y4 inputs need not be divided by sqrt(N). + * + * We have to do addition and subtraction of the integer inputs, which + * is no problem, and multiplication by fractional constants, which is + * a problem to do in integer arithmetic. We multiply all the constants + * by CONST_SCALE and convert them to integer constants (thus retaining + * CONST_BITS bits of precision in the constants). After doing a + * multiplication we have to divide the product by CONST_SCALE, with proper + * rounding, to produce the correct output. This division can be done + * cheaply as a right shift of CONST_BITS bits. We postpone shifting + * as long as possible so that partial sums can be added together with + * full fractional precision. + * + * The outputs of the first pass are scaled up by PASS1_BITS bits so that + * they are represented to better-than-integral precision. These outputs + * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word + * with the recommended scaling. (To scale up 12-bit sample data further, an + * intermediate int32 array would be needed.) + * + * To avoid overflow of the 32-bit intermediate results in pass 2, we must + * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis + * shows that the values given below are the most effective. + */ + +#ifdef EIGHT_BIT_SAMPLES +#define PASS1_BITS 2 +#else +#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ +#endif + +#define ONE ((int32_t) 1) + +#define CONST_SCALE (ONE << CONST_BITS) + +/* Convert a positive real constant to an integer scaled by CONST_SCALE. + * IMPORTANT: if your compiler doesn't do this arithmetic at compile time, + * you will pay a significant penalty in run time. In that case, figure + * the correct integer constant values and insert them by hand. + */ + +/* Actually FIX is no longer used, we precomputed them all */ +#define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5)) + +/* Descale and correctly round an int32_t value that's scaled by N bits. + * We assume RIGHT_SHIFT rounds towards minus infinity, so adding + * the fudge factor is correct for either sign of X. + */ + +#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) + +/* Multiply an int32_t variable by an int32_t constant to yield an int32_t result. + * For 8-bit samples with the recommended scaling, all the variable + * and constant values involved are no more than 16 bits wide, so a + * 16x16->32 bit multiply can be used instead of a full 32x32 multiply; + * this provides a useful speedup on many machines. + * There is no way to specify a 16x16->32 multiply in portable C, but + * some C compilers will do the right thing if you provide the correct + * combination of casts. + * NB: for 12-bit samples, a full 32-bit multiplication will be needed. + */ + +#ifdef EIGHT_BIT_SAMPLES +#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ +#define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const))) +#endif +#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ +#define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const))) +#endif +#endif + +#ifndef MULTIPLY /* default definition */ +#define MULTIPLY(var,const) ((var) * (const)) +#endif + + +/* + Unlike our decoder where we approximate the FIXes, we need to use exact +ones here or successive P-frames will drift too much with Reference frame coding +*/ +#define FIX_0_211164243 1730 +#define FIX_0_275899380 2260 +#define FIX_0_298631336 2446 +#define FIX_0_390180644 3196 +#define FIX_0_509795579 4176 +#define FIX_0_541196100 4433 +#define FIX_0_601344887 4926 +#define FIX_0_765366865 6270 +#define FIX_0_785694958 6436 +#define FIX_0_899976223 7373 +#define FIX_1_061594337 8697 +#define FIX_1_111140466 9102 +#define FIX_1_175875602 9633 +#define FIX_1_306562965 10703 +#define FIX_1_387039845 11363 +#define FIX_1_451774981 11893 +#define FIX_1_501321110 12299 +#define FIX_1_662939225 13623 +#define FIX_1_847759065 15137 +#define FIX_1_961570560 16069 +#define FIX_2_053119869 16819 +#define FIX_2_172734803 17799 +#define FIX_2_562915447 20995 +#define FIX_3_072711026 25172 + +/* + * Perform the inverse DCT on one block of coefficients. + */ + +void ff_j_rev_dct(DCTBLOCK data) +{ + int32_t tmp0, tmp1, tmp2, tmp3; + int32_t tmp10, tmp11, tmp12, tmp13; + int32_t z1, z2, z3, z4, z5; + int32_t d0, d1, d2, d3, d4, d5, d6, d7; + register int16_t *dataptr; + int rowctr; + + /* Pass 1: process rows. */ + /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ + /* furthermore, we scale the results by 2**PASS1_BITS. */ + + dataptr = data; + + for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { + /* Due to quantization, we will usually find that many of the input + * coefficients are zero, especially the AC terms. We can exploit this + * by short-circuiting the IDCT calculation for any row in which all + * the AC terms are zero. In that case each output is equal to the + * DC coefficient (with scale factor as needed). + * With typical images and quantization tables, half or more of the + * row DCT calculations can be simplified this way. + */ + + register uint8_t *idataptr = (uint8_t*)dataptr; + + /* WARNING: we do the same permutation as MMX idct to simplify the + video core */ + d0 = dataptr[0]; + d2 = dataptr[1]; + d4 = dataptr[2]; + d6 = dataptr[3]; + d1 = dataptr[4]; + d3 = dataptr[5]; + d5 = dataptr[6]; + d7 = dataptr[7]; + + if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) { + /* AC terms all zero */ + if (d0) { + /* Compute a 32 bit value to assign. */ + int16_t dcval = (int16_t) (d0 * (1 << PASS1_BITS)); + register unsigned v = (dcval & 0xffff) | ((uint32_t)dcval << 16); + + AV_WN32A(&idataptr[ 0], v); + AV_WN32A(&idataptr[ 4], v); + AV_WN32A(&idataptr[ 8], v); + AV_WN32A(&idataptr[12], v); + } + + dataptr += DCTSIZE; /* advance pointer to next row */ + continue; + } + + /* Even part: reverse the even part of the forward DCT. */ + /* The rotator is sqrt(2)*c(-6). */ +{ + if (d6) { + if (d2) { + /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ + z1 = MULTIPLY(d2 + d6, FIX_0_541196100); + tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); + tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); + + tmp0 = (d0 + d4) * CONST_SCALE; + tmp1 = (d0 - d4) * CONST_SCALE; + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } else { + /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ + tmp2 = MULTIPLY(-d6, FIX_1_306562965); + tmp3 = MULTIPLY(d6, FIX_0_541196100); + + tmp0 = (d0 + d4) * CONST_SCALE; + tmp1 = (d0 - d4) * CONST_SCALE; + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } + } else { + if (d2) { + /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ + tmp2 = MULTIPLY(d2, FIX_0_541196100); + tmp3 = MULTIPLY(d2, FIX_1_306562965); + + tmp0 = (d0 + d4) * CONST_SCALE; + tmp1 = (d0 - d4) * CONST_SCALE; + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } else { + /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ + tmp10 = tmp13 = (d0 + d4) * CONST_SCALE; + tmp11 = tmp12 = (d0 - d4) * CONST_SCALE; + } + } + + /* Odd part per figure 8; the matrix is unitary and hence its + * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. + */ + + if (d7) { + if (d5) { + if (d3) { + if (d1) { + /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ + z1 = d7 + d1; + z2 = d5 + d3; + z3 = d7 + d3; + z4 = d5 + d1; + z5 = MULTIPLY(z3 + z4, FIX_1_175875602); + + tmp0 = MULTIPLY(d7, FIX_0_298631336); + tmp1 = MULTIPLY(d5, FIX_2_053119869); + tmp2 = MULTIPLY(d3, FIX_3_072711026); + tmp3 = MULTIPLY(d1, FIX_1_501321110); + z1 = MULTIPLY(-z1, FIX_0_899976223); + z2 = MULTIPLY(-z2, FIX_2_562915447); + z3 = MULTIPLY(-z3, FIX_1_961570560); + z4 = MULTIPLY(-z4, FIX_0_390180644); + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + } else { + /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ + z2 = d5 + d3; + z3 = d7 + d3; + z5 = MULTIPLY(z3 + d5, FIX_1_175875602); + + tmp0 = MULTIPLY(d7, FIX_0_298631336); + tmp1 = MULTIPLY(d5, FIX_2_053119869); + tmp2 = MULTIPLY(d3, FIX_3_072711026); + z1 = MULTIPLY(-d7, FIX_0_899976223); + z2 = MULTIPLY(-z2, FIX_2_562915447); + z3 = MULTIPLY(-z3, FIX_1_961570560); + z4 = MULTIPLY(-d5, FIX_0_390180644); + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 = z1 + z4; + } + } else { + if (d1) { + /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ + z1 = d7 + d1; + z4 = d5 + d1; + z5 = MULTIPLY(d7 + z4, FIX_1_175875602); + + tmp0 = MULTIPLY(d7, FIX_0_298631336); + tmp1 = MULTIPLY(d5, FIX_2_053119869); + tmp3 = MULTIPLY(d1, FIX_1_501321110); + z1 = MULTIPLY(-z1, FIX_0_899976223); + z2 = MULTIPLY(-d5, FIX_2_562915447); + z3 = MULTIPLY(-d7, FIX_1_961570560); + z4 = MULTIPLY(-z4, FIX_0_390180644); + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 = z2 + z3; + tmp3 += z1 + z4; + } else { + /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ + tmp0 = MULTIPLY(-d7, FIX_0_601344887); + z1 = MULTIPLY(-d7, FIX_0_899976223); + z3 = MULTIPLY(-d7, FIX_1_961570560); + tmp1 = MULTIPLY(-d5, FIX_0_509795579); + z2 = MULTIPLY(-d5, FIX_2_562915447); + z4 = MULTIPLY(-d5, FIX_0_390180644); + z5 = MULTIPLY(d5 + d7, FIX_1_175875602); + + z3 += z5; + z4 += z5; + + tmp0 += z3; + tmp1 += z4; + tmp2 = z2 + z3; + tmp3 = z1 + z4; + } + } + } else { + if (d3) { + if (d1) { + /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ + z1 = d7 + d1; + z3 = d7 + d3; + z5 = MULTIPLY(z3 + d1, FIX_1_175875602); + + tmp0 = MULTIPLY(d7, FIX_0_298631336); + tmp2 = MULTIPLY(d3, FIX_3_072711026); + tmp3 = MULTIPLY(d1, FIX_1_501321110); + z1 = MULTIPLY(-z1, FIX_0_899976223); + z2 = MULTIPLY(-d3, FIX_2_562915447); + z3 = MULTIPLY(-z3, FIX_1_961570560); + z4 = MULTIPLY(-d1, FIX_0_390180644); + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 = z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + } else { + /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ + z3 = d7 + d3; + + tmp0 = MULTIPLY(-d7, FIX_0_601344887); + z1 = MULTIPLY(-d7, FIX_0_899976223); + tmp2 = MULTIPLY(d3, FIX_0_509795579); + z2 = MULTIPLY(-d3, FIX_2_562915447); + z5 = MULTIPLY(z3, FIX_1_175875602); + z3 = MULTIPLY(-z3, FIX_0_785694958); + + tmp0 += z3; + tmp1 = z2 + z5; + tmp2 += z3; + tmp3 = z1 + z5; + } + } else { + if (d1) { + /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ + z1 = d7 + d1; + z5 = MULTIPLY(z1, FIX_1_175875602); + + z1 = MULTIPLY(z1, FIX_0_275899380); + z3 = MULTIPLY(-d7, FIX_1_961570560); + tmp0 = MULTIPLY(-d7, FIX_1_662939225); + z4 = MULTIPLY(-d1, FIX_0_390180644); + tmp3 = MULTIPLY(d1, FIX_1_111140466); + + tmp0 += z1; + tmp1 = z4 + z5; + tmp2 = z3 + z5; + tmp3 += z1; + } else { + /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ + tmp0 = MULTIPLY(-d7, FIX_1_387039845); + tmp1 = MULTIPLY(d7, FIX_1_175875602); + tmp2 = MULTIPLY(-d7, FIX_0_785694958); + tmp3 = MULTIPLY(d7, FIX_0_275899380); + } + } + } + } else { + if (d5) { + if (d3) { + if (d1) { + /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ + z2 = d5 + d3; + z4 = d5 + d1; + z5 = MULTIPLY(d3 + z4, FIX_1_175875602); + + tmp1 = MULTIPLY(d5, FIX_2_053119869); + tmp2 = MULTIPLY(d3, FIX_3_072711026); + tmp3 = MULTIPLY(d1, FIX_1_501321110); + z1 = MULTIPLY(-d1, FIX_0_899976223); + z2 = MULTIPLY(-z2, FIX_2_562915447); + z3 = MULTIPLY(-d3, FIX_1_961570560); + z4 = MULTIPLY(-z4, FIX_0_390180644); + + z3 += z5; + z4 += z5; + + tmp0 = z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + } else { + /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ + z2 = d5 + d3; + + z5 = MULTIPLY(z2, FIX_1_175875602); + tmp1 = MULTIPLY(d5, FIX_1_662939225); + z4 = MULTIPLY(-d5, FIX_0_390180644); + z2 = MULTIPLY(-z2, FIX_1_387039845); + tmp2 = MULTIPLY(d3, FIX_1_111140466); + z3 = MULTIPLY(-d3, FIX_1_961570560); + + tmp0 = z3 + z5; + tmp1 += z2; + tmp2 += z2; + tmp3 = z4 + z5; + } + } else { + if (d1) { + /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ + z4 = d5 + d1; + + z5 = MULTIPLY(z4, FIX_1_175875602); + z1 = MULTIPLY(-d1, FIX_0_899976223); + tmp3 = MULTIPLY(d1, FIX_0_601344887); + tmp1 = MULTIPLY(-d5, FIX_0_509795579); + z2 = MULTIPLY(-d5, FIX_2_562915447); + z4 = MULTIPLY(z4, FIX_0_785694958); + + tmp0 = z1 + z5; + tmp1 += z4; + tmp2 = z2 + z5; + tmp3 += z4; + } else { + /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ + tmp0 = MULTIPLY(d5, FIX_1_175875602); + tmp1 = MULTIPLY(d5, FIX_0_275899380); + tmp2 = MULTIPLY(-d5, FIX_1_387039845); + tmp3 = MULTIPLY(d5, FIX_0_785694958); + } + } + } else { + if (d3) { + if (d1) { + /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ + z5 = d1 + d3; + tmp3 = MULTIPLY(d1, FIX_0_211164243); + tmp2 = MULTIPLY(-d3, FIX_1_451774981); + z1 = MULTIPLY(d1, FIX_1_061594337); + z2 = MULTIPLY(-d3, FIX_2_172734803); + z4 = MULTIPLY(z5, FIX_0_785694958); + z5 = MULTIPLY(z5, FIX_1_175875602); + + tmp0 = z1 - z4; + tmp1 = z2 + z4; + tmp2 += z5; + tmp3 += z5; + } else { + /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ + tmp0 = MULTIPLY(-d3, FIX_0_785694958); + tmp1 = MULTIPLY(-d3, FIX_1_387039845); + tmp2 = MULTIPLY(-d3, FIX_0_275899380); + tmp3 = MULTIPLY(d3, FIX_1_175875602); + } + } else { + if (d1) { + /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ + tmp0 = MULTIPLY(d1, FIX_0_275899380); + tmp1 = MULTIPLY(d1, FIX_0_785694958); + tmp2 = MULTIPLY(d1, FIX_1_175875602); + tmp3 = MULTIPLY(d1, FIX_1_387039845); + } else { + /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ + tmp0 = tmp1 = tmp2 = tmp3 = 0; + } + } + } + } +} + /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ + + dataptr[0] = (int16_t) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); + dataptr[7] = (int16_t) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); + dataptr[1] = (int16_t) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); + dataptr[6] = (int16_t) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); + dataptr[2] = (int16_t) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); + dataptr[5] = (int16_t) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); + dataptr[3] = (int16_t) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); + dataptr[4] = (int16_t) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); + + dataptr += DCTSIZE; /* advance pointer to next row */ + } + + /* Pass 2: process columns. */ + /* Note that we must descale the results by a factor of 8 == 2**3, */ + /* and also undo the PASS1_BITS scaling. */ + + dataptr = data; + for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { + /* Columns of zeroes can be exploited in the same way as we did with rows. + * However, the row calculation has created many nonzero AC terms, so the + * simplification applies less often (typically 5% to 10% of the time). + * On machines with very fast multiplication, it's possible that the + * test takes more time than it's worth. In that case this section + * may be commented out. + */ + + d0 = dataptr[DCTSIZE*0]; + d1 = dataptr[DCTSIZE*1]; + d2 = dataptr[DCTSIZE*2]; + d3 = dataptr[DCTSIZE*3]; + d4 = dataptr[DCTSIZE*4]; + d5 = dataptr[DCTSIZE*5]; + d6 = dataptr[DCTSIZE*6]; + d7 = dataptr[DCTSIZE*7]; + + /* Even part: reverse the even part of the forward DCT. */ + /* The rotator is sqrt(2)*c(-6). */ + if (d6) { + if (d2) { + /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ + z1 = MULTIPLY(d2 + d6, FIX_0_541196100); + tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); + tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); + + tmp0 = (d0 + d4) * CONST_SCALE; + tmp1 = (d0 - d4) * CONST_SCALE; + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } else { + /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ + tmp2 = MULTIPLY(-d6, FIX_1_306562965); + tmp3 = MULTIPLY(d6, FIX_0_541196100); + + tmp0 = (d0 + d4) * CONST_SCALE; + tmp1 = (d0 - d4) * CONST_SCALE; + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } + } else { + if (d2) { + /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ + tmp2 = MULTIPLY(d2, FIX_0_541196100); + tmp3 = MULTIPLY(d2, FIX_1_306562965); + + tmp0 = (d0 + d4) * CONST_SCALE; + tmp1 = (d0 - d4) * CONST_SCALE; + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } else { + /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ + tmp10 = tmp13 = (d0 + d4) * CONST_SCALE; + tmp11 = tmp12 = (d0 - d4) * CONST_SCALE; + } + } + + /* Odd part per figure 8; the matrix is unitary and hence its + * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. + */ + if (d7) { + if (d5) { + if (d3) { + if (d1) { + /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ + z1 = d7 + d1; + z2 = d5 + d3; + z3 = d7 + d3; + z4 = d5 + d1; + z5 = MULTIPLY(z3 + z4, FIX_1_175875602); + + tmp0 = MULTIPLY(d7, FIX_0_298631336); + tmp1 = MULTIPLY(d5, FIX_2_053119869); + tmp2 = MULTIPLY(d3, FIX_3_072711026); + tmp3 = MULTIPLY(d1, FIX_1_501321110); + z1 = MULTIPLY(-z1, FIX_0_899976223); + z2 = MULTIPLY(-z2, FIX_2_562915447); + z3 = MULTIPLY(-z3, FIX_1_961570560); + z4 = MULTIPLY(-z4, FIX_0_390180644); + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + } else { + /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ + z2 = d5 + d3; + z3 = d7 + d3; + z5 = MULTIPLY(z3 + d5, FIX_1_175875602); + + tmp0 = MULTIPLY(d7, FIX_0_298631336); + tmp1 = MULTIPLY(d5, FIX_2_053119869); + tmp2 = MULTIPLY(d3, FIX_3_072711026); + z1 = MULTIPLY(-d7, FIX_0_899976223); + z2 = MULTIPLY(-z2, FIX_2_562915447); + z3 = MULTIPLY(-z3, FIX_1_961570560); + z4 = MULTIPLY(-d5, FIX_0_390180644); + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 = z1 + z4; + } + } else { + if (d1) { + /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ + z1 = d7 + d1; + z3 = d7; + z4 = d5 + d1; + z5 = MULTIPLY(z3 + z4, FIX_1_175875602); + + tmp0 = MULTIPLY(d7, FIX_0_298631336); + tmp1 = MULTIPLY(d5, FIX_2_053119869); + tmp3 = MULTIPLY(d1, FIX_1_501321110); + z1 = MULTIPLY(-z1, FIX_0_899976223); + z2 = MULTIPLY(-d5, FIX_2_562915447); + z3 = MULTIPLY(-d7, FIX_1_961570560); + z4 = MULTIPLY(-z4, FIX_0_390180644); + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 = z2 + z3; + tmp3 += z1 + z4; + } else { + /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ + tmp0 = MULTIPLY(-d7, FIX_0_601344887); + z1 = MULTIPLY(-d7, FIX_0_899976223); + z3 = MULTIPLY(-d7, FIX_1_961570560); + tmp1 = MULTIPLY(-d5, FIX_0_509795579); + z2 = MULTIPLY(-d5, FIX_2_562915447); + z4 = MULTIPLY(-d5, FIX_0_390180644); + z5 = MULTIPLY(d5 + d7, FIX_1_175875602); + + z3 += z5; + z4 += z5; + + tmp0 += z3; + tmp1 += z4; + tmp2 = z2 + z3; + tmp3 = z1 + z4; + } + } + } else { + if (d3) { + if (d1) { + /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ + z1 = d7 + d1; + z3 = d7 + d3; + z5 = MULTIPLY(z3 + d1, FIX_1_175875602); + + tmp0 = MULTIPLY(d7, FIX_0_298631336); + tmp2 = MULTIPLY(d3, FIX_3_072711026); + tmp3 = MULTIPLY(d1, FIX_1_501321110); + z1 = MULTIPLY(-z1, FIX_0_899976223); + z2 = MULTIPLY(-d3, FIX_2_562915447); + z3 = MULTIPLY(-z3, FIX_1_961570560); + z4 = MULTIPLY(-d1, FIX_0_390180644); + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 = z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + } else { + /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ + z3 = d7 + d3; + + tmp0 = MULTIPLY(-d7, FIX_0_601344887); + z1 = MULTIPLY(-d7, FIX_0_899976223); + tmp2 = MULTIPLY(d3, FIX_0_509795579); + z2 = MULTIPLY(-d3, FIX_2_562915447); + z5 = MULTIPLY(z3, FIX_1_175875602); + z3 = MULTIPLY(-z3, FIX_0_785694958); + + tmp0 += z3; + tmp1 = z2 + z5; + tmp2 += z3; + tmp3 = z1 + z5; + } + } else { + if (d1) { + /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ + z1 = d7 + d1; + z5 = MULTIPLY(z1, FIX_1_175875602); + + z1 = MULTIPLY(z1, FIX_0_275899380); + z3 = MULTIPLY(-d7, FIX_1_961570560); + tmp0 = MULTIPLY(-d7, FIX_1_662939225); + z4 = MULTIPLY(-d1, FIX_0_390180644); + tmp3 = MULTIPLY(d1, FIX_1_111140466); + + tmp0 += z1; + tmp1 = z4 + z5; + tmp2 = z3 + z5; + tmp3 += z1; + } else { + /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ + tmp0 = MULTIPLY(-d7, FIX_1_387039845); + tmp1 = MULTIPLY(d7, FIX_1_175875602); + tmp2 = MULTIPLY(-d7, FIX_0_785694958); + tmp3 = MULTIPLY(d7, FIX_0_275899380); + } + } + } + } else { + if (d5) { + if (d3) { + if (d1) { + /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ + z2 = d5 + d3; + z4 = d5 + d1; + z5 = MULTIPLY(d3 + z4, FIX_1_175875602); + + tmp1 = MULTIPLY(d5, FIX_2_053119869); + tmp2 = MULTIPLY(d3, FIX_3_072711026); + tmp3 = MULTIPLY(d1, FIX_1_501321110); + z1 = MULTIPLY(-d1, FIX_0_899976223); + z2 = MULTIPLY(-z2, FIX_2_562915447); + z3 = MULTIPLY(-d3, FIX_1_961570560); + z4 = MULTIPLY(-z4, FIX_0_390180644); + + z3 += z5; + z4 += z5; + + tmp0 = z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + } else { + /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ + z2 = d5 + d3; + + z5 = MULTIPLY(z2, FIX_1_175875602); + tmp1 = MULTIPLY(d5, FIX_1_662939225); + z4 = MULTIPLY(-d5, FIX_0_390180644); + z2 = MULTIPLY(-z2, FIX_1_387039845); + tmp2 = MULTIPLY(d3, FIX_1_111140466); + z3 = MULTIPLY(-d3, FIX_1_961570560); + + tmp0 = z3 + z5; + tmp1 += z2; + tmp2 += z2; + tmp3 = z4 + z5; + } + } else { + if (d1) { + /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ + z4 = d5 + d1; + + z5 = MULTIPLY(z4, FIX_1_175875602); + z1 = MULTIPLY(-d1, FIX_0_899976223); + tmp3 = MULTIPLY(d1, FIX_0_601344887); + tmp1 = MULTIPLY(-d5, FIX_0_509795579); + z2 = MULTIPLY(-d5, FIX_2_562915447); + z4 = MULTIPLY(z4, FIX_0_785694958); + + tmp0 = z1 + z5; + tmp1 += z4; + tmp2 = z2 + z5; + tmp3 += z4; + } else { + /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ + tmp0 = MULTIPLY(d5, FIX_1_175875602); + tmp1 = MULTIPLY(d5, FIX_0_275899380); + tmp2 = MULTIPLY(-d5, FIX_1_387039845); + tmp3 = MULTIPLY(d5, FIX_0_785694958); + } + } + } else { + if (d3) { + if (d1) { + /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ + z5 = d1 + d3; + tmp3 = MULTIPLY(d1, FIX_0_211164243); + tmp2 = MULTIPLY(-d3, FIX_1_451774981); + z1 = MULTIPLY(d1, FIX_1_061594337); + z2 = MULTIPLY(-d3, FIX_2_172734803); + z4 = MULTIPLY(z5, FIX_0_785694958); + z5 = MULTIPLY(z5, FIX_1_175875602); + + tmp0 = z1 - z4; + tmp1 = z2 + z4; + tmp2 += z5; + tmp3 += z5; + } else { + /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ + tmp0 = MULTIPLY(-d3, FIX_0_785694958); + tmp1 = MULTIPLY(-d3, FIX_1_387039845); + tmp2 = MULTIPLY(-d3, FIX_0_275899380); + tmp3 = MULTIPLY(d3, FIX_1_175875602); + } + } else { + if (d1) { + /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ + tmp0 = MULTIPLY(d1, FIX_0_275899380); + tmp1 = MULTIPLY(d1, FIX_0_785694958); + tmp2 = MULTIPLY(d1, FIX_1_175875602); + tmp3 = MULTIPLY(d1, FIX_1_387039845); + } else { + /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ + tmp0 = tmp1 = tmp2 = tmp3 = 0; + } + } + } + } + + /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ + + dataptr[DCTSIZE*0] = (int16_t) DESCALE(tmp10 + tmp3, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*7] = (int16_t) DESCALE(tmp10 - tmp3, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*1] = (int16_t) DESCALE(tmp11 + tmp2, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*6] = (int16_t) DESCALE(tmp11 - tmp2, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*2] = (int16_t) DESCALE(tmp12 + tmp1, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*5] = (int16_t) DESCALE(tmp12 - tmp1, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*3] = (int16_t) DESCALE(tmp13 + tmp0, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*4] = (int16_t) DESCALE(tmp13 - tmp0, + CONST_BITS+PASS1_BITS+3); + + dataptr++; /* advance pointer to next column */ + } +} + +#undef DCTSIZE +#define DCTSIZE 4 +#define DCTSTRIDE 8 + +void ff_j_rev_dct4(DCTBLOCK data) +{ + int32_t tmp0, tmp1, tmp2, tmp3; + int32_t tmp10, tmp11, tmp12, tmp13; + int32_t z1; + int32_t d0, d2, d4, d6; + register int16_t *dataptr; + int rowctr; + + /* Pass 1: process rows. */ + /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ + /* furthermore, we scale the results by 2**PASS1_BITS. */ + + data[0] += 4; + + dataptr = data; + + for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { + /* Due to quantization, we will usually find that many of the input + * coefficients are zero, especially the AC terms. We can exploit this + * by short-circuiting the IDCT calculation for any row in which all + * the AC terms are zero. In that case each output is equal to the + * DC coefficient (with scale factor as needed). + * With typical images and quantization tables, half or more of the + * row DCT calculations can be simplified this way. + */ + + register uint8_t *idataptr = (uint8_t*)dataptr; + + d0 = dataptr[0]; + d2 = dataptr[1]; + d4 = dataptr[2]; + d6 = dataptr[3]; + + if ((d2 | d4 | d6) == 0) { + /* AC terms all zero */ + if (d0) { + /* Compute a 32 bit value to assign. */ + int16_t dcval = (int16_t) (d0 * (1 << PASS1_BITS)); + register unsigned v = (dcval & 0xffff) | ((uint32_t)dcval << 16); + + AV_WN32A(&idataptr[0], v); + AV_WN32A(&idataptr[4], v); + } + + dataptr += DCTSTRIDE; /* advance pointer to next row */ + continue; + } + + /* Even part: reverse the even part of the forward DCT. */ + /* The rotator is sqrt(2)*c(-6). */ + if (d6) { + if (d2) { + /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ + z1 = MULTIPLY(d2 + d6, FIX_0_541196100); + tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); + tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); + + tmp0 = (d0 + d4) * (1 << CONST_BITS); + tmp1 = (d0 - d4) * (1 << CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } else { + /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ + tmp2 = MULTIPLY(-d6, FIX_1_306562965); + tmp3 = MULTIPLY(d6, FIX_0_541196100); + + tmp0 = (d0 + d4) * (1 << CONST_BITS); + tmp1 = (d0 - d4) * (1 << CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } + } else { + if (d2) { + /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ + tmp2 = MULTIPLY(d2, FIX_0_541196100); + tmp3 = MULTIPLY(d2, FIX_1_306562965); + + tmp0 = (d0 + d4) * (1 << CONST_BITS); + tmp1 = (d0 - d4) * (1 << CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } else { + /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ + tmp10 = tmp13 = (d0 + d4) * (1 << CONST_BITS); + tmp11 = tmp12 = (d0 - d4) * (1 << CONST_BITS); + } + } + + /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ + + dataptr[0] = (int16_t) DESCALE(tmp10, CONST_BITS-PASS1_BITS); + dataptr[1] = (int16_t) DESCALE(tmp11, CONST_BITS-PASS1_BITS); + dataptr[2] = (int16_t) DESCALE(tmp12, CONST_BITS-PASS1_BITS); + dataptr[3] = (int16_t) DESCALE(tmp13, CONST_BITS-PASS1_BITS); + + dataptr += DCTSTRIDE; /* advance pointer to next row */ + } + + /* Pass 2: process columns. */ + /* Note that we must descale the results by a factor of 8 == 2**3, */ + /* and also undo the PASS1_BITS scaling. */ + + dataptr = data; + for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { + /* Columns of zeroes can be exploited in the same way as we did with rows. + * However, the row calculation has created many nonzero AC terms, so the + * simplification applies less often (typically 5% to 10% of the time). + * On machines with very fast multiplication, it's possible that the + * test takes more time than it's worth. In that case this section + * may be commented out. + */ + + d0 = dataptr[DCTSTRIDE*0]; + d2 = dataptr[DCTSTRIDE*1]; + d4 = dataptr[DCTSTRIDE*2]; + d6 = dataptr[DCTSTRIDE*3]; + + /* Even part: reverse the even part of the forward DCT. */ + /* The rotator is sqrt(2)*c(-6). */ + if (d6) { + if (d2) { + /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ + z1 = MULTIPLY(d2 + d6, FIX_0_541196100); + tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); + tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); + + tmp0 = (d0 + d4) * (1 << CONST_BITS); + tmp1 = (d0 - d4) * (1 << CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } else { + /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ + tmp2 = MULTIPLY(-d6, FIX_1_306562965); + tmp3 = MULTIPLY(d6, FIX_0_541196100); + + tmp0 = (d0 + d4) * (1 << CONST_BITS); + tmp1 = (d0 - d4) * (1 << CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } + } else { + if (d2) { + /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ + tmp2 = MULTIPLY(d2, FIX_0_541196100); + tmp3 = MULTIPLY(d2, FIX_1_306562965); + + tmp0 = (d0 + d4) * (1 << CONST_BITS); + tmp1 = (d0 - d4) * (1 << CONST_BITS); + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + } else { + /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ + tmp10 = tmp13 = (d0 + d4) * (1 << CONST_BITS); + tmp11 = tmp12 = (d0 - d4) * (1 << CONST_BITS); + } + } + + /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ + + dataptr[DCTSTRIDE*0] = tmp10 >> (CONST_BITS+PASS1_BITS+3); + dataptr[DCTSTRIDE*1] = tmp11 >> (CONST_BITS+PASS1_BITS+3); + dataptr[DCTSTRIDE*2] = tmp12 >> (CONST_BITS+PASS1_BITS+3); + dataptr[DCTSTRIDE*3] = tmp13 >> (CONST_BITS+PASS1_BITS+3); + + dataptr++; /* advance pointer to next column */ + } +} + +void ff_j_rev_dct2(DCTBLOCK data){ + int d00, d01, d10, d11; + + data[0] += 4; + d00 = data[0+0*DCTSTRIDE] + data[1+0*DCTSTRIDE]; + d01 = data[0+0*DCTSTRIDE] - data[1+0*DCTSTRIDE]; + d10 = data[0+1*DCTSTRIDE] + data[1+1*DCTSTRIDE]; + d11 = data[0+1*DCTSTRIDE] - data[1+1*DCTSTRIDE]; + + data[0+0*DCTSTRIDE]= (d00 + d10)>>3; + data[1+0*DCTSTRIDE]= (d01 + d11)>>3; + data[0+1*DCTSTRIDE]= (d00 - d10)>>3; + data[1+1*DCTSTRIDE]= (d01 - d11)>>3; +} + +void ff_j_rev_dct1(DCTBLOCK data){ + data[0] = (data[0] + 4)>>3; +} + +#undef FIX +#undef CONST_BITS + +void ff_jref_idct_put(uint8_t *dest, ptrdiff_t line_size, int16_t *block) +{ + ff_j_rev_dct(block); + ff_put_pixels_clamped_c(block, dest, line_size); +} + +void ff_jref_idct_add(uint8_t *dest, ptrdiff_t line_size, int16_t *block) +{ + ff_j_rev_dct(block); + ff_add_pixels_clamped_c(block, dest, line_size); +} |