diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
commit | 43a97878ce14b72f0981164f87f2e35e14151312 (patch) | |
tree | 620249daf56c0258faa40cbdcf9cfba06de2a846 /mozglue/baseprofiler/public/ModuloBuffer.h | |
parent | Initial commit. (diff) | |
download | firefox-upstream.tar.xz firefox-upstream.zip |
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'mozglue/baseprofiler/public/ModuloBuffer.h')
-rw-r--r-- | mozglue/baseprofiler/public/ModuloBuffer.h | 618 |
1 files changed, 618 insertions, 0 deletions
diff --git a/mozglue/baseprofiler/public/ModuloBuffer.h b/mozglue/baseprofiler/public/ModuloBuffer.h new file mode 100644 index 0000000000..80e765279e --- /dev/null +++ b/mozglue/baseprofiler/public/ModuloBuffer.h @@ -0,0 +1,618 @@ +/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef ModuloBuffer_h +#define ModuloBuffer_h + +#include "mozilla/leb128iterator.h" +#include "mozilla/Maybe.h" +#include "mozilla/MemoryReporting.h" +#include "mozilla/NotNull.h" +#include "mozilla/PowerOfTwo.h" +#include "mozilla/ProfileBufferEntrySerialization.h" +#include "mozilla/UniquePtr.h" + +#include <functional> +#include <iterator> +#include <limits> +#include <type_traits> + +namespace mozilla { + +// The ModuloBuffer class is a circular buffer that holds raw byte values, with +// data-read/write helpers. +// +// OffsetT: Type of the internal offset into the buffer of bytes, it should be +// large enough to access all bytes of the buffer. It will also be used as +// Length (in bytes) of the buffer and of any subset. Default uint32_t +// IndexT: Type of the external index, it should be large enough that overflows +// should not happen during the lifetime of the ModuloBuffer. +// +// The basic usage is to create an iterator-like object with `ReaderAt(Index)` +// or `WriterAt(Index)`, and use it to read/write data blobs. Iterators +// automatically manage the wrap-around (through "Modulo", which is effectively +// an AND-masking with the PowerOfTwo buffer size.) +// +// There is zero safety: No thread safety, no checks that iterators may be +// overwriting data that's still to be read, etc. It's up to the caller to add +// adequate checks. +// The intended use is as an underlying buffer for a safer container. +template <typename OffsetT = uint32_t, typename IndexT = uint64_t> +class ModuloBuffer { + public: + using Byte = uint8_t; + static_assert(sizeof(Byte) == 1, "ModuloBuffer::Byte must be 1 byte"); + using Offset = OffsetT; + static_assert(!std::numeric_limits<Offset>::is_signed, + "ModuloBuffer::Offset must be an unsigned integral type"); + using Length = Offset; + using Index = IndexT; + static_assert(!std::numeric_limits<Index>::is_signed, + "ModuloBuffer::Index must be an unsigned integral type"); + static_assert(sizeof(Index) >= sizeof(Offset), + "ModuloBuffer::Index size must >= Offset"); + + // Create a buffer of the given length. + explicit ModuloBuffer(PowerOfTwo<Length> aLength) + : mMask(aLength.Mask()), + mBuffer(WrapNotNull(new Byte[aLength.Value()])), + mBufferDeleter([](Byte* aBuffer) { delete[] aBuffer; }) {} + + // Take ownership of an existing buffer. Existing contents is ignored. + // Done by extracting the raw pointer from UniquePtr<Byte[]>, and adding + // an equivalent `delete[]` in `mBufferDeleter`. + ModuloBuffer(UniquePtr<Byte[]> aExistingBuffer, PowerOfTwo<Length> aLength) + : mMask(aLength.Mask()), + mBuffer(WrapNotNull(aExistingBuffer.release())), + mBufferDeleter([](Byte* aBuffer) { delete[] aBuffer; }) {} + + // Use an externally-owned buffer. Existing contents is ignored. + ModuloBuffer(Byte* aExternalBuffer, PowerOfTwo<Length> aLength) + : mMask(aLength.Mask()), mBuffer(WrapNotNull(aExternalBuffer)) {} + + // Disallow copying, as we may uniquely own the resource. + ModuloBuffer(const ModuloBuffer& aOther) = delete; + ModuloBuffer& operator=(const ModuloBuffer& aOther) = delete; + + // Allow move-construction. Stealing ownership if the original had it. + // This effectively prevents copy construction, and all assignments; needed so + // that a ModuloBuffer may be initialized from a separate construction. + // The moved-from ModuloBuffer still points at the resource but doesn't own + // it, so it won't try to free it; but accesses are not guaranteed, so it + // should not be used anymore. + ModuloBuffer(ModuloBuffer&& aOther) + : mMask(std::move(aOther.mMask)), + mBuffer(std::move(aOther.mBuffer)), + mBufferDeleter(std::move(aOther.mBufferDeleter)) { + // The above move leaves `aOther.mBufferDeleter` in a valid state but with + // an unspecified value, so it could theoretically still contain the + // original function, which would be bad because we don't want aOther to + // delete the resource that `this` now owns. + if (aOther.mBufferDeleter) { + // `aOther` still had a non-empty deleter, reset it. + aOther.mBufferDeleter = nullptr; + } + } + + // Disallow assignment, as we have some `const` members. + ModuloBuffer& operator=(ModuloBuffer&& aOther) = delete; + + // Destructor, deletes the resource if we uniquely own it. + ~ModuloBuffer() { + if (mBufferDeleter) { + mBufferDeleter(mBuffer); + } + } + + PowerOfTwo<Length> BufferLength() const { + return PowerOfTwo<Length>(mMask.MaskValue() + 1); + } + + // Size of external resources. + // Note: `mBufferDeleter`'s potential external data (for its captures) is not + // included, as it's hidden in the `std::function` implementation. + size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const { + if (!mBufferDeleter) { + // If we don't have a buffer deleter, assume we don't own the data, so + // it's probably on the stack, or should be reported by its owner. + return 0; + } + return aMallocSizeOf(mBuffer); + } + + size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const { + return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf); + } + + ProfileBufferEntryReader EntryReaderFromTo( + Index aStart, Index aEnd, ProfileBufferBlockIndex aBlockIndex, + ProfileBufferBlockIndex aNextBlockIndex) const { + using EntrySpan = Span<const ProfileBufferEntryReader::Byte>; + if (aStart == aEnd) { + return ProfileBufferEntryReader{}; + } + // Don't allow over-wrapping. + MOZ_ASSERT(aEnd - aStart <= mMask.MaskValue() + 1); + // Start offset in 0 .. (buffer size - 1) + Offset start = static_cast<Offset>(aStart) & mMask; + // End offset in 1 .. (buffer size) + Offset end = (static_cast<Offset>(aEnd - 1) & mMask) + 1; + if (start < end) { + // Segment doesn't cross buffer threshold, one span is enough. + return ProfileBufferEntryReader{EntrySpan(&mBuffer[start], end - start), + aBlockIndex, aNextBlockIndex}; + } + // Segment crosses buffer threshold, we need one span until the end and one + // span restarting at the beginning of the buffer. + return ProfileBufferEntryReader{ + EntrySpan(&mBuffer[start], mMask.MaskValue() + 1 - start), + EntrySpan(&mBuffer[0], end), aBlockIndex, aNextBlockIndex}; + } + + // Return an entry writer for the given range. + ProfileBufferEntryWriter EntryWriterFromTo(Index aStart, Index aEnd) const { + using EntrySpan = Span<ProfileBufferEntryReader::Byte>; + if (aStart == aEnd) { + return ProfileBufferEntryWriter{}; + } + MOZ_ASSERT(aEnd - aStart <= mMask.MaskValue() + 1); + // Start offset in 0 .. (buffer size - 1) + Offset start = static_cast<Offset>(aStart) & mMask; + // End offset in 1 .. (buffer size) + Offset end = (static_cast<Offset>(aEnd - 1) & mMask) + 1; + if (start < end) { + // Segment doesn't cross buffer threshold, one span is enough. + return ProfileBufferEntryWriter{ + EntrySpan(&mBuffer[start], end - start), + ProfileBufferBlockIndex::CreateFromProfileBufferIndex(aStart), + ProfileBufferBlockIndex::CreateFromProfileBufferIndex(aEnd)}; + } + // Segment crosses buffer threshold, we need one span until the end and one + // span restarting at the beginning of the buffer. + return ProfileBufferEntryWriter{ + EntrySpan(&mBuffer[start], mMask.MaskValue() + 1 - start), + EntrySpan(&mBuffer[0], end), + ProfileBufferBlockIndex::CreateFromProfileBufferIndex(aStart), + ProfileBufferBlockIndex::CreateFromProfileBufferIndex(aEnd)}; + } + + // Emplace an entry writer into `aMaybeEntryWriter` for the given range. + void EntryWriterFromTo(Maybe<ProfileBufferEntryWriter>& aMaybeEntryWriter, + Index aStart, Index aEnd) const { + MOZ_ASSERT(aMaybeEntryWriter.isNothing(), + "Reference entry writer should be Nothing."); + using EntrySpan = Span<ProfileBufferEntryReader::Byte>; + if (aStart == aEnd) { + return; + } + MOZ_ASSERT(aEnd - aStart <= mMask.MaskValue() + 1); + // Start offset in 0 .. (buffer size - 1) + Offset start = static_cast<Offset>(aStart) & mMask; + // End offset in 1 .. (buffer size) + Offset end = (static_cast<Offset>(aEnd - 1) & mMask) + 1; + if (start < end) { + // Segment doesn't cross buffer threshold, one span is enough. + aMaybeEntryWriter.emplace( + EntrySpan(&mBuffer[start], end - start), + ProfileBufferBlockIndex::CreateFromProfileBufferIndex(aStart), + ProfileBufferBlockIndex::CreateFromProfileBufferIndex(aEnd)); + } else { + // Segment crosses buffer threshold, we need one span until the end and + // one span restarting at the beginning of the buffer. + aMaybeEntryWriter.emplace( + EntrySpan(&mBuffer[start], mMask.MaskValue() + 1 - start), + EntrySpan(&mBuffer[0], end), + ProfileBufferBlockIndex::CreateFromProfileBufferIndex(aStart), + ProfileBufferBlockIndex::CreateFromProfileBufferIndex(aEnd)); + } + } + + // All ModuloBuffer operations should be done through this iterator, which has + // an effectively infinite range. The underlying wrapping-around is hidden. + // Use `ReaderAt(Index)` or `WriterAt(Index)` to create it. + // + // `const Iterator<...>` means the iterator itself cannot change, i.e., it + // cannot move, and only its const methods are available. Note that these + // const methods may still be used to modify the buffer contents (e.g.: + // `operator*()`, `Poke()`). + // + // `Iterator</*IsBufferConst=*/true>` means the buffer contents cannot be + // modified, i.e., write operations are forbidden, but the iterator may still + // move if non-const itself. + template <bool IsBufferConst> + class Iterator { + // Alias to const- or mutable-`ModuloBuffer` depending on `IsBufferConst`. + using ConstOrMutableBuffer = + std::conditional_t<IsBufferConst, const ModuloBuffer, ModuloBuffer>; + + // Implementation note about the strange enable-if's below: + // `template <bool NotIBC = !IsBufferConst> enable_if_t<NotIBC>` + // which intuitively could be simplified to: + // `enable_if_t<!IsBufferConst>` + // The former extra-templated syntax is in fact necessary to delay + // instantiation of these functions until they are actually needed. + // + // If we were just doing `enable_if_t<!IsBufferConst>`, this would only + // depend on the *class* (`ModuloBuffer<...>::Iterator`), which gets + // instantiated when a `ModuloBuffer` is created with some template + // arguments; at that point, all non-templated methods get instantiated, so + // there's no "SFINAE" happening, and `enable_if_t<...>` is actually doing + // `typename enable_if<...>::type` on the spot, but there is no `type` if + // `IsBufferConst` is true, so it just fails right away. E.g.: + // error: no type named 'type' in 'std::enable_if<false, void>'; + // 'enable_if' cannot be used to disable this declaration + // note: in instantiation of template type alias 'enable_if_t' + // > std::enable_if_t<!IsBufferConst> WriteObject(const T& aObject) { + // in instantiation of template class + // 'mozilla::ModuloBuffer<...>::Iterator<true>' + // > auto it = mb.ReaderAt(1); + // + // By adding another template level `template <bool NotIsBufferConst = + // !IsBufferConst>`, the instantiation is delayed until the function is + // actually invoked somewhere, e.g. `it.Poke(...);`. + // So at that invocation point, the compiler looks for a "Poke" name in it, + // and considers potential template instantiations that could work. The + // `enable_if_t` is *now* attempted, with `NotIsBufferConst` taking its + // value from `!IsBufferConst`: + // - If `IsBufferConst` is false, `NotIsBufferConst` is true, + // `enable_if<NotIsBufferConst>` does define a `type` (`void` by default), + // so `enable_if_t` happily becomes `void`, the function exists and may be + // called. + // - Otherwise if `IsBufferConst` is true, `NotIsBufferConst` is false, + // `enable_if<NotIsBufferConst>` does *not* define a `type`, therefore + // `enable_if_t` produces an error because there is no `type`. Now "SFINAE" + // happens: This "Substitution Failure Is Not An Error" (by itself)... But + // then, there are no other functions named "Poke" as requested in the + // `it.Poke(...);` call, so we are now getting an error (can't find + // function), as expected because `it` had `IsBufferConst`==true. (But at + // least the compiler waited until this invocation attempt before outputting + // an error.) + // + // C++ is fun! + + public: + // These definitions are expected by std functions, to recognize this as an + // iterator. See https://en.cppreference.com/w/cpp/iterator/iterator_traits + using difference_type = Index; + using value_type = Byte; + using pointer = std::conditional_t<IsBufferConst, const Byte*, Byte*>; + using reference = std::conditional_t<IsBufferConst, const Byte&, Byte&>; + using iterator_category = std::random_access_iterator_tag; + + // Can always copy/assign from the same kind of iterator. + Iterator(const Iterator& aRhs) = default; + Iterator& operator=(const Iterator& aRhs) = default; + + // Can implicitly copy an Iterator-to-mutable (reader+writer) to + // Iterator-to-const (reader-only), but not the reverse. + template <bool IsRhsBufferConst, + typename = std::enable_if_t<(!IsRhsBufferConst) && IsBufferConst>> + MOZ_IMPLICIT Iterator(const Iterator<IsRhsBufferConst>& aRhs) + : mModuloBuffer(aRhs.mModuloBuffer), mIndex(aRhs.mIndex) {} + + // Can implicitly assign from an Iterator-to-mutable (reader+writer) to + // Iterator-to-const (reader-only), but not the reverse. + template <bool IsRhsBufferConst, + typename = std::enable_if_t<(!IsRhsBufferConst) && IsBufferConst>> + Iterator& operator=(const Iterator<IsRhsBufferConst>& aRhs) { + mModuloBuffer = aRhs.mModuloBuffer; + mIndex = aRhs.mIndex; + return *this; + } + + // Current location of the iterator in the `Index` range. + // Note that due to wrapping, multiple indices may effectively point at the + // same byte in the buffer. + Index CurrentIndex() const { return mIndex; } + + // Location comparison in the `Index` range. I.e., two `Iterator`s may look + // unequal, but refer to the same buffer location. + // Must be on the same buffer. + bool operator==(const Iterator& aRhs) const { + MOZ_ASSERT(mModuloBuffer == aRhs.mModuloBuffer); + return mIndex == aRhs.mIndex; + } + bool operator!=(const Iterator& aRhs) const { + MOZ_ASSERT(mModuloBuffer == aRhs.mModuloBuffer); + return mIndex != aRhs.mIndex; + } + bool operator<(const Iterator& aRhs) const { + MOZ_ASSERT(mModuloBuffer == aRhs.mModuloBuffer); + return mIndex < aRhs.mIndex; + } + bool operator<=(const Iterator& aRhs) const { + MOZ_ASSERT(mModuloBuffer == aRhs.mModuloBuffer); + return mIndex <= aRhs.mIndex; + } + bool operator>(const Iterator& aRhs) const { + MOZ_ASSERT(mModuloBuffer == aRhs.mModuloBuffer); + return mIndex > aRhs.mIndex; + } + bool operator>=(const Iterator& aRhs) const { + MOZ_ASSERT(mModuloBuffer == aRhs.mModuloBuffer); + return mIndex >= aRhs.mIndex; + } + + // Movement in the `Index` range. + Iterator& operator++() { + ++mIndex; + return *this; + } + Iterator operator++(int) { + Iterator here(*mModuloBuffer, mIndex); + ++mIndex; + return here; + } + Iterator& operator--() { + --mIndex; + return *this; + } + Iterator operator--(int) { + Iterator here(*mModuloBuffer, mIndex); + --mIndex; + return here; + } + Iterator& operator+=(Length aLength) { + mIndex += aLength; + return *this; + } + Iterator operator+(Length aLength) const { + return Iterator(*mModuloBuffer, mIndex + aLength); + } + friend Iterator operator+(Length aLength, const Iterator& aIt) { + return aIt + aLength; + } + Iterator& operator-=(Length aLength) { + mIndex -= aLength; + return *this; + } + Iterator operator-(Length aLength) const { + return Iterator(*mModuloBuffer, mIndex - aLength); + } + + // Distance from `aRef` to here in the `Index` range. + // May be negative (as 2's complement) if `aRef > *this`. + Index operator-(const Iterator& aRef) const { + MOZ_ASSERT(mModuloBuffer == aRef.mModuloBuffer); + return mIndex - aRef.mIndex; + } + + // Dereference a single byte (read-only if `IsBufferConst` is true). + reference operator*() const { + return mModuloBuffer->mBuffer[OffsetInBuffer()]; + } + + // Random-access dereference. + reference operator[](Length aLength) const { return *(*this + aLength); } + + // Write data (if `IsBufferConst` is false) but don't move iterator. + template <bool NotIsBufferConst = !IsBufferConst> + std::enable_if_t<NotIsBufferConst> Poke(const void* aSrc, + Length aLength) const { + // Don't allow data larger than the buffer. + MOZ_ASSERT(aLength <= mModuloBuffer->BufferLength().Value()); + // Offset inside the buffer (corresponding to our Index). + Offset offset = OffsetInBuffer(); + // Compute remaining bytes between this offset and the end of the buffer. + Length remaining = mModuloBuffer->BufferLength().Value() - offset; + if (MOZ_LIKELY(remaining >= aLength)) { + // Enough space to write everything before the end. + memcpy(&mModuloBuffer->mBuffer[offset], aSrc, aLength); + } else { + // Not enough space. Write as much as possible before the end. + memcpy(&mModuloBuffer->mBuffer[offset], aSrc, remaining); + // And then continue from the beginning of the buffer. + memcpy(&mModuloBuffer->mBuffer[0], + static_cast<const Byte*>(aSrc) + remaining, + (aLength - remaining)); + } + } + + // Write object data (if `IsBufferConst` is false) but don't move iterator. + // Note that this copies bytes from the object, with the intent to read them + // back later. Restricted to trivially-copyable types, which support this + // without Undefined Behavior! + template <typename T, bool NotIsBufferConst = !IsBufferConst> + std::enable_if_t<NotIsBufferConst> PokeObject(const T& aObject) const { + static_assert(std::is_trivially_copyable<T>::value, + "PokeObject<T> - T must be trivially copyable"); + return Poke(&aObject, sizeof(T)); + } + + // Write data (if `IsBufferConst` is false) and move iterator ahead. + template <bool NotIsBufferConst = !IsBufferConst> + std::enable_if_t<NotIsBufferConst> Write(const void* aSrc, Length aLength) { + Poke(aSrc, aLength); + mIndex += aLength; + } + + // Write object data (if `IsBufferConst` is false) and move iterator ahead. + // Note that this copies bytes from the object, with the intent to read them + // back later. Restricted to trivially-copyable types, which support this + // without Undefined Behavior! + template <typename T, bool NotIsBufferConst = !IsBufferConst> + std::enable_if_t<NotIsBufferConst> WriteObject(const T& aObject) { + static_assert(std::is_trivially_copyable<T>::value, + "WriteObject<T> - T must be trivially copyable"); + return Write(&aObject, sizeof(T)); + } + + // Number of bytes needed to represent `aValue` in unsigned LEB128. + template <typename T> + static unsigned ULEB128Size(T aValue) { + return ::mozilla::ULEB128Size(aValue); + } + + // Write number as unsigned LEB128 (if `IsBufferConst` is false) and move + // iterator ahead. + template <typename T, bool NotIsBufferConst = !IsBufferConst> + std::enable_if_t<NotIsBufferConst> WriteULEB128(T aValue) { + ::mozilla::WriteULEB128(aValue, *this); + } + + // Read data but don't move iterator. + void Peek(void* aDst, Length aLength) const { + // Don't allow data larger than the buffer. + MOZ_ASSERT(aLength <= mModuloBuffer->BufferLength().Value()); + // Offset inside the buffer (corresponding to our Index). + Offset offset = OffsetInBuffer(); + // Compute remaining bytes between this offset and the end of the buffer. + Length remaining = mModuloBuffer->BufferLength().Value() - offset; + if (MOZ_LIKELY(remaining >= aLength)) { + // Can read everything we need before the end of the buffer. + memcpy(aDst, &mModuloBuffer->mBuffer[offset], aLength); + } else { + // Read as much as possible before the end of the buffer. + memcpy(aDst, &mModuloBuffer->mBuffer[offset], remaining); + // And then continue from the beginning of the buffer. + memcpy(static_cast<Byte*>(aDst) + remaining, &mModuloBuffer->mBuffer[0], + (aLength - remaining)); + } + } + + // Read data into an object but don't move iterator. + // Note that this overwrites `aObject` with bytes from the buffer. + // Restricted to trivially-copyable types, which support this without + // Undefined Behavior! + template <typename T> + void PeekIntoObject(T& aObject) const { + static_assert(std::is_trivially_copyable<T>::value, + "PeekIntoObject<T> - T must be trivially copyable"); + Peek(&aObject, sizeof(T)); + } + + // Read data as an object but don't move iterator. + // Note that this creates an default `T` first, and then overwrites it with + // bytes from the buffer. Restricted to trivially-copyable types, which + // support this without Undefined Behavior! + template <typename T> + T PeekObject() const { + static_assert(std::is_trivially_copyable<T>::value, + "PeekObject<T> - T must be trivially copyable"); + T object; + PeekIntoObject(object); + return object; + } + + // Read data and move iterator ahead. + void Read(void* aDst, Length aLength) { + Peek(aDst, aLength); + mIndex += aLength; + } + + // Read data into a mutable iterator and move both iterators ahead. + void ReadInto(Iterator</* IsBufferConst */ false>& aDst, Length aLength) { + // Don't allow data larger than the buffer. + MOZ_ASSERT(aLength <= mModuloBuffer->BufferLength().Value()); + MOZ_ASSERT(aLength <= aDst.mModuloBuffer->BufferLength().Value()); + // Offset inside the buffer (corresponding to our Index). + Offset offset = OffsetInBuffer(); + // Compute remaining bytes between this offset and the end of the buffer. + Length remaining = mModuloBuffer->BufferLength().Value() - offset; + if (MOZ_LIKELY(remaining >= aLength)) { + // Can read everything we need before the end of the buffer. + aDst.Write(&mModuloBuffer->mBuffer[offset], aLength); + } else { + // Read as much as possible before the end of the buffer. + aDst.Write(&mModuloBuffer->mBuffer[offset], remaining); + // And then continue from the beginning of the buffer. + aDst.Write(&mModuloBuffer->mBuffer[0], (aLength - remaining)); + } + mIndex += aLength; + } + + // Read data into an object and move iterator ahead. + // Note that this overwrites `aObject` with bytes from the buffer. + // Restricted to trivially-copyable types, which support this without + // Undefined Behavior! + template <typename T> + void ReadIntoObject(T& aObject) { + static_assert(std::is_trivially_copyable<T>::value, + "ReadIntoObject<T> - T must be trivially copyable"); + Read(&aObject, sizeof(T)); + } + + // Read data as an object and move iterator ahead. + // Note that this creates an default `T` first, and then overwrites it with + // bytes from the buffer. Restricted to trivially-copyable types, which + // support this without Undefined Behavior! + template <typename T> + T ReadObject() { + static_assert(std::is_trivially_copyable<T>::value, + "ReadObject<T> - T must be trivially copyable"); + T object; + ReadIntoObject(object); + return object; + } + + // Read an unsigned LEB128 number and move iterator ahead. + template <typename T> + T ReadULEB128() { + return ::mozilla::ReadULEB128<T>(*this); + } + + private: + // Only a ModuloBuffer can instantiate its iterator. + friend class ModuloBuffer; + + Iterator(ConstOrMutableBuffer& aBuffer, Index aIndex) + : mModuloBuffer(WrapNotNull(&aBuffer)), mIndex(aIndex) {} + + // Convert the Iterator's mIndex into an offset inside the byte buffer. + Offset OffsetInBuffer() const { + return static_cast<Offset>(mIndex) & mModuloBuffer->mMask; + } + + // ModuloBuffer that this Iterator operates on. + // Using a non-null pointer instead of a reference, to allow re-assignment + // of an Iterator variable. + NotNull<ConstOrMutableBuffer*> mModuloBuffer; + + // Position of this iterator in the wider `Index` range. (Will be wrapped + // around as needed when actually accessing bytes from the buffer.) + Index mIndex; + }; + + // Shortcut to iterator to const (read-only) data. + using Reader = Iterator<true>; + // Shortcut to iterator to non-const (read/write) data. + using Writer = Iterator<false>; + + // Create an iterator to const data at the given index. + Reader ReaderAt(Index aIndex) const { return Reader(*this, aIndex); } + + // Create an iterator to non-const data at the given index. + Writer WriterAt(Index aIndex) { return Writer(*this, aIndex); } + +#ifdef DEBUG + void Dump() const { + Length len = BufferLength().Value(); + if (len > 128) { + len = 128; + } + for (Length i = 0; i < len; ++i) { + printf("%02x ", mBuffer[i]); + } + printf("\n"); + } +#endif // DEBUG + + private: + // Mask used to convert an index to an offset in `mBuffer` + const PowerOfTwoMask<Offset> mMask; + + // Buffer data. `const NotNull<...>` shows that `mBuffer is `const`, and + // `Byte* const` shows that the pointer cannot be changed to point at + // something else, but the pointed-at `Byte`s are writable. + const NotNull<Byte* const> mBuffer; + + // Function used to release the buffer resource (if needed). + std::function<void(Byte*)> mBufferDeleter; +}; + +} // namespace mozilla + +#endif // ModuloBuffer_h |