summaryrefslogtreecommitdiffstats
path: root/security/sandbox/chromium/base/time/time_win.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
commit43a97878ce14b72f0981164f87f2e35e14151312 (patch)
tree620249daf56c0258faa40cbdcf9cfba06de2a846 /security/sandbox/chromium/base/time/time_win.cc
parentInitial commit. (diff)
downloadfirefox-upstream.tar.xz
firefox-upstream.zip
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'security/sandbox/chromium/base/time/time_win.cc')
-rw-r--r--security/sandbox/chromium/base/time/time_win.cc810
1 files changed, 810 insertions, 0 deletions
diff --git a/security/sandbox/chromium/base/time/time_win.cc b/security/sandbox/chromium/base/time/time_win.cc
new file mode 100644
index 0000000000..c1976e64a6
--- /dev/null
+++ b/security/sandbox/chromium/base/time/time_win.cc
@@ -0,0 +1,810 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+
+// Windows Timer Primer
+//
+// A good article: http://www.ddj.com/windows/184416651
+// A good mozilla bug: http://bugzilla.mozilla.org/show_bug.cgi?id=363258
+//
+// The default windows timer, GetSystemTimeAsFileTime is not very precise.
+// It is only good to ~15.5ms.
+//
+// QueryPerformanceCounter is the logical choice for a high-precision timer.
+// However, it is known to be buggy on some hardware. Specifically, it can
+// sometimes "jump". On laptops, QPC can also be very expensive to call.
+// It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
+// on laptops. A unittest exists which will show the relative cost of various
+// timers on any system.
+//
+// The next logical choice is timeGetTime(). timeGetTime has a precision of
+// 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
+// applications on the system. By default, precision is only 15.5ms.
+// Unfortunately, we don't want to call timeBeginPeriod because we don't
+// want to affect other applications. Further, on mobile platforms, use of
+// faster multimedia timers can hurt battery life. See the intel
+// article about this here:
+// http://softwarecommunity.intel.com/articles/eng/1086.htm
+//
+// To work around all this, we're going to generally use timeGetTime(). We
+// will only increase the system-wide timer if we're not running on battery
+// power.
+
+#include "base/time/time.h"
+
+#include <windows.foundation.h>
+#include <windows.h>
+#include <mmsystem.h>
+#include <stdint.h>
+
+#include "base/atomicops.h"
+#include "base/bit_cast.h"
+#include "base/cpu.h"
+#include "base/feature_list.h"
+#include "base/logging.h"
+#include "base/synchronization/lock.h"
+#include "base/threading/platform_thread.h"
+#include "base/time/time_override.h"
+#include "base/time/time_win_features.h"
+
+namespace base {
+
+namespace {
+
+// From MSDN, FILETIME "Contains a 64-bit value representing the number of
+// 100-nanosecond intervals since January 1, 1601 (UTC)."
+int64_t FileTimeToMicroseconds(const FILETIME& ft) {
+ // Need to bit_cast to fix alignment, then divide by 10 to convert
+ // 100-nanoseconds to microseconds. This only works on little-endian
+ // machines.
+ return bit_cast<int64_t, FILETIME>(ft) / 10;
+}
+
+void MicrosecondsToFileTime(int64_t us, FILETIME* ft) {
+ DCHECK_GE(us, 0LL) << "Time is less than 0, negative values are not "
+ "representable in FILETIME";
+
+ // Multiply by 10 to convert microseconds to 100-nanoseconds. Bit_cast will
+ // handle alignment problems. This only works on little-endian machines.
+ *ft = bit_cast<FILETIME, int64_t>(us * 10);
+}
+
+int64_t CurrentWallclockMicroseconds() {
+ FILETIME ft;
+ ::GetSystemTimeAsFileTime(&ft);
+ return FileTimeToMicroseconds(ft);
+}
+
+// Time between resampling the un-granular clock for this API.
+constexpr TimeDelta kMaxTimeToAvoidDrift = TimeDelta::FromSeconds(60);
+
+int64_t g_initial_time = 0;
+TimeTicks g_initial_ticks;
+
+void InitializeClock() {
+ g_initial_ticks = subtle::TimeTicksNowIgnoringOverride();
+ g_initial_time = CurrentWallclockMicroseconds();
+}
+
+// Interval to use when on DC power.
+UINT g_battery_power_interval_ms = 4;
+// Track the last value passed to timeBeginPeriod so that we can cancel that
+// call by calling timeEndPeriod with the same value. A value of zero means that
+// the timer frequency is not currently raised.
+UINT g_last_interval_requested_ms = 0;
+// Track if MinTimerIntervalHighResMs() or MinTimerIntervalLowResMs() is active.
+// For most purposes this could also be named g_is_on_ac_power.
+bool g_high_res_timer_enabled = false;
+// How many times the high resolution timer has been called.
+uint32_t g_high_res_timer_count = 0;
+// Start time of the high resolution timer usage monitoring. This is needed
+// to calculate the usage as percentage of the total elapsed time.
+TimeTicks g_high_res_timer_usage_start;
+// The cumulative time the high resolution timer has been in use since
+// |g_high_res_timer_usage_start| moment.
+TimeDelta g_high_res_timer_usage;
+// Timestamp of the last activation change of the high resolution timer. This
+// is used to calculate the cumulative usage.
+TimeTicks g_high_res_timer_last_activation;
+// The lock to control access to the above set of variables.
+Lock* GetHighResLock() {
+ static auto* lock = new Lock();
+ return lock;
+}
+
+// The two values that ActivateHighResolutionTimer uses to set the systemwide
+// timer interrupt frequency on Windows. These control how precise timers are
+// but also have a big impact on battery life.
+
+// Used when a faster timer has been requested (g_high_res_timer_count > 0) and
+// the computer is running on AC power (plugged in) so that it's okay to go to
+// the highest frequency.
+UINT MinTimerIntervalHighResMs() {
+ return 1;
+}
+
+// Used when a faster timer has been requested (g_high_res_timer_count > 0) and
+// the computer is running on DC power (battery) so that we don't want to raise
+// the timer frequency as much.
+UINT MinTimerIntervalLowResMs() {
+ return g_battery_power_interval_ms;
+}
+
+// Calculate the desired timer interrupt interval. Note that zero means that the
+// system default should be used.
+UINT GetIntervalMs() {
+ if (!g_high_res_timer_count)
+ return 0; // Use the default, typically 15.625
+ if (g_high_res_timer_enabled)
+ return MinTimerIntervalHighResMs();
+ return MinTimerIntervalLowResMs();
+}
+
+// Compare the currently requested timer interrupt interval to the last interval
+// requested and update if necessary (by cancelling the old request and making a
+// new request). If there is no change then do nothing.
+void UpdateTimerIntervalLocked() {
+ UINT new_interval = GetIntervalMs();
+ if (new_interval == g_last_interval_requested_ms)
+ return;
+ if (g_last_interval_requested_ms) {
+ // Record how long the timer interrupt frequency was raised.
+ g_high_res_timer_usage += subtle::TimeTicksNowIgnoringOverride() -
+ g_high_res_timer_last_activation;
+ // Reset the timer interrupt back to the default.
+ timeEndPeriod(g_last_interval_requested_ms);
+ }
+ g_last_interval_requested_ms = new_interval;
+ if (g_last_interval_requested_ms) {
+ // Record when the timer interrupt was raised.
+ g_high_res_timer_last_activation = subtle::TimeTicksNowIgnoringOverride();
+ timeBeginPeriod(g_last_interval_requested_ms);
+ }
+}
+
+// Returns the current value of the performance counter.
+uint64_t QPCNowRaw() {
+ LARGE_INTEGER perf_counter_now = {};
+ // According to the MSDN documentation for QueryPerformanceCounter(), this
+ // will never fail on systems that run XP or later.
+ // https://msdn.microsoft.com/library/windows/desktop/ms644904.aspx
+ ::QueryPerformanceCounter(&perf_counter_now);
+ return perf_counter_now.QuadPart;
+}
+
+bool SafeConvertToWord(int in, WORD* out) {
+ CheckedNumeric<WORD> result = in;
+ *out = result.ValueOrDefault(std::numeric_limits<WORD>::max());
+ return result.IsValid();
+}
+
+} // namespace
+
+// Time -----------------------------------------------------------------------
+
+namespace subtle {
+Time TimeNowIgnoringOverride() {
+ if (g_initial_time == 0)
+ InitializeClock();
+
+ // We implement time using the high-resolution timers so that we can get
+ // timeouts which are smaller than 10-15ms. If we just used
+ // CurrentWallclockMicroseconds(), we'd have the less-granular timer.
+ //
+ // To make this work, we initialize the clock (g_initial_time) and the
+ // counter (initial_ctr). To compute the initial time, we can check
+ // the number of ticks that have elapsed, and compute the delta.
+ //
+ // To avoid any drift, we periodically resync the counters to the system
+ // clock.
+ while (true) {
+ TimeTicks ticks = TimeTicksNowIgnoringOverride();
+
+ // Calculate the time elapsed since we started our timer
+ TimeDelta elapsed = ticks - g_initial_ticks;
+
+ // Check if enough time has elapsed that we need to resync the clock.
+ if (elapsed > kMaxTimeToAvoidDrift) {
+ InitializeClock();
+ continue;
+ }
+
+ return Time() + elapsed + TimeDelta::FromMicroseconds(g_initial_time);
+ }
+}
+
+Time TimeNowFromSystemTimeIgnoringOverride() {
+ // Force resync.
+ InitializeClock();
+ return Time() + TimeDelta::FromMicroseconds(g_initial_time);
+}
+} // namespace subtle
+
+// static
+Time Time::FromFileTime(FILETIME ft) {
+ if (bit_cast<int64_t, FILETIME>(ft) == 0)
+ return Time();
+ if (ft.dwHighDateTime == std::numeric_limits<DWORD>::max() &&
+ ft.dwLowDateTime == std::numeric_limits<DWORD>::max())
+ return Max();
+ return Time(FileTimeToMicroseconds(ft));
+}
+
+FILETIME Time::ToFileTime() const {
+ if (is_null())
+ return bit_cast<FILETIME, int64_t>(0);
+ if (is_max()) {
+ FILETIME result;
+ result.dwHighDateTime = std::numeric_limits<DWORD>::max();
+ result.dwLowDateTime = std::numeric_limits<DWORD>::max();
+ return result;
+ }
+ FILETIME utc_ft;
+ MicrosecondsToFileTime(us_, &utc_ft);
+ return utc_ft;
+}
+
+void Time::ReadMinTimerIntervalLowResMs() {
+ AutoLock lock(*GetHighResLock());
+ // Read the setting for what interval to use on battery power.
+ g_battery_power_interval_ms =
+ base::FeatureList::IsEnabled(base::kSlowDCTimerInterruptsWin) ? 8 : 4;
+ UpdateTimerIntervalLocked();
+}
+
+// static
+// Enable raising of the system-global timer interrupt frequency to 1 kHz (when
+// enable is true, which happens when on AC power) or some lower frequency when
+// on battery power (when enable is false). If the g_high_res_timer_enabled
+// setting hasn't actually changed or if if there are no outstanding requests
+// (if g_high_res_timer_count is zero) then do nothing.
+// TL;DR - call this when going from AC to DC power or vice-versa.
+void Time::EnableHighResolutionTimer(bool enable) {
+ AutoLock lock(*GetHighResLock());
+ g_high_res_timer_enabled = enable;
+ UpdateTimerIntervalLocked();
+}
+
+// static
+// Request that the system-global Windows timer interrupt frequency be raised.
+// How high the frequency is raised depends on the system's power state and
+// possibly other options.
+// TL;DR - call this at the beginning and end of a time period where you want
+// higher frequency timer interrupts. Each call with activating=true must be
+// paired with a subsequent activating=false call.
+bool Time::ActivateHighResolutionTimer(bool activating) {
+ // We only do work on the transition from zero to one or one to zero so we
+ // can easily undo the effect (if necessary) when EnableHighResolutionTimer is
+ // called.
+ const uint32_t max = std::numeric_limits<uint32_t>::max();
+
+ AutoLock lock(*GetHighResLock());
+ if (activating) {
+ DCHECK_NE(g_high_res_timer_count, max);
+ ++g_high_res_timer_count;
+ } else {
+ DCHECK_NE(g_high_res_timer_count, 0u);
+ --g_high_res_timer_count;
+ }
+ UpdateTimerIntervalLocked();
+ return true;
+}
+
+// static
+// See if the timer interrupt interval has been set to the lowest value.
+bool Time::IsHighResolutionTimerInUse() {
+ AutoLock lock(*GetHighResLock());
+ return g_last_interval_requested_ms == MinTimerIntervalHighResMs();
+}
+
+// static
+void Time::ResetHighResolutionTimerUsage() {
+ AutoLock lock(*GetHighResLock());
+ g_high_res_timer_usage = TimeDelta();
+ g_high_res_timer_usage_start = subtle::TimeTicksNowIgnoringOverride();
+ if (g_high_res_timer_count > 0)
+ g_high_res_timer_last_activation = g_high_res_timer_usage_start;
+}
+
+// static
+double Time::GetHighResolutionTimerUsage() {
+ AutoLock lock(*GetHighResLock());
+ TimeTicks now = subtle::TimeTicksNowIgnoringOverride();
+ TimeDelta elapsed_time = now - g_high_res_timer_usage_start;
+ if (elapsed_time.is_zero()) {
+ // This is unexpected but possible if TimeTicks resolution is low and
+ // GetHighResolutionTimerUsage() is called promptly after
+ // ResetHighResolutionTimerUsage().
+ return 0.0;
+ }
+ TimeDelta used_time = g_high_res_timer_usage;
+ if (g_high_res_timer_count > 0) {
+ // If currently activated add the remainder of time since the last
+ // activation.
+ used_time += now - g_high_res_timer_last_activation;
+ }
+ return used_time.InMillisecondsF() / elapsed_time.InMillisecondsF() * 100;
+}
+
+// static
+bool Time::FromExploded(bool is_local, const Exploded& exploded, Time* time) {
+ // Create the system struct representing our exploded time. It will either be
+ // in local time or UTC.If casting from int to WORD results in overflow,
+ // fail and return Time(0).
+ SYSTEMTIME st;
+ if (!SafeConvertToWord(exploded.year, &st.wYear) ||
+ !SafeConvertToWord(exploded.month, &st.wMonth) ||
+ !SafeConvertToWord(exploded.day_of_week, &st.wDayOfWeek) ||
+ !SafeConvertToWord(exploded.day_of_month, &st.wDay) ||
+ !SafeConvertToWord(exploded.hour, &st.wHour) ||
+ !SafeConvertToWord(exploded.minute, &st.wMinute) ||
+ !SafeConvertToWord(exploded.second, &st.wSecond) ||
+ !SafeConvertToWord(exploded.millisecond, &st.wMilliseconds)) {
+ *time = Time(0);
+ return false;
+ }
+
+ FILETIME ft;
+ bool success = true;
+ // Ensure that it's in UTC.
+ if (is_local) {
+ SYSTEMTIME utc_st;
+ success = TzSpecificLocalTimeToSystemTime(nullptr, &st, &utc_st) &&
+ SystemTimeToFileTime(&utc_st, &ft);
+ } else {
+ success = !!SystemTimeToFileTime(&st, &ft);
+ }
+
+ if (!success) {
+ *time = Time(0);
+ return false;
+ }
+
+ *time = Time(FileTimeToMicroseconds(ft));
+ return true;
+}
+
+void Time::Explode(bool is_local, Exploded* exploded) const {
+ if (us_ < 0LL) {
+ // We are not able to convert it to FILETIME.
+ ZeroMemory(exploded, sizeof(*exploded));
+ return;
+ }
+
+ // FILETIME in UTC.
+ FILETIME utc_ft;
+ MicrosecondsToFileTime(us_, &utc_ft);
+
+ // FILETIME in local time if necessary.
+ bool success = true;
+ // FILETIME in SYSTEMTIME (exploded).
+ SYSTEMTIME st = {0};
+ if (is_local) {
+ SYSTEMTIME utc_st;
+ // We don't use FileTimeToLocalFileTime here, since it uses the current
+ // settings for the time zone and daylight saving time. Therefore, if it is
+ // daylight saving time, it will take daylight saving time into account,
+ // even if the time you are converting is in standard time.
+ success = FileTimeToSystemTime(&utc_ft, &utc_st) &&
+ SystemTimeToTzSpecificLocalTime(nullptr, &utc_st, &st);
+ } else {
+ success = !!FileTimeToSystemTime(&utc_ft, &st);
+ }
+
+ if (!success) {
+ NOTREACHED() << "Unable to convert time, don't know why";
+ ZeroMemory(exploded, sizeof(*exploded));
+ return;
+ }
+
+ exploded->year = st.wYear;
+ exploded->month = st.wMonth;
+ exploded->day_of_week = st.wDayOfWeek;
+ exploded->day_of_month = st.wDay;
+ exploded->hour = st.wHour;
+ exploded->minute = st.wMinute;
+ exploded->second = st.wSecond;
+ exploded->millisecond = st.wMilliseconds;
+}
+
+// TimeTicks ------------------------------------------------------------------
+
+namespace {
+
+// We define a wrapper to adapt between the __stdcall and __cdecl call of the
+// mock function, and to avoid a static constructor. Assigning an import to a
+// function pointer directly would require setup code to fetch from the IAT.
+DWORD timeGetTimeWrapper() {
+ return timeGetTime();
+}
+
+DWORD (*g_tick_function)(void) = &timeGetTimeWrapper;
+
+// A structure holding the most significant bits of "last seen" and a
+// "rollover" counter.
+union LastTimeAndRolloversState {
+ // The state as a single 32-bit opaque value.
+ subtle::Atomic32 as_opaque_32;
+
+ // The state as usable values.
+ struct {
+ // The top 8-bits of the "last" time. This is enough to check for rollovers
+ // and the small bit-size means fewer CompareAndSwap operations to store
+ // changes in state, which in turn makes for fewer retries.
+ uint8_t last_8;
+ // A count of the number of detected rollovers. Using this as bits 47-32
+ // of the upper half of a 64-bit value results in a 48-bit tick counter.
+ // This extends the total rollover period from about 49 days to about 8800
+ // years while still allowing it to be stored with last_8 in a single
+ // 32-bit value.
+ uint16_t rollovers;
+ } as_values;
+};
+subtle::Atomic32 g_last_time_and_rollovers = 0;
+static_assert(
+ sizeof(LastTimeAndRolloversState) <= sizeof(g_last_time_and_rollovers),
+ "LastTimeAndRolloversState does not fit in a single atomic word");
+
+// We use timeGetTime() to implement TimeTicks::Now(). This can be problematic
+// because it returns the number of milliseconds since Windows has started,
+// which will roll over the 32-bit value every ~49 days. We try to track
+// rollover ourselves, which works if TimeTicks::Now() is called at least every
+// 48.8 days (not 49 days because only changes in the top 8 bits get noticed).
+TimeTicks RolloverProtectedNow() {
+ LastTimeAndRolloversState state;
+ DWORD now; // DWORD is always unsigned 32 bits.
+
+ while (true) {
+ // Fetch the "now" and "last" tick values, updating "last" with "now" and
+ // incrementing the "rollovers" counter if the tick-value has wrapped back
+ // around. Atomic operations ensure that both "last" and "rollovers" are
+ // always updated together.
+ int32_t original = subtle::Acquire_Load(&g_last_time_and_rollovers);
+ state.as_opaque_32 = original;
+ now = g_tick_function();
+ uint8_t now_8 = static_cast<uint8_t>(now >> 24);
+ if (now_8 < state.as_values.last_8)
+ ++state.as_values.rollovers;
+ state.as_values.last_8 = now_8;
+
+ // If the state hasn't changed, exit the loop.
+ if (state.as_opaque_32 == original)
+ break;
+
+ // Save the changed state. If the existing value is unchanged from the
+ // original, exit the loop.
+ int32_t check = subtle::Release_CompareAndSwap(
+ &g_last_time_and_rollovers, original, state.as_opaque_32);
+ if (check == original)
+ break;
+
+ // Another thread has done something in between so retry from the top.
+ }
+
+ return TimeTicks() +
+ TimeDelta::FromMilliseconds(
+ now + (static_cast<uint64_t>(state.as_values.rollovers) << 32));
+}
+
+// Discussion of tick counter options on Windows:
+//
+// (1) CPU cycle counter. (Retrieved via RDTSC)
+// The CPU counter provides the highest resolution time stamp and is the least
+// expensive to retrieve. However, on older CPUs, two issues can affect its
+// reliability: First it is maintained per processor and not synchronized
+// between processors. Also, the counters will change frequency due to thermal
+// and power changes, and stop in some states.
+//
+// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
+// resolution (<1 microsecond) time stamp. On most hardware running today, it
+// auto-detects and uses the constant-rate RDTSC counter to provide extremely
+// efficient and reliable time stamps.
+//
+// On older CPUs where RDTSC is unreliable, it falls back to using more
+// expensive (20X to 40X more costly) alternate clocks, such as HPET or the ACPI
+// PM timer, and can involve system calls; and all this is up to the HAL (with
+// some help from ACPI). According to
+// http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx, in the
+// worst case, it gets the counter from the rollover interrupt on the
+// programmable interrupt timer. In best cases, the HAL may conclude that the
+// RDTSC counter runs at a constant frequency, then it uses that instead. On
+// multiprocessor machines, it will try to verify the values returned from
+// RDTSC on each processor are consistent with each other, and apply a handful
+// of workarounds for known buggy hardware. In other words, QPC is supposed to
+// give consistent results on a multiprocessor computer, but for older CPUs it
+// can be unreliable due bugs in BIOS or HAL.
+//
+// (3) System time. The system time provides a low-resolution (from ~1 to ~15.6
+// milliseconds) time stamp but is comparatively less expensive to retrieve and
+// more reliable. Time::EnableHighResolutionTimer() and
+// Time::ActivateHighResolutionTimer() can be called to alter the resolution of
+// this timer; and also other Windows applications can alter it, affecting this
+// one.
+
+TimeTicks InitialNowFunction();
+
+// See "threading notes" in InitializeNowFunctionPointer() for details on how
+// concurrent reads/writes to these globals has been made safe.
+TimeTicksNowFunction g_time_ticks_now_ignoring_override_function =
+ &InitialNowFunction;
+int64_t g_qpc_ticks_per_second = 0;
+
+// As of January 2015, use of <atomic> is forbidden in Chromium code. This is
+// what std::atomic_thread_fence does on Windows on all Intel architectures when
+// the memory_order argument is anything but std::memory_order_seq_cst:
+#define ATOMIC_THREAD_FENCE(memory_order) _ReadWriteBarrier();
+
+TimeDelta QPCValueToTimeDelta(LONGLONG qpc_value) {
+ // Ensure that the assignment to |g_qpc_ticks_per_second|, made in
+ // InitializeNowFunctionPointer(), has happened by this point.
+ ATOMIC_THREAD_FENCE(memory_order_acquire);
+
+ DCHECK_GT(g_qpc_ticks_per_second, 0);
+
+ // If the QPC Value is below the overflow threshold, we proceed with
+ // simple multiply and divide.
+ if (qpc_value < Time::kQPCOverflowThreshold) {
+ return TimeDelta::FromMicroseconds(
+ qpc_value * Time::kMicrosecondsPerSecond / g_qpc_ticks_per_second);
+ }
+ // Otherwise, calculate microseconds in a round about manner to avoid
+ // overflow and precision issues.
+ int64_t whole_seconds = qpc_value / g_qpc_ticks_per_second;
+ int64_t leftover_ticks = qpc_value - (whole_seconds * g_qpc_ticks_per_second);
+ return TimeDelta::FromMicroseconds(
+ (whole_seconds * Time::kMicrosecondsPerSecond) +
+ ((leftover_ticks * Time::kMicrosecondsPerSecond) /
+ g_qpc_ticks_per_second));
+}
+
+TimeTicks QPCNow() {
+ return TimeTicks() + QPCValueToTimeDelta(QPCNowRaw());
+}
+
+void InitializeNowFunctionPointer() {
+ LARGE_INTEGER ticks_per_sec = {};
+ if (!QueryPerformanceFrequency(&ticks_per_sec))
+ ticks_per_sec.QuadPart = 0;
+
+ // If Windows cannot provide a QPC implementation, TimeTicks::Now() must use
+ // the low-resolution clock.
+ //
+ // If the QPC implementation is expensive and/or unreliable, TimeTicks::Now()
+ // will still use the low-resolution clock. A CPU lacking a non-stop time
+ // counter will cause Windows to provide an alternate QPC implementation that
+ // works, but is expensive to use.
+ //
+ // Otherwise, Now uses the high-resolution QPC clock. As of 21 August 2015,
+ // ~72% of users fall within this category.
+ TimeTicksNowFunction now_function;
+ CPU cpu;
+ if (ticks_per_sec.QuadPart <= 0 || !cpu.has_non_stop_time_stamp_counter()) {
+ now_function = &RolloverProtectedNow;
+ } else {
+ now_function = &QPCNow;
+ }
+
+ // Threading note 1: In an unlikely race condition, it's possible for two or
+ // more threads to enter InitializeNowFunctionPointer() in parallel. This is
+ // not a problem since all threads should end up writing out the same values
+ // to the global variables.
+ //
+ // Threading note 2: A release fence is placed here to ensure, from the
+ // perspective of other threads using the function pointers, that the
+ // assignment to |g_qpc_ticks_per_second| happens before the function pointers
+ // are changed.
+ g_qpc_ticks_per_second = ticks_per_sec.QuadPart;
+ ATOMIC_THREAD_FENCE(memory_order_release);
+ // Also set g_time_ticks_now_function to avoid the additional indirection via
+ // TimeTicksNowIgnoringOverride() for future calls to TimeTicks::Now(). But
+ // g_time_ticks_now_function may have already be overridden.
+ if (internal::g_time_ticks_now_function ==
+ &subtle::TimeTicksNowIgnoringOverride) {
+ internal::g_time_ticks_now_function = now_function;
+ }
+ g_time_ticks_now_ignoring_override_function = now_function;
+}
+
+TimeTicks InitialNowFunction() {
+ InitializeNowFunctionPointer();
+ return g_time_ticks_now_ignoring_override_function();
+}
+
+} // namespace
+
+// static
+TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
+ TickFunctionType ticker) {
+ TickFunctionType old = g_tick_function;
+ g_tick_function = ticker;
+ subtle::NoBarrier_Store(&g_last_time_and_rollovers, 0);
+ return old;
+}
+
+namespace subtle {
+TimeTicks TimeTicksNowIgnoringOverride() {
+ return g_time_ticks_now_ignoring_override_function();
+}
+} // namespace subtle
+
+// static
+bool TimeTicks::IsHighResolution() {
+ if (g_time_ticks_now_ignoring_override_function == &InitialNowFunction)
+ InitializeNowFunctionPointer();
+ return g_time_ticks_now_ignoring_override_function == &QPCNow;
+}
+
+// static
+bool TimeTicks::IsConsistentAcrossProcesses() {
+ // According to Windows documentation [1] QPC is consistent post-Windows
+ // Vista. So if we are using QPC then we are consistent which is the same as
+ // being high resolution.
+ //
+ // [1] https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx
+ //
+ // "In general, the performance counter results are consistent across all
+ // processors in multi-core and multi-processor systems, even when measured on
+ // different threads or processes. Here are some exceptions to this rule:
+ // - Pre-Windows Vista operating systems that run on certain processors might
+ // violate this consistency because of one of these reasons:
+ // 1. The hardware processors have a non-invariant TSC and the BIOS
+ // doesn't indicate this condition correctly.
+ // 2. The TSC synchronization algorithm that was used wasn't suitable for
+ // systems with large numbers of processors."
+ return IsHighResolution();
+}
+
+// static
+TimeTicks::Clock TimeTicks::GetClock() {
+ return IsHighResolution() ?
+ Clock::WIN_QPC : Clock::WIN_ROLLOVER_PROTECTED_TIME_GET_TIME;
+}
+
+// ThreadTicks ----------------------------------------------------------------
+
+namespace subtle {
+ThreadTicks ThreadTicksNowIgnoringOverride() {
+ return ThreadTicks::GetForThread(PlatformThread::CurrentHandle());
+}
+} // namespace subtle
+
+// static
+ThreadTicks ThreadTicks::GetForThread(
+ const PlatformThreadHandle& thread_handle) {
+ DCHECK(IsSupported());
+
+#if defined(ARCH_CPU_ARM64)
+ // QueryThreadCycleTime versus TSCTicksPerSecond doesn't have much relation to
+ // actual elapsed time on Windows on Arm, because QueryThreadCycleTime is
+ // backed by the actual number of CPU cycles executed, rather than a
+ // constant-rate timer like Intel. To work around this, use GetThreadTimes
+ // (which isn't as accurate but is meaningful as a measure of elapsed
+ // per-thread time).
+ FILETIME creation_time, exit_time, kernel_time, user_time;
+ ::GetThreadTimes(thread_handle.platform_handle(), &creation_time, &exit_time,
+ &kernel_time, &user_time);
+
+ int64_t us = FileTimeToMicroseconds(user_time);
+ return ThreadTicks(us);
+#else
+ // Get the number of TSC ticks used by the current thread.
+ ULONG64 thread_cycle_time = 0;
+ ::QueryThreadCycleTime(thread_handle.platform_handle(), &thread_cycle_time);
+
+ // Get the frequency of the TSC.
+ double tsc_ticks_per_second = TSCTicksPerSecond();
+ if (tsc_ticks_per_second == 0)
+ return ThreadTicks();
+
+ // Return the CPU time of the current thread.
+ double thread_time_seconds = thread_cycle_time / tsc_ticks_per_second;
+ return ThreadTicks(
+ static_cast<int64_t>(thread_time_seconds * Time::kMicrosecondsPerSecond));
+#endif
+}
+
+// static
+bool ThreadTicks::IsSupportedWin() {
+ static bool is_supported = CPU().has_non_stop_time_stamp_counter();
+ return is_supported;
+}
+
+// static
+void ThreadTicks::WaitUntilInitializedWin() {
+#if !defined(ARCH_CPU_ARM64)
+ while (TSCTicksPerSecond() == 0)
+ ::Sleep(10);
+#endif
+}
+
+#if !defined(ARCH_CPU_ARM64)
+double ThreadTicks::TSCTicksPerSecond() {
+ DCHECK(IsSupported());
+ // The value returned by QueryPerformanceFrequency() cannot be used as the TSC
+ // frequency, because there is no guarantee that the TSC frequency is equal to
+ // the performance counter frequency.
+ // The TSC frequency is cached in a static variable because it takes some time
+ // to compute it.
+ static double tsc_ticks_per_second = 0;
+ if (tsc_ticks_per_second != 0)
+ return tsc_ticks_per_second;
+
+ // Increase the thread priority to reduces the chances of having a context
+ // switch during a reading of the TSC and the performance counter.
+ int previous_priority = ::GetThreadPriority(::GetCurrentThread());
+ ::SetThreadPriority(::GetCurrentThread(), THREAD_PRIORITY_HIGHEST);
+
+ // The first time that this function is called, make an initial reading of the
+ // TSC and the performance counter.
+
+ static const uint64_t tsc_initial = __rdtsc();
+ static const uint64_t perf_counter_initial = QPCNowRaw();
+
+ // Make a another reading of the TSC and the performance counter every time
+ // that this function is called.
+ uint64_t tsc_now = __rdtsc();
+ uint64_t perf_counter_now = QPCNowRaw();
+
+ // Reset the thread priority.
+ ::SetThreadPriority(::GetCurrentThread(), previous_priority);
+
+ // Make sure that at least 50 ms elapsed between the 2 readings. The first
+ // time that this function is called, we don't expect this to be the case.
+ // Note: The longer the elapsed time between the 2 readings is, the more
+ // accurate the computed TSC frequency will be. The 50 ms value was
+ // chosen because local benchmarks show that it allows us to get a
+ // stddev of less than 1 tick/us between multiple runs.
+ // Note: According to the MSDN documentation for QueryPerformanceFrequency(),
+ // this will never fail on systems that run XP or later.
+ // https://msdn.microsoft.com/library/windows/desktop/ms644905.aspx
+ LARGE_INTEGER perf_counter_frequency = {};
+ ::QueryPerformanceFrequency(&perf_counter_frequency);
+ DCHECK_GE(perf_counter_now, perf_counter_initial);
+ uint64_t perf_counter_ticks = perf_counter_now - perf_counter_initial;
+ double elapsed_time_seconds =
+ perf_counter_ticks / static_cast<double>(perf_counter_frequency.QuadPart);
+
+ static constexpr double kMinimumEvaluationPeriodSeconds = 0.05;
+ if (elapsed_time_seconds < kMinimumEvaluationPeriodSeconds)
+ return 0;
+
+ // Compute the frequency of the TSC.
+ DCHECK_GE(tsc_now, tsc_initial);
+ uint64_t tsc_ticks = tsc_now - tsc_initial;
+ tsc_ticks_per_second = tsc_ticks / elapsed_time_seconds;
+
+ return tsc_ticks_per_second;
+}
+#endif // defined(ARCH_CPU_ARM64)
+
+// static
+TimeTicks TimeTicks::FromQPCValue(LONGLONG qpc_value) {
+ return TimeTicks() + QPCValueToTimeDelta(qpc_value);
+}
+
+// TimeDelta ------------------------------------------------------------------
+
+// static
+TimeDelta TimeDelta::FromQPCValue(LONGLONG qpc_value) {
+ return QPCValueToTimeDelta(qpc_value);
+}
+
+// static
+TimeDelta TimeDelta::FromFileTime(FILETIME ft) {
+ return TimeDelta::FromMicroseconds(FileTimeToMicroseconds(ft));
+}
+
+// static
+TimeDelta TimeDelta::FromWinrtDateTime(ABI::Windows::Foundation::DateTime dt) {
+ // UniversalTime is 100 ns intervals since January 1, 1601 (UTC)
+ return TimeDelta::FromMicroseconds(dt.UniversalTime / 10);
+}
+
+ABI::Windows::Foundation::DateTime TimeDelta::ToWinrtDateTime() const {
+ ABI::Windows::Foundation::DateTime date_time;
+ date_time.UniversalTime = InMicroseconds() * 10;
+ return date_time;
+}
+
+} // namespace base