diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
commit | 43a97878ce14b72f0981164f87f2e35e14151312 (patch) | |
tree | 620249daf56c0258faa40cbdcf9cfba06de2a846 /testing/web-platform/tests/webaudio/the-audio-api/the-convolvernode-interface/convolver-response-2-chan.html | |
parent | Initial commit. (diff) | |
download | firefox-43a97878ce14b72f0981164f87f2e35e14151312.tar.xz firefox-43a97878ce14b72f0981164f87f2e35e14151312.zip |
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'testing/web-platform/tests/webaudio/the-audio-api/the-convolvernode-interface/convolver-response-2-chan.html')
-rw-r--r-- | testing/web-platform/tests/webaudio/the-audio-api/the-convolvernode-interface/convolver-response-2-chan.html | 373 |
1 files changed, 373 insertions, 0 deletions
diff --git a/testing/web-platform/tests/webaudio/the-audio-api/the-convolvernode-interface/convolver-response-2-chan.html b/testing/web-platform/tests/webaudio/the-audio-api/the-convolvernode-interface/convolver-response-2-chan.html new file mode 100644 index 0000000000..9baf5f9f8d --- /dev/null +++ b/testing/web-platform/tests/webaudio/the-audio-api/the-convolvernode-interface/convolver-response-2-chan.html @@ -0,0 +1,373 @@ +<!DOCTYPE html> +<html> + <head> + <title> + Test Convolver Channel Outputs for Response with 2 channels + </title> + <script src="/resources/testharness.js"></script> + <script src="/resources/testharnessreport.js"></script> + <script src="/webaudio/resources/audit-util.js"></script> + <script src="/webaudio/resources/audit.js"></script> + </head> + <body> + <script id="layout-test-code"> + // Test various convolver configurations when the convolver response has + // a stereo response. + + // This is somewhat arbitrary. It is the minimum value for which tests + // pass with both FFmpeg and KISS FFT implementations for 256 points. + // The value was similar for each implementation. + const absoluteThreshold = Math.pow(2, -21); + + // Fairly arbitrary sample rate, except that we want the rate to be a + // power of two so that 1/sampleRate is exactly respresentable as a + // single-precision float. + let sampleRate = 8192; + + // A fairly arbitrary number of frames, except the number of frames should + // be more than a few render quanta. + let renderFrames = 10 * 128; + + let audit = Audit.createTaskRunner(); + + // Convolver response + let response; + + audit.define( + { + label: 'initialize', + description: 'Convolver response with one channel' + }, + (task, should) => { + // Convolver response + should( + () => { + response = new AudioBuffer( + {numberOfChannels: 2, length: 4, sampleRate: sampleRate}); + // Each channel of the response is a simple impulse (with + // different delay) so that we can use a DelayNode to simulate + // the convolver output. Channel k is delayed by k+1 frames. + for (let k = 0; k < response.numberOfChannels; ++k) { + response.getChannelData(k)[k + 1] = 1; + } + }, + 'new AudioBuffer({numberOfChannels: 2, length: 4, sampleRate: ' + + sampleRate + '})') + .notThrow(); + + task.done(); + }); + + audit.define( + {label: '1-channel input', description: 'produces 2-channel output'}, + (task, should) => { + stereoResponseTest({numberOfInputs: 1, prefix: '1'}, should) + .then(() => task.done()); + }); + + audit.define( + {label: '2-channel input', description: 'produces 2-channel output'}, + (task, should) => { + stereoResponseTest({numberOfInputes: 2, prefix: '2'}, should) + .then(() => task.done()); + }); + + audit.define( + { + label: '3-channel input', + description: '3->2 downmix producing 2-channel output' + }, + (task, should) => { + stereoResponseTest({numberOfInputs: 3, prefix: '3'}, should) + .then(() => task.done()); + }); + + audit.define( + { + label: '4-channel input', + description: '4->2 downmix producing 2-channel output' + }, + (task, should) => { + stereoResponseTest({numberOfInputs: 4, prefix: '4'}, should) + .then(() => task.done()); + }); + + audit.define( + { + label: '5.1-channel input', + description: '5.1->2 downmix producing 2-channel output' + }, + (task, should) => { + // Scale tolerance by maximum amplitude expected in down-mix + // output. + let threshold = (1.0 + Math.sqrt(0.5) * 2) * absoluteThreshold; + + stereoResponseTest({numberOfInputs: 6, prefix: '5.1', + absoluteThreshold: threshold}, should) + .then(() => task.done()); + }); + + audit.define( + { + label: '2-channel input, explicit mode', + description: 'produces 2-channel output' + }, + (task, should) => { + stereoResponseExplicitTest( + { + numberOfInputes: 2, + prefix: '2-in explicit mode' + }, + should) + .then(() => task.done()); + }); + + audit.define( + { + label: '3-channel input explicit mode', + description: '3->1 downmix producing 2-channel output' + }, + (task, should) => { + stereoResponseExplicitTest( + { + numberOfInputs: 3, + prefix: '3-in explicit' + }, + should) + .then(() => task.done()); + }); + + audit.define( + { + label: '4-channel input explicit mode', + description: '4->1 downmix producing 2-channel output' + }, + (task, should) => { + stereoResponseExplicitTest( + { + numberOfInputs: 4, + prefix: '4-in explicit' + }, + should) + .then(() => task.done()); + }); + + audit.define( + { + label: '5.1-channel input explicit mode', + description: '5.1->1 downmix producing 2-channel output' + }, + (task, should) => { + // Scale tolerance by maximum amplitude expected in down-mix + // output. + let threshold = (Math.sqrt(0.5) * 2 + 2.0) * absoluteThreshold; + + stereoResponseExplicitTest( + { + numberOfInputs: 6, + prefix: '5.1-in explicit', + absoluteThreshold: threshold + }, + should) + .then(() => task.done()); + }); + + function stereoResponseTest(options, should) { + // Create an 4-channel offline context. The first two channels are for + // the stereo output of the convolver and the next two channels are for + // the reference stereo signal. + let context = new OfflineAudioContext(4, renderFrames, sampleRate); + context.destination.channelInterpretation = 'discrete'; + + // Create oscillators for use as the input. The type and frequency is + // arbitrary except that oscillators must be different. + let src = new Array(options.numberOfInputs); + for (let k = 0; k < src.length; ++k) { + src[k] = new OscillatorNode( + context, {type: 'square', frequency: 440 + 220 * k}); + } + + // Merger to combine the oscillators into one output stream. + let srcMerger = + new ChannelMergerNode(context, {numberOfInputs: src.length}); + + for (let k = 0; k < src.length; ++k) { + src[k].connect(srcMerger, 0, k); + } + + // Convolver under test. + let conv = new ConvolverNode( + context, {disableNormalization: true, buffer: response}); + srcMerger.connect(conv); + + // Splitter to get individual channels of the convolver output so we can + // feed them (eventually) to the context in the right set of channels. + let splitter = new ChannelSplitterNode(context, {numberOfOutputs: 2}); + conv.connect(splitter); + + // Reference graph consists of a delays node to simulate the response of + // the convolver. (The convolver response is designed this way.) + let delay = new Array(2); + for (let k = 0; k < delay.length; ++k) { + delay[k] = new DelayNode(context, { + delayTime: (k + 1) / context.sampleRate, + channelCount: 1, + channelCountMode: 'explicit' + }); + } + + // Gain node to mix the sources to stereo in the desired way. (Could be + // done in the delay node, but let's keep the mixing separated from the + // functionality.) + let gainMixer = new GainNode( + context, {channelCount: 2, channelCountMode: 'explicit'}); + srcMerger.connect(gainMixer); + + // Splitter to extract the channels of the reference signal. + let refSplitter = + new ChannelSplitterNode(context, {numberOfOutputs: 2}); + gainMixer.connect(refSplitter); + + // Connect each channel to the delay nodes + for (let k = 0; k < delay.length; ++k) { + refSplitter.connect(delay[k], k); + } + + // Final merger to bring back the individual channels from the convolver + // and the reference in the right order for the destination. + let finalMerger = new ChannelMergerNode( + context, {numberOfInputs: context.destination.channelCount}); + + // First two channels are for the convolver output, and the next two are + // for the reference. + splitter.connect(finalMerger, 0, 0); + splitter.connect(finalMerger, 1, 1); + delay[0].connect(finalMerger, 0, 2); + delay[1].connect(finalMerger, 0, 3); + + finalMerger.connect(context.destination); + + // Start the sources at last. + for (let k = 0; k < src.length; ++k) { + src[k].start(); + } + + return context.startRendering().then(audioBuffer => { + // Extract the various channels out + let actual0 = audioBuffer.getChannelData(0); + let actual1 = audioBuffer.getChannelData(1); + let expected0 = audioBuffer.getChannelData(2); + let expected1 = audioBuffer.getChannelData(3); + + let threshold = options.absoluteThreshold ? + options.absoluteThreshold : absoluteThreshold; + + // Verify that each output channel of the convolver matches + // the delayed signal from the reference + should(actual0, options.prefix + ': Channel 0') + .beCloseToArray(expected0, {absoluteThreshold: threshold}); + should(actual1, options.prefix + ': Channel 1') + .beCloseToArray(expected1, {absoluteThreshold: threshold}); + }); + } + + function stereoResponseExplicitTest(options, should) { + // Create an 4-channel offline context. The first two channels are for + // the stereo output of the convolver and the next two channels are for + // the reference stereo signal. + let context = new OfflineAudioContext(4, renderFrames, sampleRate); + context.destination.channelInterpretation = 'discrete'; + + // Create oscillators for use as the input. The type and frequency is + // arbitrary except that oscillators must be different. + let src = new Array(options.numberOfInputs); + for (let k = 0; k < src.length; ++k) { + src[k] = new OscillatorNode( + context, {type: 'square', frequency: 440 + 220 * k}); + } + + // Merger to combine the oscillators into one output stream. + let srcMerger = + new ChannelMergerNode(context, {numberOfInputs: src.length}); + + for (let k = 0; k < src.length; ++k) { + src[k].connect(srcMerger, 0, k); + } + + // Convolver under test. + let conv = new ConvolverNode(context, { + channelCount: 1, + channelCountMode: 'explicit', + disableNormalization: true, + buffer: response + }); + srcMerger.connect(conv); + + // Splitter to get individual channels of the convolver output so we can + // feed them (eventually) to the context in the right set of channels. + let splitter = new ChannelSplitterNode(context, {numberOfOutputs: 2}); + conv.connect(splitter); + + // Reference graph consists of a delays node to simulate the response of + // the convolver. (The convolver response is designed this way.) + let delay = new Array(2); + for (let k = 0; k < delay.length; ++k) { + delay[k] = new DelayNode(context, { + delayTime: (k + 1) / context.sampleRate, + channelCount: 1, + channelCountMode: 'explicit' + }); + } + + // Gain node to mix the sources in the same way as the convolver. + let gainMixer = new GainNode( + context, {channelCount: 1, channelCountMode: 'explicit'}); + srcMerger.connect(gainMixer); + + // Connect each channel to the delay nodes + for (let k = 0; k < delay.length; ++k) { + gainMixer.connect(delay[k]); + } + + // Final merger to bring back the individual channels from the convolver + // and the reference in the right order for the destination. + let finalMerger = new ChannelMergerNode( + context, {numberOfInputs: context.destination.channelCount}); + + // First two channels are for the convolver output, and the next two are + // for the reference. + splitter.connect(finalMerger, 0, 0); + splitter.connect(finalMerger, 1, 1); + delay[0].connect(finalMerger, 0, 2); + delay[1].connect(finalMerger, 0, 3); + + finalMerger.connect(context.destination); + + // Start the sources at last. + for (let k = 0; k < src.length; ++k) { + src[k].start(); + } + + return context.startRendering().then(audioBuffer => { + // Extract the various channels out + let actual0 = audioBuffer.getChannelData(0); + let actual1 = audioBuffer.getChannelData(1); + let expected0 = audioBuffer.getChannelData(2); + let expected1 = audioBuffer.getChannelData(3); + + let threshold = options.absoluteThreshold ? + options.absoluteThreshold : absoluteThreshold; + + // Verify that each output channel of the convolver matches + // the delayed signal from the reference + should(actual0, options.prefix + ': Channel 0') + .beCloseToArray(expected0, {absoluteThreshold: threshold}); + should(actual1, options.prefix + ': Channel 1') + .beCloseToArray(expected1, {absoluteThreshold: threshold}); + }); + } + + audit.run(); + </script> + </body> +</html> |