summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/blockd.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
commit43a97878ce14b72f0981164f87f2e35e14151312 (patch)
tree620249daf56c0258faa40cbdcf9cfba06de2a846 /third_party/aom/av1/common/blockd.h
parentInitial commit. (diff)
downloadfirefox-43a97878ce14b72f0981164f87f2e35e14151312.tar.xz
firefox-43a97878ce14b72f0981164f87f2e35e14151312.zip
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/aom/av1/common/blockd.h')
-rw-r--r--third_party/aom/av1/common/blockd.h1176
1 files changed, 1176 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/blockd.h b/third_party/aom/av1/common/blockd.h
new file mode 100644
index 0000000000..a2311c1b00
--- /dev/null
+++ b/third_party/aom/av1/common/blockd.h
@@ -0,0 +1,1176 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#ifndef AOM_AV1_COMMON_BLOCKD_H_
+#define AOM_AV1_COMMON_BLOCKD_H_
+
+#include "config/aom_config.h"
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_ports/mem.h"
+#include "aom_scale/yv12config.h"
+
+#include "av1/common/common_data.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/entropy.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/mv.h"
+#include "av1/common/scale.h"
+#include "av1/common/seg_common.h"
+#include "av1/common/tile_common.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define USE_B_QUANT_NO_TRELLIS 1
+
+#define MAX_MB_PLANE 3
+
+#define MAX_DIFFWTD_MASK_BITS 1
+
+// DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
+typedef enum ATTRIBUTE_PACKED {
+ DIFFWTD_38 = 0,
+ DIFFWTD_38_INV,
+ DIFFWTD_MASK_TYPES,
+} DIFFWTD_MASK_TYPE;
+
+typedef enum ATTRIBUTE_PACKED {
+ KEY_FRAME = 0,
+ INTER_FRAME = 1,
+ INTRA_ONLY_FRAME = 2, // replaces intra-only
+ S_FRAME = 3,
+ FRAME_TYPES,
+} FRAME_TYPE;
+
+static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) {
+ return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
+}
+
+static INLINE int is_inter_mode(PREDICTION_MODE mode) {
+ return mode >= INTER_MODE_START && mode < INTER_MODE_END;
+}
+
+typedef struct {
+ uint8_t *plane[MAX_MB_PLANE];
+ int stride[MAX_MB_PLANE];
+} BUFFER_SET;
+
+static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) {
+ return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
+}
+static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) {
+ return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
+}
+
+static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
+ static PREDICTION_MODE lut[] = {
+ MB_MODE_COUNT, // DC_PRED
+ MB_MODE_COUNT, // V_PRED
+ MB_MODE_COUNT, // H_PRED
+ MB_MODE_COUNT, // D45_PRED
+ MB_MODE_COUNT, // D135_PRED
+ MB_MODE_COUNT, // D113_PRED
+ MB_MODE_COUNT, // D157_PRED
+ MB_MODE_COUNT, // D203_PRED
+ MB_MODE_COUNT, // D67_PRED
+ MB_MODE_COUNT, // SMOOTH_PRED
+ MB_MODE_COUNT, // SMOOTH_V_PRED
+ MB_MODE_COUNT, // SMOOTH_H_PRED
+ MB_MODE_COUNT, // PAETH_PRED
+ MB_MODE_COUNT, // NEARESTMV
+ MB_MODE_COUNT, // NEARMV
+ MB_MODE_COUNT, // GLOBALMV
+ MB_MODE_COUNT, // NEWMV
+ NEARESTMV, // NEAREST_NEARESTMV
+ NEARMV, // NEAR_NEARMV
+ NEARESTMV, // NEAREST_NEWMV
+ NEWMV, // NEW_NEARESTMV
+ NEARMV, // NEAR_NEWMV
+ NEWMV, // NEW_NEARMV
+ GLOBALMV, // GLOBAL_GLOBALMV
+ NEWMV, // NEW_NEWMV
+ };
+ assert(NELEMENTS(lut) == MB_MODE_COUNT);
+ assert(is_inter_compound_mode(mode));
+ return lut[mode];
+}
+
+static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
+ static PREDICTION_MODE lut[] = {
+ MB_MODE_COUNT, // DC_PRED
+ MB_MODE_COUNT, // V_PRED
+ MB_MODE_COUNT, // H_PRED
+ MB_MODE_COUNT, // D45_PRED
+ MB_MODE_COUNT, // D135_PRED
+ MB_MODE_COUNT, // D113_PRED
+ MB_MODE_COUNT, // D157_PRED
+ MB_MODE_COUNT, // D203_PRED
+ MB_MODE_COUNT, // D67_PRED
+ MB_MODE_COUNT, // SMOOTH_PRED
+ MB_MODE_COUNT, // SMOOTH_V_PRED
+ MB_MODE_COUNT, // SMOOTH_H_PRED
+ MB_MODE_COUNT, // PAETH_PRED
+ MB_MODE_COUNT, // NEARESTMV
+ MB_MODE_COUNT, // NEARMV
+ MB_MODE_COUNT, // GLOBALMV
+ MB_MODE_COUNT, // NEWMV
+ NEARESTMV, // NEAREST_NEARESTMV
+ NEARMV, // NEAR_NEARMV
+ NEWMV, // NEAREST_NEWMV
+ NEARESTMV, // NEW_NEARESTMV
+ NEWMV, // NEAR_NEWMV
+ NEARMV, // NEW_NEARMV
+ GLOBALMV, // GLOBAL_GLOBALMV
+ NEWMV, // NEW_NEWMV
+ };
+ assert(NELEMENTS(lut) == MB_MODE_COUNT);
+ assert(is_inter_compound_mode(mode));
+ return lut[mode];
+}
+
+static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
+ return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
+ mode == NEW_NEARMV);
+}
+
+static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
+ return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV ||
+ mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV);
+}
+
+static INLINE int is_masked_compound_type(COMPOUND_TYPE type) {
+ return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
+}
+
+/* For keyframes, intra block modes are predicted by the (already decoded)
+ modes for the Y blocks to the left and above us; for interframes, there
+ is a single probability table. */
+
+typedef int8_t MV_REFERENCE_FRAME;
+
+typedef struct {
+ // Number of base colors for Y (0) and UV (1)
+ uint8_t palette_size[2];
+ // Value of base colors for Y, U, and V
+ uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
+} PALETTE_MODE_INFO;
+
+typedef struct {
+ uint8_t use_filter_intra;
+ FILTER_INTRA_MODE filter_intra_mode;
+} FILTER_INTRA_MODE_INFO;
+
+static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
+ DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
+};
+
+#if CONFIG_RD_DEBUG
+#define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
+#endif
+
+typedef struct RD_STATS {
+ int rate;
+ int64_t dist;
+ // Please be careful of using rdcost, it's not guaranteed to be set all the
+ // time.
+ // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
+ // these functions, make sure rdcost is always up-to-date according to
+ // rate/dist.
+ int64_t rdcost;
+ int64_t sse;
+ int skip; // sse should equal to dist when skip == 1
+ int64_t ref_rdcost;
+ int zero_rate;
+ uint8_t invalid_rate;
+#if CONFIG_RD_DEBUG
+ int txb_coeff_cost[MAX_MB_PLANE];
+ int txb_coeff_cost_map[MAX_MB_PLANE][TXB_COEFF_COST_MAP_SIZE]
+ [TXB_COEFF_COST_MAP_SIZE];
+#endif // CONFIG_RD_DEBUG
+} RD_STATS;
+
+// This struct is used to group function args that are commonly
+// sent together in functions related to interinter compound modes
+typedef struct {
+ int wedge_index;
+ int wedge_sign;
+ DIFFWTD_MASK_TYPE mask_type;
+ uint8_t *seg_mask;
+ COMPOUND_TYPE type;
+} INTERINTER_COMPOUND_DATA;
+
+#define INTER_TX_SIZE_BUF_LEN 16
+#define TXK_TYPE_BUF_LEN 64
+// This structure now relates to 4x4 block regions.
+typedef struct MB_MODE_INFO {
+ // Common for both INTER and INTRA blocks
+ BLOCK_SIZE sb_type;
+ PREDICTION_MODE mode;
+ TX_SIZE tx_size;
+ uint8_t inter_tx_size[INTER_TX_SIZE_BUF_LEN];
+ int8_t skip;
+ int8_t skip_mode;
+ int8_t segment_id;
+ int8_t seg_id_predicted; // valid only when temporal_update is enabled
+
+ // Only for INTRA blocks
+ UV_PREDICTION_MODE uv_mode;
+
+ PALETTE_MODE_INFO palette_mode_info;
+ uint8_t use_intrabc;
+
+ // Only for INTER blocks
+ InterpFilters interp_filters;
+ MV_REFERENCE_FRAME ref_frame[2];
+
+ TX_TYPE txk_type[TXK_TYPE_BUF_LEN];
+
+ FILTER_INTRA_MODE_INFO filter_intra_mode_info;
+
+ // The actual prediction angle is the base angle + (angle_delta * step).
+ int8_t angle_delta[PLANE_TYPES];
+
+ // interintra members
+ INTERINTRA_MODE interintra_mode;
+ // TODO(debargha): Consolidate these flags
+ int use_wedge_interintra;
+ int interintra_wedge_index;
+ int interintra_wedge_sign;
+ // interinter members
+ INTERINTER_COMPOUND_DATA interinter_comp;
+ MOTION_MODE motion_mode;
+ int overlappable_neighbors[2];
+ int_mv mv[2];
+ uint8_t ref_mv_idx;
+ PARTITION_TYPE partition;
+ /* deringing gain *per-superblock* */
+ int8_t cdef_strength;
+ int current_qindex;
+ int delta_lf_from_base;
+ int delta_lf[FRAME_LF_COUNT];
+#if CONFIG_RD_DEBUG
+ RD_STATS rd_stats;
+ int mi_row;
+ int mi_col;
+#endif
+ int num_proj_ref;
+ WarpedMotionParams wm_params;
+
+ // Index of the alpha Cb and alpha Cr combination
+ int cfl_alpha_idx;
+ // Joint sign of alpha Cb and alpha Cr
+ int cfl_alpha_signs;
+
+ int compound_idx;
+ int comp_group_idx;
+} MB_MODE_INFO;
+
+static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) {
+ return mbmi->use_intrabc;
+}
+
+static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
+ assert(mode < UV_INTRA_MODES);
+ static const PREDICTION_MODE uv2y[] = {
+ DC_PRED, // UV_DC_PRED
+ V_PRED, // UV_V_PRED
+ H_PRED, // UV_H_PRED
+ D45_PRED, // UV_D45_PRED
+ D135_PRED, // UV_D135_PRED
+ D113_PRED, // UV_D113_PRED
+ D157_PRED, // UV_D157_PRED
+ D203_PRED, // UV_D203_PRED
+ D67_PRED, // UV_D67_PRED
+ SMOOTH_PRED, // UV_SMOOTH_PRED
+ SMOOTH_V_PRED, // UV_SMOOTH_V_PRED
+ SMOOTH_H_PRED, // UV_SMOOTH_H_PRED
+ PAETH_PRED, // UV_PAETH_PRED
+ DC_PRED, // UV_CFL_PRED
+ INTRA_INVALID, // UV_INTRA_MODES
+ INTRA_INVALID, // UV_MODE_INVALID
+ };
+ return uv2y[mode];
+}
+
+static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
+ return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME;
+}
+
+static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
+ return mbmi->ref_frame[1] > INTRA_FRAME;
+}
+
+static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) {
+ return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^
+ (mbmi->ref_frame[1] >= BWDREF_FRAME)));
+}
+
+static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) {
+ static const MV_REFERENCE_FRAME lut[] = {
+ LAST_FRAME, // LAST_LAST2_FRAMES,
+ LAST_FRAME, // LAST_LAST3_FRAMES,
+ LAST_FRAME, // LAST_GOLDEN_FRAMES,
+ BWDREF_FRAME, // BWDREF_ALTREF_FRAMES,
+ LAST2_FRAME, // LAST2_LAST3_FRAMES
+ LAST2_FRAME, // LAST2_GOLDEN_FRAMES,
+ LAST3_FRAME, // LAST3_GOLDEN_FRAMES,
+ BWDREF_FRAME, // BWDREF_ALTREF2_FRAMES,
+ ALTREF2_FRAME, // ALTREF2_ALTREF_FRAMES,
+ };
+ assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
+ return lut[ref_idx];
+}
+
+static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) {
+ static const MV_REFERENCE_FRAME lut[] = {
+ LAST2_FRAME, // LAST_LAST2_FRAMES,
+ LAST3_FRAME, // LAST_LAST3_FRAMES,
+ GOLDEN_FRAME, // LAST_GOLDEN_FRAMES,
+ ALTREF_FRAME, // BWDREF_ALTREF_FRAMES,
+ LAST3_FRAME, // LAST2_LAST3_FRAMES
+ GOLDEN_FRAME, // LAST2_GOLDEN_FRAMES,
+ GOLDEN_FRAME, // LAST3_GOLDEN_FRAMES,
+ ALTREF2_FRAME, // BWDREF_ALTREF2_FRAMES,
+ ALTREF_FRAME, // ALTREF2_ALTREF_FRAMES,
+ };
+ assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
+ return lut[ref_idx];
+}
+
+PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi);
+
+PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi);
+
+static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi,
+ TransformationType type) {
+ const PREDICTION_MODE mode = mbmi->mode;
+ const BLOCK_SIZE bsize = mbmi->sb_type;
+ const int block_size_allowed =
+ AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
+ return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
+ block_size_allowed;
+}
+
+#if CONFIG_MISMATCH_DEBUG
+static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
+ int mi_row, int tx_blk_col, int tx_blk_row,
+ int subsampling_x, int subsampling_y) {
+ *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
+ (tx_blk_col << tx_size_wide_log2[0]);
+ *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
+ (tx_blk_row << tx_size_high_log2[0]);
+}
+#endif
+
+enum ATTRIBUTE_PACKED mv_precision { MV_PRECISION_Q3, MV_PRECISION_Q4 };
+
+struct buf_2d {
+ uint8_t *buf;
+ uint8_t *buf0;
+ int width;
+ int height;
+ int stride;
+};
+
+typedef struct eob_info {
+ uint16_t eob;
+ uint16_t max_scan_line;
+} eob_info;
+
+typedef struct {
+ DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
+ eob_info eob_data[MAX_MB_PLANE]
+ [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
+ DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
+} CB_BUFFER;
+
+typedef struct macroblockd_plane {
+ tran_low_t *dqcoeff;
+ tran_low_t *dqcoeff_block;
+ eob_info *eob_data;
+ PLANE_TYPE plane_type;
+ int subsampling_x;
+ int subsampling_y;
+ struct buf_2d dst;
+ struct buf_2d pre[2];
+ ENTROPY_CONTEXT *above_context;
+ ENTROPY_CONTEXT *left_context;
+
+ // The dequantizers below are true dequntizers used only in the
+ // dequantization process. They have the same coefficient
+ // shift/scale as TX.
+ int16_t seg_dequant_QTX[MAX_SEGMENTS][2];
+ uint8_t *color_index_map;
+
+ // block size in pixels
+ uint8_t width, height;
+
+ qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
+ qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
+
+ // the 'dequantizers' below are not literal dequantizer values.
+ // They're used by encoder RDO to generate ad-hoc lambda values.
+ // They use a hardwired Q3 coeff shift and do not necessarily match
+ // the TX scale in use.
+ const int16_t *dequant_Q3;
+} MACROBLOCKD_PLANE;
+
+#define BLOCK_OFFSET(x, i) \
+ ((x) + (i) * (1 << (tx_size_wide_log2[0] + tx_size_high_log2[0])))
+
+typedef struct RefBuffer {
+ int idx; // frame buf idx
+ int map_idx; // frame map idx
+ YV12_BUFFER_CONFIG *buf;
+ struct scale_factors sf;
+} RefBuffer;
+
+typedef struct {
+ DECLARE_ALIGNED(16, InterpKernel, vfilter);
+ DECLARE_ALIGNED(16, InterpKernel, hfilter);
+} WienerInfo;
+
+typedef struct {
+ int ep;
+ int xqd[2];
+} SgrprojInfo;
+
+#if CONFIG_DEBUG
+#define CFL_SUB8X8_VAL_MI_SIZE (4)
+#define CFL_SUB8X8_VAL_MI_SQUARE \
+ (CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE)
+#endif // CONFIG_DEBUG
+#define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
+#define CFL_BUF_LINE (32)
+#define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
+#define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
+#define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
+typedef struct cfl_ctx {
+ // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
+ // shifts)
+ uint16_t recon_buf_q3[CFL_BUF_SQUARE];
+ // Q3 AC contributions (reconstructed luma pixels - tx block avg)
+ int16_t ac_buf_q3[CFL_BUF_SQUARE];
+
+ // Cache the DC_PRED when performing RDO, so it does not have to be recomputed
+ // for every scaling parameter
+ int dc_pred_is_cached[CFL_PRED_PLANES];
+ // The DC_PRED cache is disable when decoding
+ int use_dc_pred_cache;
+ // Only cache the first row of the DC_PRED
+ int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];
+
+ // Height and width currently used in the CfL prediction buffer.
+ int buf_height, buf_width;
+
+ int are_parameters_computed;
+
+ // Chroma subsampling
+ int subsampling_x, subsampling_y;
+
+ int mi_row, mi_col;
+
+ // Whether the reconstructed luma pixels need to be stored
+ int store_y;
+
+#if CONFIG_DEBUG
+ int rate;
+#endif // CONFIG_DEBUG
+
+ int is_chroma_reference;
+} CFL_CTX;
+
+typedef struct jnt_comp_params {
+ int use_jnt_comp_avg;
+ int fwd_offset;
+ int bck_offset;
+} JNT_COMP_PARAMS;
+
+// Most/all of the pointers are mere pointers to actual arrays are allocated
+// elsewhere. This is mostly for coding convenience.
+typedef struct macroblockd {
+ struct macroblockd_plane plane[MAX_MB_PLANE];
+
+ TileInfo tile;
+
+ int mi_stride;
+
+ MB_MODE_INFO **mi;
+ MB_MODE_INFO *left_mbmi;
+ MB_MODE_INFO *above_mbmi;
+ MB_MODE_INFO *chroma_left_mbmi;
+ MB_MODE_INFO *chroma_above_mbmi;
+
+ int up_available;
+ int left_available;
+ int chroma_up_available;
+ int chroma_left_available;
+
+ /* Distance of MB away from frame edges in subpixels (1/8th pixel) */
+ int mb_to_left_edge;
+ int mb_to_right_edge;
+ int mb_to_top_edge;
+ int mb_to_bottom_edge;
+
+ /* pointers to reference frames */
+ const RefBuffer *block_refs[2];
+
+ /* pointer to current frame */
+ const YV12_BUFFER_CONFIG *cur_buf;
+
+ ENTROPY_CONTEXT *above_context[MAX_MB_PLANE];
+ ENTROPY_CONTEXT left_context[MAX_MB_PLANE][MAX_MIB_SIZE];
+
+ PARTITION_CONTEXT *above_seg_context;
+ PARTITION_CONTEXT left_seg_context[MAX_MIB_SIZE];
+
+ TXFM_CONTEXT *above_txfm_context;
+ TXFM_CONTEXT *left_txfm_context;
+ TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];
+
+ WienerInfo wiener_info[MAX_MB_PLANE];
+ SgrprojInfo sgrproj_info[MAX_MB_PLANE];
+
+ // block dimension in the unit of mode_info.
+ uint8_t n4_w, n4_h;
+
+ uint8_t ref_mv_count[MODE_CTX_REF_FRAMES];
+ CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
+ uint8_t is_sec_rect;
+
+ // Counts of each reference frame in the above and left neighboring blocks.
+ // NOTE: Take into account both single and comp references.
+ uint8_t neighbors_ref_counts[REF_FRAMES];
+
+ FRAME_CONTEXT *tile_ctx;
+ /* Bit depth: 8, 10, 12 */
+ int bd;
+
+ int qindex[MAX_SEGMENTS];
+ int lossless[MAX_SEGMENTS];
+ int corrupted;
+ int cur_frame_force_integer_mv;
+ // same with that in AV1_COMMON
+ struct aom_internal_error_info *error_info;
+ const WarpedMotionParams *global_motion;
+ int delta_qindex;
+ int current_qindex;
+ // Since actual frame level loop filtering level value is not available
+ // at the beginning of the tile (only available during actual filtering)
+ // at encoder side.we record the delta_lf (against the frame level loop
+ // filtering level) and code the delta between previous superblock's delta
+ // lf and current delta lf. It is equivalent to the delta between previous
+ // superblock's actual lf and current lf.
+ int delta_lf_from_base;
+ // For this experiment, we have four frame filter levels for different plane
+ // and direction. So, to support the per superblock update, we need to add
+ // a few more params as below.
+ // 0: delta loop filter level for y plane vertical
+ // 1: delta loop filter level for y plane horizontal
+ // 2: delta loop filter level for u plane
+ // 3: delta loop filter level for v plane
+ // To make it consistent with the reference to each filter level in segment,
+ // we need to -1, since
+ // SEG_LVL_ALT_LF_Y_V = 1;
+ // SEG_LVL_ALT_LF_Y_H = 2;
+ // SEG_LVL_ALT_LF_U = 3;
+ // SEG_LVL_ALT_LF_V = 4;
+ int delta_lf[FRAME_LF_COUNT];
+ int cdef_preset[4];
+
+ DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]);
+ uint8_t *mc_buf[2];
+ CFL_CTX cfl;
+
+ JNT_COMP_PARAMS jcp_param;
+
+ uint16_t cb_offset[MAX_MB_PLANE];
+ uint16_t txb_offset[MAX_MB_PLANE];
+ uint16_t color_index_map_offset[2];
+
+ CONV_BUF_TYPE *tmp_conv_dst;
+ uint8_t *tmp_obmc_bufs[2];
+} MACROBLOCKD;
+
+static INLINE int get_bitdepth_data_path_index(const MACROBLOCKD *xd) {
+ return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
+}
+
+static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
+ return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
+ ? CONVERT_TO_BYTEPTR(buf16)
+ : buf16;
+}
+
+static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
+ switch (bsize) {
+ case BLOCK_4X4: return 0;
+ case BLOCK_8X8: return 1;
+ case BLOCK_16X16: return 2;
+ case BLOCK_32X32: return 3;
+ case BLOCK_64X64: return 4;
+ case BLOCK_128X128: return 5;
+ default: return SQR_BLOCK_SIZES;
+ }
+}
+
+// For a square block size 'bsize', returns the size of the sub-blocks used by
+// the given partition type. If the partition produces sub-blocks of different
+// sizes, then the function returns the largest sub-block size.
+// Implements the Partition_Subsize lookup table in the spec (Section 9.3.
+// Conversion tables).
+// Note: the input block size should be square.
+// Otherwise it's considered invalid.
+static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
+ PARTITION_TYPE partition) {
+ if (partition == PARTITION_INVALID) {
+ return BLOCK_INVALID;
+ } else {
+ const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
+ return sqr_bsize_idx >= SQR_BLOCK_SIZES
+ ? BLOCK_INVALID
+ : subsize_lookup[partition][sqr_bsize_idx];
+ }
+}
+
+static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
+ PLANE_TYPE plane_type) {
+ static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
+ DCT_DCT, // DC
+ ADST_DCT, // V
+ DCT_ADST, // H
+ DCT_DCT, // D45
+ ADST_ADST, // D135
+ ADST_DCT, // D117
+ DCT_ADST, // D153
+ DCT_ADST, // D207
+ ADST_DCT, // D63
+ ADST_ADST, // SMOOTH
+ ADST_DCT, // SMOOTH_V
+ DCT_ADST, // SMOOTH_H
+ ADST_ADST, // PAETH
+ };
+ const PREDICTION_MODE mode =
+ (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
+ assert(mode < INTRA_MODES);
+ return _intra_mode_to_tx_type[mode];
+}
+
+static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }
+
+static INLINE int block_signals_txsize(BLOCK_SIZE bsize) {
+ return bsize > BLOCK_4X4;
+}
+
+// Number of transform types in each set type
+static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
+ 1, 2, 5, 7, 12, 16,
+};
+
+static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
+ { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+ { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
+ { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
+ { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
+ { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
+ { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
+};
+
+static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
+ 0x0001, // 0000 0000 0000 0001
+ 0x0201, // 0000 0010 0000 0001
+ 0x020F, // 0000 0010 0000 1111
+ 0x0E0F, // 0000 1110 0000 1111
+ 0x0FFF, // 0000 1111 1111 1111
+ 0xFFFF, // 1111 1111 1111 1111
+};
+
+static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
+ int use_reduced_set) {
+ const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
+ if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
+ if (tx_size_sqr_up == TX_32X32)
+ return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
+ if (use_reduced_set)
+ return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
+ const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
+ if (is_inter) {
+ return (tx_size_sqr == TX_16X16 ? EXT_TX_SET_DTT9_IDTX_1DDCT
+ : EXT_TX_SET_ALL16);
+ } else {
+ return (tx_size_sqr == TX_16X16 ? EXT_TX_SET_DTT4_IDTX
+ : EXT_TX_SET_DTT4_IDTX_1DDCT);
+ }
+}
+
+// Maps tx set types to the indices.
+static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
+ { // Intra
+ 0, -1, 2, 1, -1, -1 },
+ { // Inter
+ 0, 3, -1, -1, 2, 1 },
+};
+
+static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
+ int use_reduced_set) {
+ const TxSetType set_type =
+ av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
+ return ext_tx_set_index[is_inter][set_type];
+}
+
+static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
+ int use_reduced_set) {
+ const int set_type =
+ av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
+ return av1_num_ext_tx_set[set_type];
+}
+
+#define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
+#define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))
+
+static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
+ const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
+ const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
+ if (bsize == BLOCK_4X4)
+ return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
+ if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
+ return max_rect_tx_size;
+ else
+ return largest_tx_size;
+}
+
+extern const int16_t dr_intra_derivative[90];
+static const uint8_t mode_to_angle_map[] = {
+ 0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
+};
+
+// Converts block_index for given transform size to index of the block in raster
+// order.
+static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size,
+ int block_idx) {
+ // For transform size 4x8, the possible block_idx values are 0 & 2, because
+ // block_idx values are incremented in steps of size 'tx_width_unit x
+ // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
+ // block number 1 in raster order, inside an 8x8 MI block.
+ // For any other transform size, the two indices are equivalent.
+ return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
+}
+
+// Inverse of above function.
+// Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
+static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size,
+ int raster_order) {
+ assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
+ // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
+ return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
+}
+
+static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
+ const MACROBLOCKD *xd,
+ TX_SIZE tx_size) {
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+
+ if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
+ xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32)
+ return DCT_DCT;
+
+ return intra_mode_to_tx_type(mbmi, plane_type);
+}
+
+// Implements the get_plane_residual_size() function in the spec (Section
+// 5.11.38. Get plane residual size function).
+static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
+ int subsampling_x,
+ int subsampling_y) {
+ if (bsize == BLOCK_INVALID) return BLOCK_INVALID;
+ return ss_size_lookup[bsize][subsampling_x][subsampling_y];
+}
+
+static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
+ int blk_col) {
+ TX_SIZE txs = max_txsize_rect_lookup[bsize];
+ for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
+ txs = sub_tx_size_map[txs];
+ const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
+ const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
+ const int bw_log2 = mi_size_wide_log2[bsize];
+ const int stride_log2 = bw_log2 - tx_w_log2;
+ const int index =
+ ((blk_row >> tx_h_log2) << stride_log2) + (blk_col >> tx_w_log2);
+ assert(index < INTER_TX_SIZE_BUF_LEN);
+ return index;
+}
+
+static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
+ int blk_col) {
+ TX_SIZE txs = max_txsize_rect_lookup[bsize];
+ for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
+ txs = sub_tx_size_map[txs];
+ const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
+ const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
+ const int bw_uint_log2 = mi_size_wide_log2[bsize];
+ const int stride_log2 = bw_uint_log2 - tx_w_log2;
+ const int index =
+ ((blk_row >> tx_h_log2) << stride_log2) + (blk_col >> tx_w_log2);
+ assert(index < TXK_TYPE_BUF_LEN);
+ return index;
+}
+
+static INLINE void update_txk_array(TX_TYPE *txk_type, BLOCK_SIZE bsize,
+ int blk_row, int blk_col, TX_SIZE tx_size,
+ TX_TYPE tx_type) {
+ const int txk_type_idx = av1_get_txk_type_index(bsize, blk_row, blk_col);
+ txk_type[txk_type_idx] = tx_type;
+
+ const int txw = tx_size_wide_unit[tx_size];
+ const int txh = tx_size_high_unit[tx_size];
+ // The 16x16 unit is due to the constraint from tx_64x64 which sets the
+ // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
+ // size, the constraint takes effect in 32x16 / 16x32 size too. To solve
+ // the intricacy, cover all the 16x16 units inside a 64 level transform.
+ if (txw == tx_size_wide_unit[TX_64X64] ||
+ txh == tx_size_high_unit[TX_64X64]) {
+ const int tx_unit = tx_size_wide_unit[TX_16X16];
+ for (int idy = 0; idy < txh; idy += tx_unit) {
+ for (int idx = 0; idx < txw; idx += tx_unit) {
+ const int this_index =
+ av1_get_txk_type_index(bsize, blk_row + idy, blk_col + idx);
+ txk_type[this_index] = tx_type;
+ }
+ }
+ }
+}
+
+static INLINE TX_TYPE av1_get_tx_type(PLANE_TYPE plane_type,
+ const MACROBLOCKD *xd, int blk_row,
+ int blk_col, TX_SIZE tx_size,
+ int reduced_tx_set) {
+ const MB_MODE_INFO *const mbmi = xd->mi[0];
+ const struct macroblockd_plane *const pd = &xd->plane[plane_type];
+ const TxSetType tx_set_type =
+ av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set);
+
+ TX_TYPE tx_type;
+ if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) {
+ tx_type = DCT_DCT;
+ } else {
+ if (plane_type == PLANE_TYPE_Y) {
+ const int txk_type_idx =
+ av1_get_txk_type_index(mbmi->sb_type, blk_row, blk_col);
+ tx_type = mbmi->txk_type[txk_type_idx];
+ } else if (is_inter_block(mbmi)) {
+ // scale back to y plane's coordinate
+ blk_row <<= pd->subsampling_y;
+ blk_col <<= pd->subsampling_x;
+ const int txk_type_idx =
+ av1_get_txk_type_index(mbmi->sb_type, blk_row, blk_col);
+ tx_type = mbmi->txk_type[txk_type_idx];
+ } else {
+ // In intra mode, uv planes don't share the same prediction mode as y
+ // plane, so the tx_type should not be shared
+ tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV);
+ }
+ }
+ assert(tx_type < TX_TYPES);
+ if (!av1_ext_tx_used[tx_set_type][tx_type]) return DCT_DCT;
+ return tx_type;
+}
+
+void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
+ const int num_planes);
+
+static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) {
+ TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
+ int depth = 0;
+ while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) {
+ depth++;
+ tx_size = sub_tx_size_map[tx_size];
+ }
+ return depth;
+}
+
+static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) {
+ TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
+ assert(tx_size != TX_4X4);
+ int depth = 0;
+ while (tx_size != TX_4X4) {
+ depth++;
+ tx_size = sub_tx_size_map[tx_size];
+ assert(depth < 10);
+ }
+ assert(depth <= MAX_TX_CATS);
+ return depth - 1;
+}
+
+static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) {
+ TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
+ TX_SIZE tx_size = max_tx_size;
+ for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size];
+ return tx_size;
+}
+
+static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) {
+ switch (tx_size) {
+ case TX_64X64:
+ case TX_64X32:
+ case TX_32X64: return TX_32X32;
+ case TX_64X16: return TX_32X16;
+ case TX_16X64: return TX_16X32;
+ default: return tx_size;
+ }
+}
+
+static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x,
+ int subsampling_y) {
+ const BLOCK_SIZE plane_bsize =
+ get_plane_block_size(bsize, subsampling_x, subsampling_y);
+ assert(plane_bsize < BLOCK_SIZES_ALL);
+ const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize];
+ return av1_get_adjusted_tx_size(uv_tx);
+}
+
+static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) {
+ const MB_MODE_INFO *mbmi = xd->mi[0];
+ if (xd->lossless[mbmi->segment_id]) return TX_4X4;
+ if (plane == 0) return mbmi->tx_size;
+ const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
+ return av1_get_max_uv_txsize(mbmi->sb_type, pd->subsampling_x,
+ pd->subsampling_y);
+}
+
+void av1_reset_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col,
+ BLOCK_SIZE bsize, const int num_planes);
+
+void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes);
+
+void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes);
+
+typedef void (*foreach_transformed_block_visitor)(int plane, int block,
+ int blk_row, int blk_col,
+ BLOCK_SIZE plane_bsize,
+ TX_SIZE tx_size, void *arg);
+
+void av1_set_contexts(const MACROBLOCKD *xd, struct macroblockd_plane *pd,
+ int plane, BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
+ int has_eob, int aoff, int loff);
+
+#define MAX_INTERINTRA_SB_SQUARE 32 * 32
+static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) {
+ return (mbmi->ref_frame[0] > INTRA_FRAME &&
+ mbmi->ref_frame[1] == INTRA_FRAME);
+}
+
+static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
+ return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32);
+}
+
+static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
+ return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END);
+}
+
+static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
+ return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
+}
+
+static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
+ return is_interintra_allowed_bsize(mbmi->sb_type) &&
+ is_interintra_allowed_mode(mbmi->mode) &&
+ is_interintra_allowed_ref(mbmi->ref_frame);
+}
+
+static INLINE int is_interintra_allowed_bsize_group(int group) {
+ int i;
+ for (i = 0; i < BLOCK_SIZES_ALL; i++) {
+ if (size_group_lookup[i] == group &&
+ is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) {
+ return mbmi->ref_frame[0] > INTRA_FRAME &&
+ mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi);
+}
+
+static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
+ int plane) {
+ if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
+ const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize];
+ if (plane == 0) return max_txsize; // luma
+ return av1_get_adjusted_tx_size(max_txsize); // chroma
+}
+
+static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
+ return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
+}
+
+static INLINE int is_motion_variation_allowed_compound(
+ const MB_MODE_INFO *mbmi) {
+ if (!has_second_ref(mbmi))
+ return 1;
+ else
+ return 0;
+}
+
+// input: log2 of length, 0(4), 1(8), ...
+static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 };
+
+static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
+ return !(mbmi->overlappable_neighbors[0] == 0 &&
+ mbmi->overlappable_neighbors[1] == 0);
+}
+
+static INLINE MOTION_MODE
+motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd,
+ const MB_MODE_INFO *mbmi, int allow_warped_motion) {
+ if (xd->cur_frame_force_integer_mv == 0) {
+ const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
+ if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION;
+ }
+ if (is_motion_variation_allowed_bsize(mbmi->sb_type) &&
+ is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME &&
+ is_motion_variation_allowed_compound(mbmi)) {
+ if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
+ assert(!has_second_ref(mbmi));
+ if (mbmi->num_proj_ref >= 1 &&
+ (allow_warped_motion && !av1_is_scaled(&(xd->block_refs[0]->sf)))) {
+ if (xd->cur_frame_force_integer_mv) {
+ return OBMC_CAUSAL;
+ }
+ return WARPED_CAUSAL;
+ }
+ return OBMC_CAUSAL;
+ } else {
+ return SIMPLE_TRANSLATION;
+ }
+}
+
+static INLINE void assert_motion_mode_valid(MOTION_MODE mode,
+ const WarpedMotionParams *gm_params,
+ const MACROBLOCKD *xd,
+ const MB_MODE_INFO *mbmi,
+ int allow_warped_motion) {
+ const MOTION_MODE last_motion_mode_allowed =
+ motion_mode_allowed(gm_params, xd, mbmi, allow_warped_motion);
+
+ // Check that the input mode is not illegal
+ if (last_motion_mode_allowed < mode)
+ assert(0 && "Illegal motion mode selected");
+}
+
+static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
+ return (is_inter_block(mbmi));
+}
+
+static INLINE int av1_allow_palette(int allow_screen_content_tools,
+ BLOCK_SIZE sb_type) {
+ return allow_screen_content_tools && block_size_wide[sb_type] <= 64 &&
+ block_size_high[sb_type] <= 64 && sb_type >= BLOCK_8X8;
+}
+
+// Returns sub-sampled dimensions of the given block.
+// The output values for 'rows_within_bounds' and 'cols_within_bounds' will
+// differ from 'height' and 'width' when part of the block is outside the
+// right
+// and/or bottom image boundary.
+static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
+ const MACROBLOCKD *xd, int *width,
+ int *height,
+ int *rows_within_bounds,
+ int *cols_within_bounds) {
+ const int block_height = block_size_high[bsize];
+ const int block_width = block_size_wide[bsize];
+ const int block_rows = (xd->mb_to_bottom_edge >= 0)
+ ? block_height
+ : (xd->mb_to_bottom_edge >> 3) + block_height;
+ const int block_cols = (xd->mb_to_right_edge >= 0)
+ ? block_width
+ : (xd->mb_to_right_edge >> 3) + block_width;
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
+ assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
+ assert(block_width >= block_cols);
+ assert(block_height >= block_rows);
+ const int plane_block_width = block_width >> pd->subsampling_x;
+ const int plane_block_height = block_height >> pd->subsampling_y;
+ // Special handling for chroma sub8x8.
+ const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4;
+ const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4;
+ if (width) *width = plane_block_width + 2 * is_chroma_sub8_x;
+ if (height) *height = plane_block_height + 2 * is_chroma_sub8_y;
+ if (rows_within_bounds) {
+ *rows_within_bounds =
+ (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y;
+ }
+ if (cols_within_bounds) {
+ *cols_within_bounds =
+ (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x;
+ }
+}
+
+/* clang-format off */
+typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS]
+ [CDF_SIZE(PALETTE_COLORS)];
+typedef const int (*ColorCost)[PALETTE_SIZES][PALETTE_COLOR_INDEX_CONTEXTS]
+ [PALETTE_COLORS];
+/* clang-format on */
+
+typedef struct {
+ int rows;
+ int cols;
+ int n_colors;
+ int plane_width;
+ int plane_height;
+ uint8_t *color_map;
+ MapCdf map_cdf;
+ ColorCost color_cost;
+} Av1ColorMapParam;
+
+static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd,
+ const MB_MODE_INFO *mbmi) {
+ int ref;
+
+ // First check if all modes are GLOBALMV
+ if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0;
+
+ if (AOMMIN(mi_size_wide[mbmi->sb_type], mi_size_high[mbmi->sb_type]) < 2)
+ return 0;
+
+ // Now check if all global motion is non translational
+ for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
+ if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0;
+ }
+ return 1;
+}
+
+static INLINE PLANE_TYPE get_plane_type(int plane) {
+ return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
+}
+
+static INLINE int av1_get_max_eob(TX_SIZE tx_size) {
+ if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) {
+ return 1024;
+ }
+ if (tx_size == TX_16X64 || tx_size == TX_64X16) {
+ return 512;
+ }
+ return tx_size_2d[tx_size];
+}
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // AOM_AV1_COMMON_BLOCKD_H_