diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
commit | 43a97878ce14b72f0981164f87f2e35e14151312 (patch) | |
tree | 620249daf56c0258faa40cbdcf9cfba06de2a846 /third_party/aom/test/av1_wedge_utils_test.cc | |
parent | Initial commit. (diff) | |
download | firefox-43a97878ce14b72f0981164f87f2e35e14151312.tar.xz firefox-43a97878ce14b72f0981164f87f2e35e14151312.zip |
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/aom/test/av1_wedge_utils_test.cc')
-rw-r--r-- | third_party/aom/test/av1_wedge_utils_test.cc | 390 |
1 files changed, 390 insertions, 0 deletions
diff --git a/third_party/aom/test/av1_wedge_utils_test.cc b/third_party/aom/test/av1_wedge_utils_test.cc new file mode 100644 index 0000000000..e8fbe69a4c --- /dev/null +++ b/third_party/aom/test/av1_wedge_utils_test.cc @@ -0,0 +1,390 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "third_party/googletest/src/googletest/include/gtest/gtest.h" + +#include "config/aom_config.h" +#include "config/aom_dsp_rtcd.h" +#include "config/av1_rtcd.h" + +#include "aom_dsp/aom_dsp_common.h" + +#include "av1/common/enums.h" + +#include "test/acm_random.h" +#include "test/function_equivalence_test.h" +#include "test/register_state_check.h" + +#define WEDGE_WEIGHT_BITS 6 +#define MAX_MASK_VALUE (1 << (WEDGE_WEIGHT_BITS)) + +using libaom_test::ACMRandom; +using libaom_test::FunctionEquivalenceTest; + +namespace { + +static const int16_t kInt13Max = (1 << 12) - 1; + +////////////////////////////////////////////////////////////////////////////// +// av1_wedge_sse_from_residuals - functionality +////////////////////////////////////////////////////////////////////////////// + +class WedgeUtilsSSEFuncTest : public testing::Test { + protected: + WedgeUtilsSSEFuncTest() : rng_(ACMRandom::DeterministicSeed()) {} + + static const int kIterations = 1000; + + ACMRandom rng_; +}; + +static void equiv_blend_residuals(int16_t *r, const int16_t *r0, + const int16_t *r1, const uint8_t *m, int N) { + for (int i = 0; i < N; i++) { + const int32_t m0 = m[i]; + const int32_t m1 = MAX_MASK_VALUE - m0; + const int16_t R = m0 * r0[i] + m1 * r1[i]; + // Note that this rounding is designed to match the result + // you would get when actually blending the 2 predictors and computing + // the residuals. + r[i] = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS); + } +} + +static uint64_t equiv_sse_from_residuals(const int16_t *r0, const int16_t *r1, + const uint8_t *m, int N) { + uint64_t acc = 0; + for (int i = 0; i < N; i++) { + const int32_t m0 = m[i]; + const int32_t m1 = MAX_MASK_VALUE - m0; + const int16_t R = m0 * r0[i] + m1 * r1[i]; + const int32_t r = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS); + acc += r * r; + } + return acc; +} + +TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingEquiv) { + DECLARE_ALIGNED(32, uint8_t, s[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, uint8_t, p0[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, uint8_t, p1[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, uint8_t, p[MAX_SB_SQUARE]); + + DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, int16_t, r_ref[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, int16_t, r_tst[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); + + for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { + for (int i = 0; i < MAX_SB_SQUARE; ++i) { + s[i] = rng_.Rand8(); + m[i] = rng_(MAX_MASK_VALUE + 1); + } + + const int w = 1 << (rng_(MAX_SB_SIZE_LOG2 + 1 - 3) + 3); + const int h = 1 << (rng_(MAX_SB_SIZE_LOG2 + 1 - 3) + 3); + const int N = w * h; + + for (int j = 0; j < N; j++) { + p0[j] = clamp(s[j] + rng_(33) - 16, 0, UINT8_MAX); + p1[j] = clamp(s[j] + rng_(33) - 16, 0, UINT8_MAX); + } + + aom_blend_a64_mask(p, w, p0, w, p1, w, m, w, w, h, 0, 0); + + aom_subtract_block(h, w, r0, w, s, w, p0, w); + aom_subtract_block(h, w, r1, w, s, w, p1, w); + + aom_subtract_block(h, w, r_ref, w, s, w, p, w); + equiv_blend_residuals(r_tst, r0, r1, m, N); + + for (int i = 0; i < N; ++i) ASSERT_EQ(r_ref[i], r_tst[i]); + + uint64_t ref_sse = aom_sum_squares_i16(r_ref, N); + uint64_t tst_sse = equiv_sse_from_residuals(r0, r1, m, N); + + ASSERT_EQ(ref_sse, tst_sse); + } +} + +static uint64_t sse_from_residuals(const int16_t *r0, const int16_t *r1, + const uint8_t *m, int N) { + uint64_t acc = 0; + for (int i = 0; i < N; i++) { + const int32_t m0 = m[i]; + const int32_t m1 = MAX_MASK_VALUE - m0; + const int32_t r = m0 * r0[i] + m1 * r1[i]; + acc += r * r; + } + return ROUND_POWER_OF_TWO(acc, 2 * WEDGE_WEIGHT_BITS); +} + +TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingMethod) { + DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); + + for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { + for (int i = 0; i < MAX_SB_SQUARE; ++i) { + r1[i] = rng_(2 * INT8_MAX - 2 * INT8_MIN + 1) + 2 * INT8_MIN; + d[i] = rng_(2 * INT8_MAX - 2 * INT8_MIN + 1) + 2 * INT8_MIN; + m[i] = rng_(MAX_MASK_VALUE + 1); + } + + const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1); + + for (int i = 0; i < N; i++) r0[i] = r1[i] + d[i]; + + const uint64_t ref_res = sse_from_residuals(r0, r1, m, N); + const uint64_t tst_res = av1_wedge_sse_from_residuals(r1, d, m, N); + + ASSERT_EQ(ref_res, tst_res); + } +} + +////////////////////////////////////////////////////////////////////////////// +// av1_wedge_sse_from_residuals - optimizations +////////////////////////////////////////////////////////////////////////////// + +typedef uint64_t (*FSSE)(const int16_t *r1, const int16_t *d, const uint8_t *m, + int N); +typedef libaom_test::FuncParam<FSSE> TestFuncsFSSE; + +class WedgeUtilsSSEOptTest : public FunctionEquivalenceTest<FSSE> { + protected: + static const int kIterations = 10000; +}; + +TEST_P(WedgeUtilsSSEOptTest, RandomValues) { + DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); + + for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { + for (int i = 0; i < MAX_SB_SQUARE; ++i) { + r1[i] = rng_(2 * kInt13Max + 1) - kInt13Max; + d[i] = rng_(2 * kInt13Max + 1) - kInt13Max; + m[i] = rng_(MAX_MASK_VALUE + 1); + } + + const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1); + + const uint64_t ref_res = params_.ref_func(r1, d, m, N); + uint64_t tst_res; + ASM_REGISTER_STATE_CHECK(tst_res = params_.tst_func(r1, d, m, N)); + + ASSERT_EQ(ref_res, tst_res); + } +} + +TEST_P(WedgeUtilsSSEOptTest, ExtremeValues) { + DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); + + for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { + if (rng_(2)) { + for (int i = 0; i < MAX_SB_SQUARE; ++i) r1[i] = kInt13Max; + } else { + for (int i = 0; i < MAX_SB_SQUARE; ++i) r1[i] = -kInt13Max; + } + + if (rng_(2)) { + for (int i = 0; i < MAX_SB_SQUARE; ++i) d[i] = kInt13Max; + } else { + for (int i = 0; i < MAX_SB_SQUARE; ++i) d[i] = -kInt13Max; + } + + for (int i = 0; i < MAX_SB_SQUARE; ++i) m[i] = MAX_MASK_VALUE; + + const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1); + + const uint64_t ref_res = params_.ref_func(r1, d, m, N); + uint64_t tst_res; + ASM_REGISTER_STATE_CHECK(tst_res = params_.tst_func(r1, d, m, N)); + + ASSERT_EQ(ref_res, tst_res); + } +} + +////////////////////////////////////////////////////////////////////////////// +// av1_wedge_sign_from_residuals +////////////////////////////////////////////////////////////////////////////// + +typedef int (*FSign)(const int16_t *ds, const uint8_t *m, int N, int64_t limit); +typedef libaom_test::FuncParam<FSign> TestFuncsFSign; + +class WedgeUtilsSignOptTest : public FunctionEquivalenceTest<FSign> { + protected: + static const int kIterations = 10000; + static const int kMaxSize = 8196; // Size limited by SIMD implementation. +}; + +TEST_P(WedgeUtilsSignOptTest, RandomValues) { + DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); + + for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { + for (int i = 0; i < MAX_SB_SQUARE; ++i) { + r0[i] = rng_(2 * kInt13Max + 1) - kInt13Max; + r1[i] = rng_(2 * kInt13Max + 1) - kInt13Max; + m[i] = rng_(MAX_MASK_VALUE + 1); + } + + const int maxN = AOMMIN(kMaxSize, MAX_SB_SQUARE); + const int N = 64 * (rng_(maxN / 64 - 1) + 1); + + int64_t limit; + limit = (int64_t)aom_sum_squares_i16(r0, N); + limit -= (int64_t)aom_sum_squares_i16(r1, N); + limit *= (1 << WEDGE_WEIGHT_BITS) / 2; + + for (int i = 0; i < N; i++) + ds[i] = clamp(r0[i] * r0[i] - r1[i] * r1[i], INT16_MIN, INT16_MAX); + + const int ref_res = params_.ref_func(ds, m, N, limit); + int tst_res; + ASM_REGISTER_STATE_CHECK(tst_res = params_.tst_func(ds, m, N, limit)); + + ASSERT_EQ(ref_res, tst_res); + } +} + +TEST_P(WedgeUtilsSignOptTest, ExtremeValues) { + DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); + + for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { + switch (rng_(4)) { + case 0: + for (int i = 0; i < MAX_SB_SQUARE; ++i) { + r0[i] = 0; + r1[i] = kInt13Max; + } + break; + case 1: + for (int i = 0; i < MAX_SB_SQUARE; ++i) { + r0[i] = kInt13Max; + r1[i] = 0; + } + break; + case 2: + for (int i = 0; i < MAX_SB_SQUARE; ++i) { + r0[i] = 0; + r1[i] = -kInt13Max; + } + break; + default: + for (int i = 0; i < MAX_SB_SQUARE; ++i) { + r0[i] = -kInt13Max; + r1[i] = 0; + } + break; + } + + for (int i = 0; i < MAX_SB_SQUARE; ++i) m[i] = MAX_MASK_VALUE; + + const int maxN = AOMMIN(kMaxSize, MAX_SB_SQUARE); + const int N = 64 * (rng_(maxN / 64 - 1) + 1); + + int64_t limit; + limit = (int64_t)aom_sum_squares_i16(r0, N); + limit -= (int64_t)aom_sum_squares_i16(r1, N); + limit *= (1 << WEDGE_WEIGHT_BITS) / 2; + + for (int i = 0; i < N; i++) + ds[i] = clamp(r0[i] * r0[i] - r1[i] * r1[i], INT16_MIN, INT16_MAX); + + const int ref_res = params_.ref_func(ds, m, N, limit); + int tst_res; + ASM_REGISTER_STATE_CHECK(tst_res = params_.tst_func(ds, m, N, limit)); + + ASSERT_EQ(ref_res, tst_res); + } +} + +////////////////////////////////////////////////////////////////////////////// +// av1_wedge_compute_delta_squares +////////////////////////////////////////////////////////////////////////////// + +typedef void (*FDS)(int16_t *d, const int16_t *a, const int16_t *b, int N); +typedef libaom_test::FuncParam<FDS> TestFuncsFDS; + +class WedgeUtilsDeltaSquaresOptTest : public FunctionEquivalenceTest<FDS> { + protected: + static const int kIterations = 10000; +}; + +TEST_P(WedgeUtilsDeltaSquaresOptTest, RandomValues) { + DECLARE_ALIGNED(32, int16_t, a[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, int16_t, b[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, int16_t, d_ref[MAX_SB_SQUARE]); + DECLARE_ALIGNED(32, int16_t, d_tst[MAX_SB_SQUARE]); + + for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { + for (int i = 0; i < MAX_SB_SQUARE; ++i) { + a[i] = rng_.Rand16(); + b[i] = rng_(2 * INT16_MAX + 1) - INT16_MAX; + } + + const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1); + + memset(&d_ref, INT16_MAX, sizeof(d_ref)); + memset(&d_tst, INT16_MAX, sizeof(d_tst)); + + params_.ref_func(d_ref, a, b, N); + ASM_REGISTER_STATE_CHECK(params_.tst_func(d_tst, a, b, N)); + + for (int i = 0; i < MAX_SB_SQUARE; ++i) ASSERT_EQ(d_ref[i], d_tst[i]); + } +} + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P( + SSE2, WedgeUtilsSSEOptTest, + ::testing::Values(TestFuncsFSSE(av1_wedge_sse_from_residuals_c, + av1_wedge_sse_from_residuals_sse2))); + +INSTANTIATE_TEST_CASE_P( + SSE2, WedgeUtilsSignOptTest, + ::testing::Values(TestFuncsFSign(av1_wedge_sign_from_residuals_c, + av1_wedge_sign_from_residuals_sse2))); + +INSTANTIATE_TEST_CASE_P( + SSE2, WedgeUtilsDeltaSquaresOptTest, + ::testing::Values(TestFuncsFDS(av1_wedge_compute_delta_squares_c, + av1_wedge_compute_delta_squares_sse2))); +#endif // HAVE_SSE2 + +#if HAVE_AVX2 +INSTANTIATE_TEST_CASE_P( + AVX2, WedgeUtilsSSEOptTest, + ::testing::Values(TestFuncsFSSE(av1_wedge_sse_from_residuals_sse2, + av1_wedge_sse_from_residuals_avx2))); + +INSTANTIATE_TEST_CASE_P( + AVX2, WedgeUtilsSignOptTest, + ::testing::Values(TestFuncsFSign(av1_wedge_sign_from_residuals_sse2, + av1_wedge_sign_from_residuals_avx2))); + +INSTANTIATE_TEST_CASE_P( + AVX2, WedgeUtilsDeltaSquaresOptTest, + ::testing::Values(TestFuncsFDS(av1_wedge_compute_delta_squares_sse2, + av1_wedge_compute_delta_squares_avx2))); +#endif // HAVE_AVX2 + +} // namespace |