summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/video_coding/jitter_buffer.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
commit43a97878ce14b72f0981164f87f2e35e14151312 (patch)
tree620249daf56c0258faa40cbdcf9cfba06de2a846 /third_party/libwebrtc/modules/video_coding/jitter_buffer.cc
parentInitial commit. (diff)
downloadfirefox-upstream.tar.xz
firefox-upstream.zip
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/libwebrtc/modules/video_coding/jitter_buffer.cc')
-rw-r--r--third_party/libwebrtc/modules/video_coding/jitter_buffer.cc892
1 files changed, 892 insertions, 0 deletions
diff --git a/third_party/libwebrtc/modules/video_coding/jitter_buffer.cc b/third_party/libwebrtc/modules/video_coding/jitter_buffer.cc
new file mode 100644
index 0000000000..39553c9f3f
--- /dev/null
+++ b/third_party/libwebrtc/modules/video_coding/jitter_buffer.cc
@@ -0,0 +1,892 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+#include "modules/video_coding/jitter_buffer.h"
+
+#include <algorithm>
+#include <limits>
+#include <utility>
+
+#include "api/units/timestamp.h"
+#include "modules/video_coding/frame_buffer.h"
+#include "modules/video_coding/include/video_coding.h"
+#include "modules/video_coding/internal_defines.h"
+#include "modules/video_coding/jitter_buffer_common.h"
+#include "modules/video_coding/packet.h"
+#include "modules/video_coding/timing/inter_frame_delay.h"
+#include "modules/video_coding/timing/jitter_estimator.h"
+#include "rtc_base/checks.h"
+#include "rtc_base/logging.h"
+#include "system_wrappers/include/clock.h"
+
+namespace webrtc {
+// Use this rtt if no value has been reported.
+static const int64_t kDefaultRtt = 200;
+
+typedef std::pair<uint32_t, VCMFrameBuffer*> FrameListPair;
+
+bool IsKeyFrame(FrameListPair pair) {
+ return pair.second->FrameType() == VideoFrameType::kVideoFrameKey;
+}
+
+bool HasNonEmptyState(FrameListPair pair) {
+ return pair.second->GetState() != kStateEmpty;
+}
+
+void FrameList::InsertFrame(VCMFrameBuffer* frame) {
+ insert(rbegin().base(), FrameListPair(frame->Timestamp(), frame));
+}
+
+VCMFrameBuffer* FrameList::PopFrame(uint32_t timestamp) {
+ FrameList::iterator it = find(timestamp);
+ if (it == end())
+ return NULL;
+ VCMFrameBuffer* frame = it->second;
+ erase(it);
+ return frame;
+}
+
+VCMFrameBuffer* FrameList::Front() const {
+ return begin()->second;
+}
+
+VCMFrameBuffer* FrameList::Back() const {
+ return rbegin()->second;
+}
+
+int FrameList::RecycleFramesUntilKeyFrame(FrameList::iterator* key_frame_it,
+ UnorderedFrameList* free_frames) {
+ int drop_count = 0;
+ FrameList::iterator it = begin();
+ while (!empty()) {
+ // Throw at least one frame.
+ it->second->Reset();
+ free_frames->push_back(it->second);
+ erase(it++);
+ ++drop_count;
+ if (it != end() &&
+ it->second->FrameType() == VideoFrameType::kVideoFrameKey) {
+ *key_frame_it = it;
+ return drop_count;
+ }
+ }
+ *key_frame_it = end();
+ return drop_count;
+}
+
+void FrameList::CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state,
+ UnorderedFrameList* free_frames) {
+ while (!empty()) {
+ VCMFrameBuffer* oldest_frame = Front();
+ bool remove_frame = false;
+ if (oldest_frame->GetState() == kStateEmpty && size() > 1) {
+ // This frame is empty, try to update the last decoded state and drop it
+ // if successful.
+ remove_frame = decoding_state->UpdateEmptyFrame(oldest_frame);
+ } else {
+ remove_frame = decoding_state->IsOldFrame(oldest_frame);
+ }
+ if (!remove_frame) {
+ break;
+ }
+ free_frames->push_back(oldest_frame);
+ erase(begin());
+ }
+}
+
+void FrameList::Reset(UnorderedFrameList* free_frames) {
+ while (!empty()) {
+ begin()->second->Reset();
+ free_frames->push_back(begin()->second);
+ erase(begin());
+ }
+}
+
+VCMJitterBuffer::VCMJitterBuffer(Clock* clock,
+ std::unique_ptr<EventWrapper> event,
+ const FieldTrialsView& field_trials)
+ : clock_(clock),
+ running_(false),
+ frame_event_(std::move(event)),
+ max_number_of_frames_(kStartNumberOfFrames),
+ free_frames_(),
+ decodable_frames_(),
+ incomplete_frames_(),
+ last_decoded_state_(),
+ first_packet_since_reset_(true),
+ num_consecutive_old_packets_(0),
+ num_packets_(0),
+ num_duplicated_packets_(0),
+ jitter_estimate_(clock, field_trials),
+ missing_sequence_numbers_(SequenceNumberLessThan()),
+ latest_received_sequence_number_(0),
+ max_nack_list_size_(0),
+ max_packet_age_to_nack_(0),
+ max_incomplete_time_ms_(0),
+ average_packets_per_frame_(0.0f),
+ frame_counter_(0) {
+ for (int i = 0; i < kStartNumberOfFrames; i++)
+ free_frames_.push_back(new VCMFrameBuffer());
+}
+
+VCMJitterBuffer::~VCMJitterBuffer() {
+ Stop();
+ for (UnorderedFrameList::iterator it = free_frames_.begin();
+ it != free_frames_.end(); ++it) {
+ delete *it;
+ }
+ for (FrameList::iterator it = incomplete_frames_.begin();
+ it != incomplete_frames_.end(); ++it) {
+ delete it->second;
+ }
+ for (FrameList::iterator it = decodable_frames_.begin();
+ it != decodable_frames_.end(); ++it) {
+ delete it->second;
+ }
+}
+
+void VCMJitterBuffer::Start() {
+ MutexLock lock(&mutex_);
+ running_ = true;
+
+ num_consecutive_old_packets_ = 0;
+ num_packets_ = 0;
+ num_duplicated_packets_ = 0;
+
+ // Start in a non-signaled state.
+ waiting_for_completion_.frame_size = 0;
+ waiting_for_completion_.timestamp = 0;
+ waiting_for_completion_.latest_packet_time = -1;
+ first_packet_since_reset_ = true;
+ last_decoded_state_.Reset();
+
+ decodable_frames_.Reset(&free_frames_);
+ incomplete_frames_.Reset(&free_frames_);
+}
+
+void VCMJitterBuffer::Stop() {
+ MutexLock lock(&mutex_);
+ running_ = false;
+ last_decoded_state_.Reset();
+
+ // Make sure we wake up any threads waiting on these events.
+ frame_event_->Set();
+}
+
+bool VCMJitterBuffer::Running() const {
+ MutexLock lock(&mutex_);
+ return running_;
+}
+
+void VCMJitterBuffer::Flush() {
+ MutexLock lock(&mutex_);
+ decodable_frames_.Reset(&free_frames_);
+ incomplete_frames_.Reset(&free_frames_);
+ last_decoded_state_.Reset(); // TODO(mikhal): sync reset.
+ num_consecutive_old_packets_ = 0;
+ // Also reset the jitter and delay estimates
+ jitter_estimate_.Reset();
+ inter_frame_delay_.Reset();
+ waiting_for_completion_.frame_size = 0;
+ waiting_for_completion_.timestamp = 0;
+ waiting_for_completion_.latest_packet_time = -1;
+ first_packet_since_reset_ = true;
+ missing_sequence_numbers_.clear();
+}
+
+int VCMJitterBuffer::num_packets() const {
+ MutexLock lock(&mutex_);
+ return num_packets_;
+}
+
+int VCMJitterBuffer::num_duplicated_packets() const {
+ MutexLock lock(&mutex_);
+ return num_duplicated_packets_;
+}
+
+// Returns immediately or a `max_wait_time_ms` ms event hang waiting for a
+// complete frame, `max_wait_time_ms` decided by caller.
+VCMEncodedFrame* VCMJitterBuffer::NextCompleteFrame(uint32_t max_wait_time_ms) {
+ MutexLock lock(&mutex_);
+ if (!running_) {
+ return nullptr;
+ }
+ CleanUpOldOrEmptyFrames();
+
+ if (decodable_frames_.empty() ||
+ decodable_frames_.Front()->GetState() != kStateComplete) {
+ const int64_t end_wait_time_ms =
+ clock_->TimeInMilliseconds() + max_wait_time_ms;
+ int64_t wait_time_ms = max_wait_time_ms;
+ while (wait_time_ms > 0) {
+ mutex_.Unlock();
+ const EventTypeWrapper ret =
+ frame_event_->Wait(static_cast<uint32_t>(wait_time_ms));
+ mutex_.Lock();
+ if (ret == kEventSignaled) {
+ // Are we shutting down the jitter buffer?
+ if (!running_) {
+ return nullptr;
+ }
+ // Finding oldest frame ready for decoder.
+ CleanUpOldOrEmptyFrames();
+ if (decodable_frames_.empty() ||
+ decodable_frames_.Front()->GetState() != kStateComplete) {
+ wait_time_ms = end_wait_time_ms - clock_->TimeInMilliseconds();
+ } else {
+ break;
+ }
+ } else {
+ break;
+ }
+ }
+ }
+ if (decodable_frames_.empty() ||
+ decodable_frames_.Front()->GetState() != kStateComplete) {
+ return nullptr;
+ }
+ return decodable_frames_.Front();
+}
+
+VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode(uint32_t timestamp) {
+ MutexLock lock(&mutex_);
+ if (!running_) {
+ return NULL;
+ }
+ // Extract the frame with the desired timestamp.
+ VCMFrameBuffer* frame = decodable_frames_.PopFrame(timestamp);
+ bool continuous = true;
+ if (!frame) {
+ frame = incomplete_frames_.PopFrame(timestamp);
+ if (frame)
+ continuous = last_decoded_state_.ContinuousFrame(frame);
+ else
+ return NULL;
+ }
+ // Frame pulled out from jitter buffer, update the jitter estimate.
+ const bool retransmitted = (frame->GetNackCount() > 0);
+ if (retransmitted) {
+ jitter_estimate_.FrameNacked();
+ } else if (frame->size() > 0) {
+ // Ignore retransmitted and empty frames.
+ if (waiting_for_completion_.latest_packet_time >= 0) {
+ UpdateJitterEstimate(waiting_for_completion_, true);
+ }
+ if (frame->GetState() == kStateComplete) {
+ UpdateJitterEstimate(*frame, false);
+ } else {
+ // Wait for this one to get complete.
+ waiting_for_completion_.frame_size = frame->size();
+ waiting_for_completion_.latest_packet_time = frame->LatestPacketTimeMs();
+ waiting_for_completion_.timestamp = frame->Timestamp();
+ }
+ }
+
+ // The state must be changed to decoding before cleaning up zero sized
+ // frames to avoid empty frames being cleaned up and then given to the
+ // decoder. Propagates the missing_frame bit.
+ frame->PrepareForDecode(continuous);
+
+ // We have a frame - update the last decoded state and nack list.
+ last_decoded_state_.SetState(frame);
+ DropPacketsFromNackList(last_decoded_state_.sequence_num());
+
+ UpdateAveragePacketsPerFrame(frame->NumPackets());
+
+ return frame;
+}
+
+// Release frame when done with decoding. Should never be used to release
+// frames from within the jitter buffer.
+void VCMJitterBuffer::ReleaseFrame(VCMEncodedFrame* frame) {
+ RTC_CHECK(frame != nullptr);
+ MutexLock lock(&mutex_);
+ VCMFrameBuffer* frame_buffer = static_cast<VCMFrameBuffer*>(frame);
+ RecycleFrameBuffer(frame_buffer);
+}
+
+// Gets frame to use for this timestamp. If no match, get empty frame.
+VCMFrameBufferEnum VCMJitterBuffer::GetFrame(const VCMPacket& packet,
+ VCMFrameBuffer** frame,
+ FrameList** frame_list) {
+ *frame = incomplete_frames_.PopFrame(packet.timestamp);
+ if (*frame != NULL) {
+ *frame_list = &incomplete_frames_;
+ return kNoError;
+ }
+ *frame = decodable_frames_.PopFrame(packet.timestamp);
+ if (*frame != NULL) {
+ *frame_list = &decodable_frames_;
+ return kNoError;
+ }
+
+ *frame_list = NULL;
+ // No match, return empty frame.
+ *frame = GetEmptyFrame();
+ if (*frame == NULL) {
+ // No free frame! Try to reclaim some...
+ RTC_LOG(LS_WARNING) << "Unable to get empty frame; Recycling.";
+ bool found_key_frame = RecycleFramesUntilKeyFrame();
+ *frame = GetEmptyFrame();
+ RTC_CHECK(*frame);
+ if (!found_key_frame) {
+ RecycleFrameBuffer(*frame);
+ return kFlushIndicator;
+ }
+ }
+ (*frame)->Reset();
+ return kNoError;
+}
+
+int64_t VCMJitterBuffer::LastPacketTime(const VCMEncodedFrame* frame,
+ bool* retransmitted) const {
+ RTC_DCHECK(retransmitted);
+ MutexLock lock(&mutex_);
+ const VCMFrameBuffer* frame_buffer =
+ static_cast<const VCMFrameBuffer*>(frame);
+ *retransmitted = (frame_buffer->GetNackCount() > 0);
+ return frame_buffer->LatestPacketTimeMs();
+}
+
+VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet,
+ bool* retransmitted) {
+ MutexLock lock(&mutex_);
+
+ ++num_packets_;
+ // Does this packet belong to an old frame?
+ if (last_decoded_state_.IsOldPacket(&packet)) {
+ // Account only for media packets.
+ if (packet.sizeBytes > 0) {
+ num_consecutive_old_packets_++;
+ }
+ // Update last decoded sequence number if the packet arrived late and
+ // belongs to a frame with a timestamp equal to the last decoded
+ // timestamp.
+ last_decoded_state_.UpdateOldPacket(&packet);
+ DropPacketsFromNackList(last_decoded_state_.sequence_num());
+
+ // Also see if this old packet made more incomplete frames continuous.
+ FindAndInsertContinuousFramesWithState(last_decoded_state_);
+
+ if (num_consecutive_old_packets_ > kMaxConsecutiveOldPackets) {
+ RTC_LOG(LS_WARNING)
+ << num_consecutive_old_packets_
+ << " consecutive old packets received. Flushing the jitter buffer.";
+ Flush();
+ return kFlushIndicator;
+ }
+ return kOldPacket;
+ }
+
+ num_consecutive_old_packets_ = 0;
+
+ VCMFrameBuffer* frame;
+ FrameList* frame_list;
+ const VCMFrameBufferEnum error = GetFrame(packet, &frame, &frame_list);
+ if (error != kNoError)
+ return error;
+
+ Timestamp now = clock_->CurrentTime();
+ // We are keeping track of the first and latest seq numbers, and
+ // the number of wraps to be able to calculate how many packets we expect.
+ if (first_packet_since_reset_) {
+ // Now it's time to start estimating jitter
+ // reset the delay estimate.
+ inter_frame_delay_.Reset();
+ }
+
+ // Empty packets may bias the jitter estimate (lacking size component),
+ // therefore don't let empty packet trigger the following updates:
+ if (packet.video_header.frame_type != VideoFrameType::kEmptyFrame) {
+ if (waiting_for_completion_.timestamp == packet.timestamp) {
+ // This can get bad if we have a lot of duplicate packets,
+ // we will then count some packet multiple times.
+ waiting_for_completion_.frame_size += packet.sizeBytes;
+ waiting_for_completion_.latest_packet_time = now.ms();
+ } else if (waiting_for_completion_.latest_packet_time >= 0 &&
+ waiting_for_completion_.latest_packet_time + 2000 <= now.ms()) {
+ // A packet should never be more than two seconds late
+ UpdateJitterEstimate(waiting_for_completion_, true);
+ waiting_for_completion_.latest_packet_time = -1;
+ waiting_for_completion_.frame_size = 0;
+ waiting_for_completion_.timestamp = 0;
+ }
+ }
+
+ VCMFrameBufferStateEnum previous_state = frame->GetState();
+ // Insert packet.
+ FrameData frame_data;
+ frame_data.rtt_ms = kDefaultRtt;
+ frame_data.rolling_average_packets_per_frame = average_packets_per_frame_;
+ VCMFrameBufferEnum buffer_state =
+ frame->InsertPacket(packet, now.ms(), frame_data);
+
+ if (buffer_state > 0) {
+ if (first_packet_since_reset_) {
+ latest_received_sequence_number_ = packet.seqNum;
+ first_packet_since_reset_ = false;
+ } else {
+ if (IsPacketRetransmitted(packet)) {
+ frame->IncrementNackCount();
+ }
+ if (!UpdateNackList(packet.seqNum) &&
+ packet.video_header.frame_type != VideoFrameType::kVideoFrameKey) {
+ buffer_state = kFlushIndicator;
+ }
+
+ latest_received_sequence_number_ =
+ LatestSequenceNumber(latest_received_sequence_number_, packet.seqNum);
+ }
+ }
+
+ // Is the frame already in the decodable list?
+ bool continuous = IsContinuous(*frame);
+ switch (buffer_state) {
+ case kGeneralError:
+ case kTimeStampError:
+ case kSizeError: {
+ RecycleFrameBuffer(frame);
+ break;
+ }
+ case kCompleteSession: {
+ if (previous_state != kStateComplete) {
+ if (continuous) {
+ // Signal that we have a complete session.
+ frame_event_->Set();
+ }
+ }
+
+ *retransmitted = (frame->GetNackCount() > 0);
+ if (continuous) {
+ decodable_frames_.InsertFrame(frame);
+ FindAndInsertContinuousFrames(*frame);
+ } else {
+ incomplete_frames_.InsertFrame(frame);
+ }
+ break;
+ }
+ case kIncomplete: {
+ if (frame->GetState() == kStateEmpty &&
+ last_decoded_state_.UpdateEmptyFrame(frame)) {
+ RecycleFrameBuffer(frame);
+ return kNoError;
+ } else {
+ incomplete_frames_.InsertFrame(frame);
+ }
+ break;
+ }
+ case kNoError:
+ case kOutOfBoundsPacket:
+ case kDuplicatePacket: {
+ // Put back the frame where it came from.
+ if (frame_list != NULL) {
+ frame_list->InsertFrame(frame);
+ } else {
+ RecycleFrameBuffer(frame);
+ }
+ ++num_duplicated_packets_;
+ break;
+ }
+ case kFlushIndicator:
+ RecycleFrameBuffer(frame);
+ return kFlushIndicator;
+ default:
+ RTC_DCHECK_NOTREACHED();
+ }
+ return buffer_state;
+}
+
+bool VCMJitterBuffer::IsContinuousInState(
+ const VCMFrameBuffer& frame,
+ const VCMDecodingState& decoding_state) const {
+ // Is this frame complete and continuous?
+ return (frame.GetState() == kStateComplete) &&
+ decoding_state.ContinuousFrame(&frame);
+}
+
+bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const {
+ if (IsContinuousInState(frame, last_decoded_state_)) {
+ return true;
+ }
+ VCMDecodingState decoding_state;
+ decoding_state.CopyFrom(last_decoded_state_);
+ for (FrameList::const_iterator it = decodable_frames_.begin();
+ it != decodable_frames_.end(); ++it) {
+ VCMFrameBuffer* decodable_frame = it->second;
+ if (IsNewerTimestamp(decodable_frame->Timestamp(), frame.Timestamp())) {
+ break;
+ }
+ decoding_state.SetState(decodable_frame);
+ if (IsContinuousInState(frame, decoding_state)) {
+ return true;
+ }
+ }
+ return false;
+}
+
+void VCMJitterBuffer::FindAndInsertContinuousFrames(
+ const VCMFrameBuffer& new_frame) {
+ VCMDecodingState decoding_state;
+ decoding_state.CopyFrom(last_decoded_state_);
+ decoding_state.SetState(&new_frame);
+ FindAndInsertContinuousFramesWithState(decoding_state);
+}
+
+void VCMJitterBuffer::FindAndInsertContinuousFramesWithState(
+ const VCMDecodingState& original_decoded_state) {
+ // Copy original_decoded_state so we can move the state forward with each
+ // decodable frame we find.
+ VCMDecodingState decoding_state;
+ decoding_state.CopyFrom(original_decoded_state);
+
+ // When temporal layers are available, we search for a complete or decodable
+ // frame until we hit one of the following:
+ // 1. Continuous base or sync layer.
+ // 2. The end of the list was reached.
+ for (FrameList::iterator it = incomplete_frames_.begin();
+ it != incomplete_frames_.end();) {
+ VCMFrameBuffer* frame = it->second;
+ if (IsNewerTimestamp(original_decoded_state.time_stamp(),
+ frame->Timestamp())) {
+ ++it;
+ continue;
+ }
+ if (IsContinuousInState(*frame, decoding_state)) {
+ decodable_frames_.InsertFrame(frame);
+ incomplete_frames_.erase(it++);
+ decoding_state.SetState(frame);
+ } else if (frame->TemporalId() <= 0) {
+ break;
+ } else {
+ ++it;
+ }
+ }
+}
+
+uint32_t VCMJitterBuffer::EstimatedJitterMs() {
+ MutexLock lock(&mutex_);
+ const double rtt_mult = 1.0f;
+ return jitter_estimate_.GetJitterEstimate(rtt_mult, absl::nullopt).ms();
+}
+
+void VCMJitterBuffer::SetNackSettings(size_t max_nack_list_size,
+ int max_packet_age_to_nack,
+ int max_incomplete_time_ms) {
+ MutexLock lock(&mutex_);
+ RTC_DCHECK_GE(max_packet_age_to_nack, 0);
+ RTC_DCHECK_GE(max_incomplete_time_ms_, 0);
+ max_nack_list_size_ = max_nack_list_size;
+ max_packet_age_to_nack_ = max_packet_age_to_nack;
+ max_incomplete_time_ms_ = max_incomplete_time_ms;
+}
+
+int VCMJitterBuffer::NonContinuousOrIncompleteDuration() {
+ if (incomplete_frames_.empty()) {
+ return 0;
+ }
+ uint32_t start_timestamp = incomplete_frames_.Front()->Timestamp();
+ if (!decodable_frames_.empty()) {
+ start_timestamp = decodable_frames_.Back()->Timestamp();
+ }
+ return incomplete_frames_.Back()->Timestamp() - start_timestamp;
+}
+
+uint16_t VCMJitterBuffer::EstimatedLowSequenceNumber(
+ const VCMFrameBuffer& frame) const {
+ RTC_DCHECK_GE(frame.GetLowSeqNum(), 0);
+ if (frame.HaveFirstPacket())
+ return frame.GetLowSeqNum();
+
+ // This estimate is not accurate if more than one packet with lower sequence
+ // number is lost.
+ return frame.GetLowSeqNum() - 1;
+}
+
+std::vector<uint16_t> VCMJitterBuffer::GetNackList(bool* request_key_frame) {
+ MutexLock lock(&mutex_);
+ *request_key_frame = false;
+ if (last_decoded_state_.in_initial_state()) {
+ VCMFrameBuffer* next_frame = NextFrame();
+ const bool first_frame_is_key =
+ next_frame &&
+ next_frame->FrameType() == VideoFrameType::kVideoFrameKey &&
+ next_frame->HaveFirstPacket();
+ if (!first_frame_is_key) {
+ bool have_non_empty_frame =
+ decodable_frames_.end() != find_if(decodable_frames_.begin(),
+ decodable_frames_.end(),
+ HasNonEmptyState);
+ if (!have_non_empty_frame) {
+ have_non_empty_frame =
+ incomplete_frames_.end() != find_if(incomplete_frames_.begin(),
+ incomplete_frames_.end(),
+ HasNonEmptyState);
+ }
+ bool found_key_frame = RecycleFramesUntilKeyFrame();
+ if (!found_key_frame) {
+ *request_key_frame = have_non_empty_frame;
+ return std::vector<uint16_t>();
+ }
+ }
+ }
+ if (TooLargeNackList()) {
+ *request_key_frame = !HandleTooLargeNackList();
+ }
+ if (max_incomplete_time_ms_ > 0) {
+ int non_continuous_incomplete_duration =
+ NonContinuousOrIncompleteDuration();
+ if (non_continuous_incomplete_duration > 90 * max_incomplete_time_ms_) {
+ RTC_LOG_F(LS_WARNING) << "Too long non-decodable duration: "
+ << non_continuous_incomplete_duration << " > "
+ << 90 * max_incomplete_time_ms_;
+ FrameList::reverse_iterator rit = find_if(
+ incomplete_frames_.rbegin(), incomplete_frames_.rend(), IsKeyFrame);
+ if (rit == incomplete_frames_.rend()) {
+ // Request a key frame if we don't have one already.
+ *request_key_frame = true;
+ return std::vector<uint16_t>();
+ } else {
+ // Skip to the last key frame. If it's incomplete we will start
+ // NACKing it.
+ // Note that the estimated low sequence number is correct for VP8
+ // streams because only the first packet of a key frame is marked.
+ last_decoded_state_.Reset();
+ DropPacketsFromNackList(EstimatedLowSequenceNumber(*rit->second));
+ }
+ }
+ }
+ std::vector<uint16_t> nack_list(missing_sequence_numbers_.begin(),
+ missing_sequence_numbers_.end());
+ return nack_list;
+}
+
+VCMFrameBuffer* VCMJitterBuffer::NextFrame() const {
+ if (!decodable_frames_.empty())
+ return decodable_frames_.Front();
+ if (!incomplete_frames_.empty())
+ return incomplete_frames_.Front();
+ return NULL;
+}
+
+bool VCMJitterBuffer::UpdateNackList(uint16_t sequence_number) {
+ // Make sure we don't add packets which are already too old to be decoded.
+ if (!last_decoded_state_.in_initial_state()) {
+ latest_received_sequence_number_ = LatestSequenceNumber(
+ latest_received_sequence_number_, last_decoded_state_.sequence_num());
+ }
+ if (IsNewerSequenceNumber(sequence_number,
+ latest_received_sequence_number_)) {
+ // Push any missing sequence numbers to the NACK list.
+ for (uint16_t i = latest_received_sequence_number_ + 1;
+ IsNewerSequenceNumber(sequence_number, i); ++i) {
+ missing_sequence_numbers_.insert(missing_sequence_numbers_.end(), i);
+ }
+ if (TooLargeNackList() && !HandleTooLargeNackList()) {
+ RTC_LOG(LS_WARNING) << "Requesting key frame due to too large NACK list.";
+ return false;
+ }
+ if (MissingTooOldPacket(sequence_number) &&
+ !HandleTooOldPackets(sequence_number)) {
+ RTC_LOG(LS_WARNING)
+ << "Requesting key frame due to missing too old packets";
+ return false;
+ }
+ } else {
+ missing_sequence_numbers_.erase(sequence_number);
+ }
+ return true;
+}
+
+bool VCMJitterBuffer::TooLargeNackList() const {
+ return missing_sequence_numbers_.size() > max_nack_list_size_;
+}
+
+bool VCMJitterBuffer::HandleTooLargeNackList() {
+ // Recycle frames until the NACK list is small enough. It is likely cheaper to
+ // request a key frame than to retransmit this many missing packets.
+ RTC_LOG_F(LS_WARNING) << "NACK list has grown too large: "
+ << missing_sequence_numbers_.size() << " > "
+ << max_nack_list_size_;
+ bool key_frame_found = false;
+ while (TooLargeNackList()) {
+ key_frame_found = RecycleFramesUntilKeyFrame();
+ }
+ return key_frame_found;
+}
+
+bool VCMJitterBuffer::MissingTooOldPacket(
+ uint16_t latest_sequence_number) const {
+ if (missing_sequence_numbers_.empty()) {
+ return false;
+ }
+ const uint16_t age_of_oldest_missing_packet =
+ latest_sequence_number - *missing_sequence_numbers_.begin();
+ // Recycle frames if the NACK list contains too old sequence numbers as
+ // the packets may have already been dropped by the sender.
+ return age_of_oldest_missing_packet > max_packet_age_to_nack_;
+}
+
+bool VCMJitterBuffer::HandleTooOldPackets(uint16_t latest_sequence_number) {
+ bool key_frame_found = false;
+ const uint16_t age_of_oldest_missing_packet =
+ latest_sequence_number - *missing_sequence_numbers_.begin();
+ RTC_LOG_F(LS_WARNING) << "NACK list contains too old sequence numbers: "
+ << age_of_oldest_missing_packet << " > "
+ << max_packet_age_to_nack_;
+ while (MissingTooOldPacket(latest_sequence_number)) {
+ key_frame_found = RecycleFramesUntilKeyFrame();
+ }
+ return key_frame_found;
+}
+
+void VCMJitterBuffer::DropPacketsFromNackList(
+ uint16_t last_decoded_sequence_number) {
+ // Erase all sequence numbers from the NACK list which we won't need any
+ // longer.
+ missing_sequence_numbers_.erase(
+ missing_sequence_numbers_.begin(),
+ missing_sequence_numbers_.upper_bound(last_decoded_sequence_number));
+}
+
+VCMFrameBuffer* VCMJitterBuffer::GetEmptyFrame() {
+ if (free_frames_.empty()) {
+ if (!TryToIncreaseJitterBufferSize()) {
+ return NULL;
+ }
+ }
+ VCMFrameBuffer* frame = free_frames_.front();
+ free_frames_.pop_front();
+ return frame;
+}
+
+bool VCMJitterBuffer::TryToIncreaseJitterBufferSize() {
+ if (max_number_of_frames_ >= kMaxNumberOfFrames)
+ return false;
+ free_frames_.push_back(new VCMFrameBuffer());
+ ++max_number_of_frames_;
+ return true;
+}
+
+// Recycle oldest frames up to a key frame, used if jitter buffer is completely
+// full.
+bool VCMJitterBuffer::RecycleFramesUntilKeyFrame() {
+ // First release incomplete frames, and only release decodable frames if there
+ // are no incomplete ones.
+ FrameList::iterator key_frame_it;
+ bool key_frame_found = false;
+ int dropped_frames = 0;
+ dropped_frames += incomplete_frames_.RecycleFramesUntilKeyFrame(
+ &key_frame_it, &free_frames_);
+ key_frame_found = key_frame_it != incomplete_frames_.end();
+ if (dropped_frames == 0) {
+ dropped_frames += decodable_frames_.RecycleFramesUntilKeyFrame(
+ &key_frame_it, &free_frames_);
+ key_frame_found = key_frame_it != decodable_frames_.end();
+ }
+ if (key_frame_found) {
+ RTC_LOG(LS_INFO) << "Found key frame while dropping frames.";
+ // Reset last decoded state to make sure the next frame decoded is a key
+ // frame, and start NACKing from here.
+ last_decoded_state_.Reset();
+ DropPacketsFromNackList(EstimatedLowSequenceNumber(*key_frame_it->second));
+ } else if (decodable_frames_.empty()) {
+ // All frames dropped. Reset the decoding state and clear missing sequence
+ // numbers as we're starting fresh.
+ last_decoded_state_.Reset();
+ missing_sequence_numbers_.clear();
+ }
+ return key_frame_found;
+}
+
+void VCMJitterBuffer::UpdateAveragePacketsPerFrame(int current_number_packets) {
+ if (frame_counter_ > kFastConvergeThreshold) {
+ average_packets_per_frame_ =
+ average_packets_per_frame_ * (1 - kNormalConvergeMultiplier) +
+ current_number_packets * kNormalConvergeMultiplier;
+ } else if (frame_counter_ > 0) {
+ average_packets_per_frame_ =
+ average_packets_per_frame_ * (1 - kFastConvergeMultiplier) +
+ current_number_packets * kFastConvergeMultiplier;
+ frame_counter_++;
+ } else {
+ average_packets_per_frame_ = current_number_packets;
+ frame_counter_++;
+ }
+}
+
+// Must be called under the critical section `mutex_`.
+void VCMJitterBuffer::CleanUpOldOrEmptyFrames() {
+ decodable_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
+ &free_frames_);
+ incomplete_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
+ &free_frames_);
+ if (!last_decoded_state_.in_initial_state()) {
+ DropPacketsFromNackList(last_decoded_state_.sequence_num());
+ }
+}
+
+// Must be called from within `mutex_`.
+bool VCMJitterBuffer::IsPacketRetransmitted(const VCMPacket& packet) const {
+ return missing_sequence_numbers_.find(packet.seqNum) !=
+ missing_sequence_numbers_.end();
+}
+
+// Must be called under the critical section `mutex_`. Should never be
+// called with retransmitted frames, they must be filtered out before this
+// function is called.
+void VCMJitterBuffer::UpdateJitterEstimate(const VCMJitterSample& sample,
+ bool incomplete_frame) {
+ if (sample.latest_packet_time == -1) {
+ return;
+ }
+ UpdateJitterEstimate(sample.latest_packet_time, sample.timestamp,
+ sample.frame_size, incomplete_frame);
+}
+
+// Must be called under the critical section mutex_. Should never be
+// called with retransmitted frames, they must be filtered out before this
+// function is called.
+void VCMJitterBuffer::UpdateJitterEstimate(const VCMFrameBuffer& frame,
+ bool incomplete_frame) {
+ if (frame.LatestPacketTimeMs() == -1) {
+ return;
+ }
+ // No retransmitted frames should be a part of the jitter
+ // estimate.
+ UpdateJitterEstimate(frame.LatestPacketTimeMs(), frame.Timestamp(),
+ frame.size(), incomplete_frame);
+}
+
+// Must be called under the critical section `mutex_`. Should never be
+// called with retransmitted frames, they must be filtered out before this
+// function is called.
+void VCMJitterBuffer::UpdateJitterEstimate(int64_t latest_packet_time_ms,
+ uint32_t timestamp,
+ unsigned int frame_size,
+ bool /*incomplete_frame*/) {
+ if (latest_packet_time_ms == -1) {
+ return;
+ }
+ auto frame_delay = inter_frame_delay_.CalculateDelay(
+ timestamp, Timestamp::Millis(latest_packet_time_ms));
+
+ bool not_reordered = frame_delay.has_value();
+ // Filter out frames which have been reordered in time by the network
+ if (not_reordered) {
+ // Update the jitter estimate with the new samples
+ jitter_estimate_.UpdateEstimate(*frame_delay, DataSize::Bytes(frame_size));
+ }
+}
+
+void VCMJitterBuffer::RecycleFrameBuffer(VCMFrameBuffer* frame) {
+ frame->Reset();
+ free_frames_.push_back(frame);
+}
+
+} // namespace webrtc