summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/p2p/base/port_unittest.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
commit43a97878ce14b72f0981164f87f2e35e14151312 (patch)
tree620249daf56c0258faa40cbdcf9cfba06de2a846 /third_party/libwebrtc/p2p/base/port_unittest.cc
parentInitial commit. (diff)
downloadfirefox-43a97878ce14b72f0981164f87f2e35e14151312.tar.xz
firefox-43a97878ce14b72f0981164f87f2e35e14151312.zip
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/libwebrtc/p2p/base/port_unittest.cc')
-rw-r--r--third_party/libwebrtc/p2p/base/port_unittest.cc3824
1 files changed, 3824 insertions, 0 deletions
diff --git a/third_party/libwebrtc/p2p/base/port_unittest.cc b/third_party/libwebrtc/p2p/base/port_unittest.cc
new file mode 100644
index 0000000000..0bae3ece13
--- /dev/null
+++ b/third_party/libwebrtc/p2p/base/port_unittest.cc
@@ -0,0 +1,3824 @@
+/*
+ * Copyright 2004 The WebRTC Project Authors. All rights reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "p2p/base/port.h"
+
+#include <string.h>
+
+#include <cstdint>
+#include <limits>
+#include <list>
+#include <memory>
+#include <string>
+#include <utility>
+#include <vector>
+
+#include "absl/strings/string_view.h"
+#include "absl/types/optional.h"
+#include "api/candidate.h"
+#include "api/packet_socket_factory.h"
+#include "api/transport/stun.h"
+#include "api/units/time_delta.h"
+#include "p2p/base/basic_packet_socket_factory.h"
+#include "p2p/base/p2p_constants.h"
+#include "p2p/base/port_allocator.h"
+#include "p2p/base/port_interface.h"
+#include "p2p/base/stun_port.h"
+#include "p2p/base/stun_server.h"
+#include "p2p/base/tcp_port.h"
+#include "p2p/base/test_stun_server.h"
+#include "p2p/base/test_turn_server.h"
+#include "p2p/base/transport_description.h"
+#include "p2p/base/turn_port.h"
+#include "p2p/base/turn_server.h"
+#include "p2p/client/relay_port_factory_interface.h"
+#include "rtc_base/arraysize.h"
+#include "rtc_base/async_packet_socket.h"
+#include "rtc_base/buffer.h"
+#include "rtc_base/byte_buffer.h"
+#include "rtc_base/checks.h"
+#include "rtc_base/dscp.h"
+#include "rtc_base/fake_clock.h"
+#include "rtc_base/gunit.h"
+#include "rtc_base/helpers.h"
+#include "rtc_base/logging.h"
+#include "rtc_base/nat_server.h"
+#include "rtc_base/nat_socket_factory.h"
+#include "rtc_base/nat_types.h"
+#include "rtc_base/net_helper.h"
+#include "rtc_base/network.h"
+#include "rtc_base/network/sent_packet.h"
+#include "rtc_base/network_constants.h"
+#include "rtc_base/proxy_info.h"
+#include "rtc_base/socket.h"
+#include "rtc_base/socket_adapters.h"
+#include "rtc_base/socket_address.h"
+#include "rtc_base/third_party/sigslot/sigslot.h"
+#include "rtc_base/thread.h"
+#include "rtc_base/time_utils.h"
+#include "rtc_base/virtual_socket_server.h"
+#include "test/gtest.h"
+#include "test/scoped_key_value_config.h"
+
+using rtc::AsyncListenSocket;
+using rtc::AsyncPacketSocket;
+using rtc::ByteBufferReader;
+using rtc::ByteBufferWriter;
+using rtc::NAT_ADDR_RESTRICTED;
+using rtc::NAT_OPEN_CONE;
+using rtc::NAT_PORT_RESTRICTED;
+using rtc::NAT_SYMMETRIC;
+using rtc::NATType;
+using rtc::PacketSocketFactory;
+using rtc::Socket;
+using rtc::SocketAddress;
+
+namespace cricket {
+namespace {
+
+constexpr int kDefaultTimeout = 3000;
+constexpr int kShortTimeout = 1000;
+constexpr int kMaxExpectedSimulatedRtt = 200;
+const SocketAddress kLocalAddr1("192.168.1.2", 0);
+const SocketAddress kLocalAddr2("192.168.1.3", 0);
+const SocketAddress kLinkLocalIPv6Addr("fe80::aabb:ccff:fedd:eeff", 0);
+const SocketAddress kNatAddr1("77.77.77.77", rtc::NAT_SERVER_UDP_PORT);
+const SocketAddress kNatAddr2("88.88.88.88", rtc::NAT_SERVER_UDP_PORT);
+const SocketAddress kStunAddr("99.99.99.1", STUN_SERVER_PORT);
+const SocketAddress kTurnUdpIntAddr("99.99.99.4", STUN_SERVER_PORT);
+const SocketAddress kTurnTcpIntAddr("99.99.99.4", 5010);
+const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0);
+const RelayCredentials kRelayCredentials("test", "test");
+
+// TODO(?): Update these when RFC5245 is completely supported.
+// Magic value of 30 is from RFC3484, for IPv4 addresses.
+const uint32_t kDefaultPrflxPriority = ICE_TYPE_PREFERENCE_PRFLX << 24 |
+ 30 << 8 |
+ (256 - ICE_CANDIDATE_COMPONENT_DEFAULT);
+
+constexpr int kTiebreaker1 = 11111;
+constexpr int kTiebreaker2 = 22222;
+
+const char* data = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";
+
+Candidate GetCandidate(Port* port) {
+ RTC_DCHECK_GE(port->Candidates().size(), 1);
+ return port->Candidates()[0];
+}
+
+SocketAddress GetAddress(Port* port) {
+ return GetCandidate(port).address();
+}
+
+std::unique_ptr<IceMessage> CopyStunMessage(const IceMessage& src) {
+ auto dst = std::make_unique<IceMessage>();
+ ByteBufferWriter buf;
+ src.Write(&buf);
+ ByteBufferReader read_buf(buf);
+ dst->Read(&read_buf);
+ return dst;
+}
+
+bool WriteStunMessage(const StunMessage& msg, ByteBufferWriter* buf) {
+ buf->Resize(0); // clear out any existing buffer contents
+ return msg.Write(buf);
+}
+
+} // namespace
+
+// Stub port class for testing STUN generation and processing.
+class TestPort : public Port {
+ public:
+ TestPort(rtc::Thread* thread,
+ absl::string_view type,
+ rtc::PacketSocketFactory* factory,
+ const rtc::Network* network,
+ uint16_t min_port,
+ uint16_t max_port,
+ absl::string_view username_fragment,
+ absl::string_view password)
+ : Port(thread,
+ type,
+ factory,
+ network,
+ min_port,
+ max_port,
+ username_fragment,
+ password) {}
+ ~TestPort() {}
+
+ // Expose GetStunMessage so that we can test it.
+ using cricket::Port::GetStunMessage;
+
+ // The last StunMessage that was sent on this Port.
+ // TODO(?): Make these const; requires changes to SendXXXXResponse.
+ rtc::BufferT<uint8_t>* last_stun_buf() { return last_stun_buf_.get(); }
+ IceMessage* last_stun_msg() { return last_stun_msg_.get(); }
+ int last_stun_error_code() {
+ int code = 0;
+ if (last_stun_msg_) {
+ const StunErrorCodeAttribute* error_attr = last_stun_msg_->GetErrorCode();
+ if (error_attr) {
+ code = error_attr->code();
+ }
+ }
+ return code;
+ }
+
+ virtual void PrepareAddress() {
+ // Act as if the socket was bound to the best IP on the network, to the
+ // first port in the allowed range.
+ rtc::SocketAddress addr(Network()->GetBestIP(), min_port());
+ AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", "", Type(),
+ ICE_TYPE_PREFERENCE_HOST, 0, "", true);
+ }
+
+ virtual bool SupportsProtocol(absl::string_view protocol) const {
+ return true;
+ }
+
+ virtual ProtocolType GetProtocol() const { return PROTO_UDP; }
+
+ // Exposed for testing candidate building.
+ void AddCandidateAddress(const rtc::SocketAddress& addr) {
+ AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", "", Type(),
+ type_preference_, 0, "", false);
+ }
+ void AddCandidateAddress(const rtc::SocketAddress& addr,
+ const rtc::SocketAddress& base_address,
+ absl::string_view type,
+ int type_preference,
+ bool final) {
+ AddAddress(addr, base_address, rtc::SocketAddress(), "udp", "", "", type,
+ type_preference, 0, "", final);
+ }
+
+ virtual Connection* CreateConnection(const Candidate& remote_candidate,
+ CandidateOrigin origin) {
+ Connection* conn = new ProxyConnection(NewWeakPtr(), 0, remote_candidate);
+ AddOrReplaceConnection(conn);
+ // Set use-candidate attribute flag as this will add USE-CANDIDATE attribute
+ // in STUN binding requests.
+ conn->set_use_candidate_attr(true);
+ return conn;
+ }
+ virtual int SendTo(const void* data,
+ size_t size,
+ const rtc::SocketAddress& addr,
+ const rtc::PacketOptions& options,
+ bool payload) {
+ if (!payload) {
+ auto msg = std::make_unique<IceMessage>();
+ auto buf = std::make_unique<rtc::BufferT<uint8_t>>(
+ static_cast<const char*>(data), size);
+ ByteBufferReader read_buf(*buf);
+ if (!msg->Read(&read_buf)) {
+ return -1;
+ }
+ last_stun_buf_ = std::move(buf);
+ last_stun_msg_ = std::move(msg);
+ }
+ return static_cast<int>(size);
+ }
+ virtual int SetOption(rtc::Socket::Option opt, int value) { return 0; }
+ virtual int GetOption(rtc::Socket::Option opt, int* value) { return -1; }
+ virtual int GetError() { return 0; }
+ void Reset() {
+ last_stun_buf_.reset();
+ last_stun_msg_.reset();
+ }
+ void set_type_preference(int type_preference) {
+ type_preference_ = type_preference;
+ }
+
+ private:
+ void OnSentPacket(rtc::AsyncPacketSocket* socket,
+ const rtc::SentPacket& sent_packet) {
+ PortInterface::SignalSentPacket(sent_packet);
+ }
+ std::unique_ptr<rtc::BufferT<uint8_t>> last_stun_buf_;
+ std::unique_ptr<IceMessage> last_stun_msg_;
+ int type_preference_ = 0;
+};
+
+static void SendPingAndReceiveResponse(Connection* lconn,
+ TestPort* lport,
+ Connection* rconn,
+ TestPort* rport,
+ rtc::ScopedFakeClock* clock,
+ int64_t ms) {
+ lconn->Ping(rtc::TimeMillis());
+ ASSERT_TRUE_WAIT(lport->last_stun_msg(), kDefaultTimeout);
+ ASSERT_TRUE(lport->last_stun_buf());
+ rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
+ lport->last_stun_buf()->size(), /* packet_time_us */ -1);
+ clock->AdvanceTime(webrtc::TimeDelta::Millis(ms));
+ ASSERT_TRUE_WAIT(rport->last_stun_msg(), kDefaultTimeout);
+ ASSERT_TRUE(rport->last_stun_buf());
+ lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
+ rport->last_stun_buf()->size(), /* packet_time_us */ -1);
+}
+
+class TestChannel : public sigslot::has_slots<> {
+ public:
+ // Takes ownership of `p1` (but not `p2`).
+ explicit TestChannel(std::unique_ptr<Port> p1) : port_(std::move(p1)) {
+ port_->SignalPortComplete.connect(this, &TestChannel::OnPortComplete);
+ port_->SignalUnknownAddress.connect(this, &TestChannel::OnUnknownAddress);
+ port_->SubscribePortDestroyed(
+ [this](PortInterface* port) { OnSrcPortDestroyed(port); });
+ }
+
+ ~TestChannel() { Stop(); }
+
+ int complete_count() { return complete_count_; }
+ Connection* conn() { return conn_; }
+ const SocketAddress& remote_address() { return remote_address_; }
+ const std::string remote_fragment() { return remote_frag_; }
+
+ void Start() { port_->PrepareAddress(); }
+ void CreateConnection(const Candidate& remote_candidate) {
+ RTC_DCHECK(!conn_);
+ conn_ = port_->CreateConnection(remote_candidate, Port::ORIGIN_MESSAGE);
+ IceMode remote_ice_mode =
+ (ice_mode_ == ICEMODE_FULL) ? ICEMODE_LITE : ICEMODE_FULL;
+ conn_->set_use_candidate_attr(remote_ice_mode == ICEMODE_FULL);
+ conn_->SignalStateChange.connect(this,
+ &TestChannel::OnConnectionStateChange);
+ conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed);
+ conn_->SignalReadyToSend.connect(this,
+ &TestChannel::OnConnectionReadyToSend);
+ connection_ready_to_send_ = false;
+ }
+
+ void OnConnectionStateChange(Connection* conn) {
+ if (conn->write_state() == Connection::STATE_WRITABLE) {
+ conn->set_use_candidate_attr(true);
+ nominated_ = true;
+ }
+ }
+ void AcceptConnection(const Candidate& remote_candidate) {
+ if (conn_) {
+ conn_->SignalDestroyed.disconnect(this);
+ conn_ = nullptr;
+ }
+ ASSERT_TRUE(remote_request_.get() != NULL);
+ Candidate c = remote_candidate;
+ c.set_address(remote_address_);
+ conn_ = port_->CreateConnection(c, Port::ORIGIN_MESSAGE);
+ conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed);
+ conn_->SendStunBindingResponse(remote_request_.get());
+ remote_request_.reset();
+ }
+ void Ping() { Ping(0); }
+ void Ping(int64_t now) { conn_->Ping(now); }
+ void Stop() {
+ if (conn_) {
+ port_->DestroyConnection(conn_);
+ conn_ = nullptr;
+ }
+ }
+
+ void OnPortComplete(Port* port) { complete_count_++; }
+ void SetIceMode(IceMode ice_mode) { ice_mode_ = ice_mode; }
+
+ int SendData(const char* data, size_t len) {
+ rtc::PacketOptions options;
+ return conn_->Send(data, len, options);
+ }
+
+ void OnUnknownAddress(PortInterface* port,
+ const SocketAddress& addr,
+ ProtocolType proto,
+ IceMessage* msg,
+ const std::string& rf,
+ bool /*port_muxed*/) {
+ ASSERT_EQ(port_.get(), port);
+ if (!remote_address_.IsNil()) {
+ ASSERT_EQ(remote_address_, addr);
+ }
+ const cricket::StunUInt32Attribute* priority_attr =
+ msg->GetUInt32(STUN_ATTR_PRIORITY);
+ const cricket::StunByteStringAttribute* mi_attr =
+ msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY);
+ const cricket::StunUInt32Attribute* fingerprint_attr =
+ msg->GetUInt32(STUN_ATTR_FINGERPRINT);
+ EXPECT_TRUE(priority_attr != NULL);
+ EXPECT_TRUE(mi_attr != NULL);
+ EXPECT_TRUE(fingerprint_attr != NULL);
+ remote_address_ = addr;
+ remote_request_ = CopyStunMessage(*msg);
+ remote_frag_ = rf;
+ }
+
+ void OnDestroyed(Connection* conn) {
+ ASSERT_EQ(conn_, conn);
+ RTC_LOG(LS_INFO) << "OnDestroy connection " << conn << " deleted";
+ conn_ = nullptr;
+ // When the connection is destroyed, also clear these fields so future
+ // connections are possible.
+ remote_request_.reset();
+ remote_address_.Clear();
+ }
+
+ void OnSrcPortDestroyed(PortInterface* port) {
+ Port* destroyed_src = port_.release();
+ ASSERT_EQ(destroyed_src, port);
+ }
+
+ Port* port() { return port_.get(); }
+
+ bool nominated() const { return nominated_; }
+
+ void set_connection_ready_to_send(bool ready) {
+ connection_ready_to_send_ = ready;
+ }
+ bool connection_ready_to_send() const { return connection_ready_to_send_; }
+
+ private:
+ // ReadyToSend will only issue after a Connection recovers from ENOTCONN
+ void OnConnectionReadyToSend(Connection* conn) {
+ ASSERT_EQ(conn, conn_);
+ connection_ready_to_send_ = true;
+ }
+
+ IceMode ice_mode_ = ICEMODE_FULL;
+ std::unique_ptr<Port> port_;
+
+ int complete_count_ = 0;
+ Connection* conn_ = nullptr;
+ SocketAddress remote_address_;
+ std::unique_ptr<StunMessage> remote_request_;
+ std::string remote_frag_;
+ bool nominated_ = false;
+ bool connection_ready_to_send_ = false;
+};
+
+class PortTest : public ::testing::Test, public sigslot::has_slots<> {
+ public:
+ PortTest()
+ : ss_(new rtc::VirtualSocketServer()),
+ main_(ss_.get()),
+ socket_factory_(ss_.get()),
+ nat_factory1_(ss_.get(), kNatAddr1, SocketAddress()),
+ nat_factory2_(ss_.get(), kNatAddr2, SocketAddress()),
+ nat_socket_factory1_(&nat_factory1_),
+ nat_socket_factory2_(&nat_factory2_),
+ stun_server_(TestStunServer::Create(ss_.get(), kStunAddr)),
+ turn_server_(&main_, ss_.get(), kTurnUdpIntAddr, kTurnUdpExtAddr),
+ username_(rtc::CreateRandomString(ICE_UFRAG_LENGTH)),
+ password_(rtc::CreateRandomString(ICE_PWD_LENGTH)),
+ role_conflict_(false),
+ ports_destroyed_(0) {}
+
+ ~PortTest() {
+ // Workaround for tests that trigger async destruction of objects that we
+ // need to give an opportunity here to run, before proceeding with other
+ // teardown.
+ rtc::Thread::Current()->ProcessMessages(0);
+ }
+
+ protected:
+ std::string password() { return password_; }
+
+ void TestLocalToLocal() {
+ auto port1 = CreateUdpPort(kLocalAddr1);
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ auto port2 = CreateUdpPort(kLocalAddr2);
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ TestConnectivity("udp", std::move(port1), "udp", std::move(port2), true,
+ true, true, true);
+ }
+ void TestLocalToStun(NATType ntype) {
+ auto port1 = CreateUdpPort(kLocalAddr1);
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ nat_server2_ = CreateNatServer(kNatAddr2, ntype);
+ auto port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ TestConnectivity("udp", std::move(port1), StunName(ntype), std::move(port2),
+ ntype == NAT_OPEN_CONE, true, ntype != NAT_SYMMETRIC,
+ true);
+ }
+ void TestLocalToRelay(ProtocolType proto) {
+ auto port1 = CreateUdpPort(kLocalAddr1);
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ auto port2 = CreateRelayPort(kLocalAddr2, proto, PROTO_UDP);
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ TestConnectivity("udp", std::move(port1), RelayName(proto),
+ std::move(port2), false, true, true, true);
+ }
+ void TestStunToLocal(NATType ntype) {
+ nat_server1_ = CreateNatServer(kNatAddr1, ntype);
+ auto port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ auto port2 = CreateUdpPort(kLocalAddr2);
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ TestConnectivity(StunName(ntype), std::move(port1), "udp", std::move(port2),
+ true, ntype != NAT_SYMMETRIC, true, true);
+ }
+ void TestStunToStun(NATType ntype1, NATType ntype2) {
+ nat_server1_ = CreateNatServer(kNatAddr1, ntype1);
+ auto port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ nat_server2_ = CreateNatServer(kNatAddr2, ntype2);
+ auto port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ TestConnectivity(StunName(ntype1), std::move(port1), StunName(ntype2),
+ std::move(port2), ntype2 == NAT_OPEN_CONE,
+ ntype1 != NAT_SYMMETRIC, ntype2 != NAT_SYMMETRIC,
+ ntype1 + ntype2 < (NAT_PORT_RESTRICTED + NAT_SYMMETRIC));
+ }
+ void TestStunToRelay(NATType ntype, ProtocolType proto) {
+ nat_server1_ = CreateNatServer(kNatAddr1, ntype);
+ auto port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ auto port2 = CreateRelayPort(kLocalAddr2, proto, PROTO_UDP);
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ TestConnectivity(StunName(ntype), std::move(port1), RelayName(proto),
+ std::move(port2), false, ntype != NAT_SYMMETRIC, true,
+ true);
+ }
+ void TestTcpToTcp() {
+ auto port1 = CreateTcpPort(kLocalAddr1);
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ auto port2 = CreateTcpPort(kLocalAddr2);
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ TestConnectivity("tcp", std::move(port1), "tcp", std::move(port2), true,
+ false, true, true);
+ }
+ void TestTcpToRelay(ProtocolType proto) {
+ auto port1 = CreateTcpPort(kLocalAddr1);
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ auto port2 = CreateRelayPort(kLocalAddr2, proto, PROTO_TCP);
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ TestConnectivity("tcp", std::move(port1), RelayName(proto),
+ std::move(port2), false, false, true, true);
+ }
+ void TestSslTcpToRelay(ProtocolType proto) {
+ auto port1 = CreateTcpPort(kLocalAddr1);
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ auto port2 = CreateRelayPort(kLocalAddr2, proto, PROTO_SSLTCP);
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ TestConnectivity("ssltcp", std::move(port1), RelayName(proto),
+ std::move(port2), false, false, true, true);
+ }
+
+ rtc::Network* MakeNetwork(const SocketAddress& addr) {
+ networks_.emplace_back("unittest", "unittest", addr.ipaddr(), 32);
+ networks_.back().AddIP(addr.ipaddr());
+ return &networks_.back();
+ }
+
+ rtc::Network* MakeNetworkMultipleAddrs(
+ const SocketAddress& global_addr,
+ const SocketAddress& link_local_addr,
+ const webrtc::FieldTrialsView* field_trials) {
+ networks_.emplace_back("unittest", "unittest", global_addr.ipaddr(), 32,
+ rtc::ADAPTER_TYPE_UNKNOWN, field_trials);
+ networks_.back().AddIP(link_local_addr.ipaddr());
+ networks_.back().AddIP(global_addr.ipaddr());
+ networks_.back().AddIP(link_local_addr.ipaddr());
+ return &networks_.back();
+ }
+
+ // helpers for above functions
+ std::unique_ptr<UDPPort> CreateUdpPort(const SocketAddress& addr) {
+ return CreateUdpPort(addr, &socket_factory_);
+ }
+ std::unique_ptr<UDPPort> CreateUdpPort(const SocketAddress& addr,
+ PacketSocketFactory* socket_factory) {
+ return UDPPort::Create(&main_, socket_factory, MakeNetwork(addr), 0, 0,
+ username_, password_, true, absl::nullopt,
+ &field_trials_);
+ }
+ std::unique_ptr<UDPPort> CreateUdpPortMultipleAddrs(
+ const SocketAddress& global_addr,
+ const SocketAddress& link_local_addr,
+ PacketSocketFactory* socket_factory,
+ const webrtc::test::ScopedKeyValueConfig& field_trials) {
+ return UDPPort::Create(
+ &main_, socket_factory,
+ MakeNetworkMultipleAddrs(global_addr, link_local_addr, &field_trials),
+ 0, 0, username_, password_, true, absl::nullopt, &field_trials);
+ }
+ std::unique_ptr<TCPPort> CreateTcpPort(const SocketAddress& addr) {
+ return CreateTcpPort(addr, &socket_factory_);
+ }
+ std::unique_ptr<TCPPort> CreateTcpPort(const SocketAddress& addr,
+ PacketSocketFactory* socket_factory) {
+ return TCPPort::Create(&main_, socket_factory, MakeNetwork(addr), 0, 0,
+ username_, password_, true, &field_trials_);
+ }
+ std::unique_ptr<StunPort> CreateStunPort(const SocketAddress& addr,
+ rtc::PacketSocketFactory* factory) {
+ ServerAddresses stun_servers;
+ stun_servers.insert(kStunAddr);
+ return StunPort::Create(&main_, factory, MakeNetwork(addr), 0, 0, username_,
+ password_, stun_servers, absl::nullopt,
+ &field_trials_);
+ }
+ std::unique_ptr<Port> CreateRelayPort(const SocketAddress& addr,
+ ProtocolType int_proto,
+ ProtocolType ext_proto) {
+ return CreateTurnPort(addr, &socket_factory_, int_proto, ext_proto);
+ }
+ std::unique_ptr<TurnPort> CreateTurnPort(const SocketAddress& addr,
+ PacketSocketFactory* socket_factory,
+ ProtocolType int_proto,
+ ProtocolType ext_proto) {
+ SocketAddress server_addr =
+ int_proto == PROTO_TCP ? kTurnTcpIntAddr : kTurnUdpIntAddr;
+ return CreateTurnPort(addr, socket_factory, int_proto, ext_proto,
+ server_addr);
+ }
+ std::unique_ptr<TurnPort> CreateTurnPort(
+ const SocketAddress& addr,
+ PacketSocketFactory* socket_factory,
+ ProtocolType int_proto,
+ ProtocolType ext_proto,
+ const rtc::SocketAddress& server_addr) {
+ RelayServerConfig config;
+ config.credentials = kRelayCredentials;
+ ProtocolAddress server_address(server_addr, int_proto);
+ CreateRelayPortArgs args;
+ args.network_thread = &main_;
+ args.socket_factory = socket_factory;
+ args.network = MakeNetwork(addr);
+ args.username = username_;
+ args.password = password_;
+ args.server_address = &server_address;
+ args.config = &config;
+ args.field_trials = &field_trials_;
+
+ return TurnPort::Create(args, 0, 0);
+ }
+
+ std::unique_ptr<rtc::NATServer> CreateNatServer(const SocketAddress& addr,
+ rtc::NATType type) {
+ return std::make_unique<rtc::NATServer>(type, ss_.get(), addr, addr,
+ ss_.get(), addr);
+ }
+ static const char* StunName(NATType type) {
+ switch (type) {
+ case NAT_OPEN_CONE:
+ return "stun(open cone)";
+ case NAT_ADDR_RESTRICTED:
+ return "stun(addr restricted)";
+ case NAT_PORT_RESTRICTED:
+ return "stun(port restricted)";
+ case NAT_SYMMETRIC:
+ return "stun(symmetric)";
+ default:
+ return "stun(?)";
+ }
+ }
+ static const char* RelayName(ProtocolType proto) {
+ switch (proto) {
+ case PROTO_UDP:
+ return "turn(udp)";
+ case PROTO_TCP:
+ return "turn(tcp)";
+ case PROTO_SSLTCP:
+ return "turn(ssltcp)";
+ case PROTO_TLS:
+ return "turn(tls)";
+ default:
+ return "turn(?)";
+ }
+ }
+
+ void TestCrossFamilyPorts(int type);
+
+ void ExpectPortsCanConnect(bool can_connect, Port* p1, Port* p2);
+
+ // This does all the work and then deletes `port1` and `port2`.
+ void TestConnectivity(absl::string_view name1,
+ std::unique_ptr<Port> port1,
+ absl::string_view name2,
+ std::unique_ptr<Port> port2,
+ bool accept,
+ bool same_addr1,
+ bool same_addr2,
+ bool possible);
+
+ // This connects the provided channels which have already started. `ch1`
+ // should have its Connection created (either through CreateConnection() or
+ // TCP reconnecting mechanism before entering this function.
+ void ConnectStartedChannels(TestChannel* ch1, TestChannel* ch2) {
+ ASSERT_TRUE(ch1->conn());
+ EXPECT_TRUE_WAIT(ch1->conn()->connected(),
+ kDefaultTimeout); // for TCP connect
+ ch1->Ping();
+ WAIT(!ch2->remote_address().IsNil(), kShortTimeout);
+
+ // Send a ping from dst to src.
+ ch2->AcceptConnection(GetCandidate(ch1->port()));
+ ch2->Ping();
+ EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2->conn()->write_state(),
+ kDefaultTimeout);
+ }
+
+ // This connects and disconnects the provided channels in the same sequence as
+ // TestConnectivity with all options set to `true`. It does not delete either
+ // channel.
+ void StartConnectAndStopChannels(TestChannel* ch1, TestChannel* ch2) {
+ // Acquire addresses.
+ ch1->Start();
+ ch2->Start();
+
+ ch1->CreateConnection(GetCandidate(ch2->port()));
+ ConnectStartedChannels(ch1, ch2);
+
+ // Destroy the connections.
+ ch1->Stop();
+ ch2->Stop();
+ }
+
+ // This disconnects both end's Connection and make sure ch2 ready for new
+ // connection.
+ void DisconnectTcpTestChannels(TestChannel* ch1, TestChannel* ch2) {
+ TCPConnection* tcp_conn1 = static_cast<TCPConnection*>(ch1->conn());
+ TCPConnection* tcp_conn2 = static_cast<TCPConnection*>(ch2->conn());
+ ASSERT_TRUE(
+ ss_->CloseTcpConnections(tcp_conn1->socket()->GetLocalAddress(),
+ tcp_conn2->socket()->GetLocalAddress()));
+
+ // Wait for both OnClose are delivered.
+ EXPECT_TRUE_WAIT(!ch1->conn()->connected(), kDefaultTimeout);
+ EXPECT_TRUE_WAIT(!ch2->conn()->connected(), kDefaultTimeout);
+
+ // Ensure redundant SignalClose events on TcpConnection won't break tcp
+ // reconnection. Chromium will fire SignalClose for all outstanding IPC
+ // packets during reconnection.
+ tcp_conn1->socket()->NotifyClosedForTest(0);
+ tcp_conn2->socket()->NotifyClosedForTest(0);
+
+ // Speed up destroying ch2's connection such that the test is ready to
+ // accept a new connection from ch1 before ch1's connection destroys itself.
+ ch2->Stop();
+ EXPECT_TRUE_WAIT(ch2->conn() == NULL, kDefaultTimeout);
+ }
+
+ void TestTcpReconnect(bool ping_after_disconnected,
+ bool send_after_disconnected) {
+ auto port1 = CreateTcpPort(kLocalAddr1);
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ auto port2 = CreateTcpPort(kLocalAddr2);
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+
+ port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
+ port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
+
+ // Set up channels and ensure both ports will be deleted.
+ TestChannel ch1(std::move(port1));
+ TestChannel ch2(std::move(port2));
+ EXPECT_EQ(0, ch1.complete_count());
+ EXPECT_EQ(0, ch2.complete_count());
+
+ ch1.Start();
+ ch2.Start();
+ ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
+ ASSERT_EQ_WAIT(1, ch2.complete_count(), kDefaultTimeout);
+
+ // Initial connecting the channel, create connection on channel1.
+ ch1.CreateConnection(GetCandidate(ch2.port()));
+ ConnectStartedChannels(&ch1, &ch2);
+
+ // Shorten the timeout period.
+ const int kTcpReconnectTimeout = kDefaultTimeout;
+ static_cast<TCPConnection*>(ch1.conn())
+ ->set_reconnection_timeout(kTcpReconnectTimeout);
+ static_cast<TCPConnection*>(ch2.conn())
+ ->set_reconnection_timeout(kTcpReconnectTimeout);
+
+ EXPECT_FALSE(ch1.connection_ready_to_send());
+ EXPECT_FALSE(ch2.connection_ready_to_send());
+
+ // Once connected, disconnect them.
+ DisconnectTcpTestChannels(&ch1, &ch2);
+
+ if (send_after_disconnected || ping_after_disconnected) {
+ if (send_after_disconnected) {
+ // First SendData after disconnect should fail but will trigger
+ // reconnect.
+ EXPECT_EQ(-1, ch1.SendData(data, static_cast<int>(strlen(data))));
+ }
+
+ if (ping_after_disconnected) {
+ // Ping should trigger reconnect.
+ ch1.Ping();
+ }
+
+ // Wait for channel's outgoing TCPConnection connected.
+ EXPECT_TRUE_WAIT(ch1.conn()->connected(), kDefaultTimeout);
+
+ // Verify that we could still connect channels.
+ ConnectStartedChannels(&ch1, &ch2);
+ EXPECT_TRUE_WAIT(ch1.connection_ready_to_send(), kTcpReconnectTimeout);
+ // Channel2 is the passive one so a new connection is created during
+ // reconnect. This new connection should never have issued ENOTCONN
+ // hence the connection_ready_to_send() should be false.
+ EXPECT_FALSE(ch2.connection_ready_to_send());
+ } else {
+ EXPECT_EQ(ch1.conn()->write_state(), Connection::STATE_WRITABLE);
+ // Since the reconnection never happens, the connections should have been
+ // destroyed after the timeout.
+ EXPECT_TRUE_WAIT(!ch1.conn(), kTcpReconnectTimeout + kDefaultTimeout);
+ EXPECT_TRUE(!ch2.conn());
+ }
+
+ // Tear down and ensure that goes smoothly.
+ ch1.Stop();
+ ch2.Stop();
+ EXPECT_TRUE_WAIT(ch1.conn() == NULL, kDefaultTimeout);
+ EXPECT_TRUE_WAIT(ch2.conn() == NULL, kDefaultTimeout);
+ }
+
+ std::unique_ptr<IceMessage> CreateStunMessage(StunMessageType type) {
+ auto msg = std::make_unique<IceMessage>(type, "TESTTESTTEST");
+ return msg;
+ }
+ std::unique_ptr<IceMessage> CreateStunMessageWithUsername(
+ StunMessageType type,
+ absl::string_view username) {
+ std::unique_ptr<IceMessage> msg = CreateStunMessage(type);
+ msg->AddAttribute(std::make_unique<StunByteStringAttribute>(
+ STUN_ATTR_USERNAME, std::string(username)));
+ return msg;
+ }
+ std::unique_ptr<TestPort> CreateTestPort(const rtc::SocketAddress& addr,
+ absl::string_view username,
+ absl::string_view password) {
+ auto port =
+ std::make_unique<TestPort>(&main_, "test", &socket_factory_,
+ MakeNetwork(addr), 0, 0, username, password);
+ port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict);
+ return port;
+ }
+ std::unique_ptr<TestPort> CreateTestPort(const rtc::SocketAddress& addr,
+ absl::string_view username,
+ absl::string_view password,
+ cricket::IceRole role,
+ int tiebreaker) {
+ auto port = CreateTestPort(addr, username, password);
+ port->SetIceRole(role);
+ port->SetIceTiebreaker(tiebreaker);
+ return port;
+ }
+ // Overload to create a test port given an rtc::Network directly.
+ std::unique_ptr<TestPort> CreateTestPort(const rtc::Network* network,
+ absl::string_view username,
+ absl::string_view password) {
+ auto port = std::make_unique<TestPort>(&main_, "test", &socket_factory_,
+ network, 0, 0, username, password);
+ port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict);
+ return port;
+ }
+
+ void OnRoleConflict(PortInterface* port) { role_conflict_ = true; }
+ bool role_conflict() const { return role_conflict_; }
+
+ void ConnectToSignalDestroyed(PortInterface* port) {
+ port->SubscribePortDestroyed(
+ [this](PortInterface* port) { OnDestroyed(port); });
+ }
+
+ void OnDestroyed(PortInterface* port) { ++ports_destroyed_; }
+ int ports_destroyed() const { return ports_destroyed_; }
+
+ rtc::BasicPacketSocketFactory* nat_socket_factory1() {
+ return &nat_socket_factory1_;
+ }
+
+ rtc::VirtualSocketServer* vss() { return ss_.get(); }
+
+ private:
+ // When a "create port" helper method is called with an IP, we create a
+ // Network with that IP and add it to this list. Using a list instead of a
+ // vector so that when it grows, pointers aren't invalidated.
+ std::list<rtc::Network> networks_;
+ std::unique_ptr<rtc::VirtualSocketServer> ss_;
+ rtc::AutoSocketServerThread main_;
+ rtc::BasicPacketSocketFactory socket_factory_;
+ std::unique_ptr<rtc::NATServer> nat_server1_;
+ std::unique_ptr<rtc::NATServer> nat_server2_;
+ rtc::NATSocketFactory nat_factory1_;
+ rtc::NATSocketFactory nat_factory2_;
+ rtc::BasicPacketSocketFactory nat_socket_factory1_;
+ rtc::BasicPacketSocketFactory nat_socket_factory2_;
+ std::unique_ptr<TestStunServer> stun_server_;
+ TestTurnServer turn_server_;
+ std::string username_;
+ std::string password_;
+ bool role_conflict_;
+ int ports_destroyed_;
+ webrtc::test::ScopedKeyValueConfig field_trials_;
+};
+
+void PortTest::TestConnectivity(absl::string_view name1,
+ std::unique_ptr<Port> port1,
+ absl::string_view name2,
+ std::unique_ptr<Port> port2,
+ bool accept,
+ bool same_addr1,
+ bool same_addr2,
+ bool possible) {
+ rtc::ScopedFakeClock clock;
+ RTC_LOG(LS_INFO) << "Test: " << name1 << " to " << name2 << ": ";
+ port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
+ port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
+
+ // Set up channels and ensure both ports will be deleted.
+ TestChannel ch1(std::move(port1));
+ TestChannel ch2(std::move(port2));
+ EXPECT_EQ(0, ch1.complete_count());
+ EXPECT_EQ(0, ch2.complete_count());
+
+ // Acquire addresses.
+ ch1.Start();
+ ch2.Start();
+ ASSERT_EQ_SIMULATED_WAIT(1, ch1.complete_count(), kDefaultTimeout, clock);
+ ASSERT_EQ_SIMULATED_WAIT(1, ch2.complete_count(), kDefaultTimeout, clock);
+
+ // Send a ping from src to dst. This may or may not make it.
+ ch1.CreateConnection(GetCandidate(ch2.port()));
+ ASSERT_TRUE(ch1.conn() != NULL);
+ EXPECT_TRUE_SIMULATED_WAIT(ch1.conn()->connected(), kDefaultTimeout,
+ clock); // for TCP connect
+ ch1.Ping();
+ SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock);
+
+ if (accept) {
+ // We are able to send a ping from src to dst. This is the case when
+ // sending to UDP ports and cone NATs.
+ EXPECT_TRUE(ch1.remote_address().IsNil());
+ EXPECT_EQ(ch2.remote_fragment(), ch1.port()->username_fragment());
+
+ // Ensure the ping came from the same address used for src.
+ // This is the case unless the source NAT was symmetric.
+ if (same_addr1)
+ EXPECT_EQ(ch2.remote_address(), GetAddress(ch1.port()));
+ EXPECT_TRUE(same_addr2);
+
+ // Send a ping from dst to src.
+ ch2.AcceptConnection(GetCandidate(ch1.port()));
+ ASSERT_TRUE(ch2.conn() != NULL);
+ ch2.Ping();
+ EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
+ ch2.conn()->write_state(), kDefaultTimeout, clock);
+ } else {
+ // We can't send a ping from src to dst, so flip it around. This will happen
+ // when the destination NAT is addr/port restricted or symmetric.
+ EXPECT_TRUE(ch1.remote_address().IsNil());
+ EXPECT_TRUE(ch2.remote_address().IsNil());
+
+ // Send a ping from dst to src. Again, this may or may not make it.
+ ch2.CreateConnection(GetCandidate(ch1.port()));
+ ASSERT_TRUE(ch2.conn() != NULL);
+ ch2.Ping();
+ SIMULATED_WAIT(ch2.conn()->write_state() == Connection::STATE_WRITABLE,
+ kShortTimeout, clock);
+
+ if (same_addr1 && same_addr2) {
+ // The new ping got back to the source.
+ EXPECT_TRUE(ch1.conn()->receiving());
+ EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
+
+ // First connection may not be writable if the first ping did not get
+ // through. So we will have to do another.
+ if (ch1.conn()->write_state() == Connection::STATE_WRITE_INIT) {
+ ch1.Ping();
+ EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
+ ch1.conn()->write_state(), kDefaultTimeout,
+ clock);
+ }
+ } else if (!same_addr1 && possible) {
+ // The new ping went to the candidate address, but that address was bad.
+ // This will happen when the source NAT is symmetric.
+ EXPECT_TRUE(ch1.remote_address().IsNil());
+ EXPECT_TRUE(ch2.remote_address().IsNil());
+
+ // However, since we have now sent a ping to the source IP, we should be
+ // able to get a ping from it. This gives us the real source address.
+ ch1.Ping();
+ EXPECT_TRUE_SIMULATED_WAIT(!ch2.remote_address().IsNil(), kDefaultTimeout,
+ clock);
+ EXPECT_FALSE(ch2.conn()->receiving());
+ EXPECT_TRUE(ch1.remote_address().IsNil());
+
+ // Pick up the actual address and establish the connection.
+ ch2.AcceptConnection(GetCandidate(ch1.port()));
+ ASSERT_TRUE(ch2.conn() != NULL);
+ ch2.Ping();
+ EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
+ ch2.conn()->write_state(), kDefaultTimeout,
+ clock);
+ } else if (!same_addr2 && possible) {
+ // The new ping came in, but from an unexpected address. This will happen
+ // when the destination NAT is symmetric.
+ EXPECT_FALSE(ch1.remote_address().IsNil());
+ EXPECT_FALSE(ch1.conn()->receiving());
+
+ // Update our address and complete the connection.
+ ch1.AcceptConnection(GetCandidate(ch2.port()));
+ ch1.Ping();
+ EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
+ ch1.conn()->write_state(), kDefaultTimeout,
+ clock);
+ } else { // (!possible)
+ // There should be s no way for the pings to reach each other. Check it.
+ EXPECT_TRUE(ch1.remote_address().IsNil());
+ EXPECT_TRUE(ch2.remote_address().IsNil());
+ ch1.Ping();
+ SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock);
+ EXPECT_TRUE(ch1.remote_address().IsNil());
+ EXPECT_TRUE(ch2.remote_address().IsNil());
+ }
+ }
+
+ // Everything should be good, unless we know the situation is impossible.
+ ASSERT_TRUE(ch1.conn() != NULL);
+ ASSERT_TRUE(ch2.conn() != NULL);
+ if (possible) {
+ EXPECT_TRUE(ch1.conn()->receiving());
+ EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
+ EXPECT_TRUE(ch2.conn()->receiving());
+ EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
+ } else {
+ EXPECT_FALSE(ch1.conn()->receiving());
+ EXPECT_NE(Connection::STATE_WRITABLE, ch1.conn()->write_state());
+ EXPECT_FALSE(ch2.conn()->receiving());
+ EXPECT_NE(Connection::STATE_WRITABLE, ch2.conn()->write_state());
+ }
+
+ // Tear down and ensure that goes smoothly.
+ ch1.Stop();
+ ch2.Stop();
+ EXPECT_TRUE_SIMULATED_WAIT(ch1.conn() == NULL, kDefaultTimeout, clock);
+ EXPECT_TRUE_SIMULATED_WAIT(ch2.conn() == NULL, kDefaultTimeout, clock);
+}
+
+class FakePacketSocketFactory : public rtc::PacketSocketFactory {
+ public:
+ FakePacketSocketFactory()
+ : next_udp_socket_(NULL), next_server_tcp_socket_(NULL) {}
+ ~FakePacketSocketFactory() override {}
+
+ AsyncPacketSocket* CreateUdpSocket(const SocketAddress& address,
+ uint16_t min_port,
+ uint16_t max_port) override {
+ EXPECT_TRUE(next_udp_socket_ != NULL);
+ AsyncPacketSocket* result = next_udp_socket_;
+ next_udp_socket_ = NULL;
+ return result;
+ }
+
+ AsyncListenSocket* CreateServerTcpSocket(const SocketAddress& local_address,
+ uint16_t min_port,
+ uint16_t max_port,
+ int opts) override {
+ EXPECT_TRUE(next_server_tcp_socket_ != NULL);
+ AsyncListenSocket* result = next_server_tcp_socket_;
+ next_server_tcp_socket_ = NULL;
+ return result;
+ }
+
+ AsyncPacketSocket* CreateClientTcpSocket(
+ const SocketAddress& local_address,
+ const SocketAddress& remote_address,
+ const rtc::ProxyInfo& proxy_info,
+ const std::string& user_agent,
+ const rtc::PacketSocketTcpOptions& opts) override {
+ EXPECT_TRUE(next_client_tcp_socket_.has_value());
+ AsyncPacketSocket* result = *next_client_tcp_socket_;
+ next_client_tcp_socket_ = nullptr;
+ return result;
+ }
+
+ void set_next_udp_socket(AsyncPacketSocket* next_udp_socket) {
+ next_udp_socket_ = next_udp_socket;
+ }
+ void set_next_server_tcp_socket(AsyncListenSocket* next_server_tcp_socket) {
+ next_server_tcp_socket_ = next_server_tcp_socket;
+ }
+ void set_next_client_tcp_socket(AsyncPacketSocket* next_client_tcp_socket) {
+ next_client_tcp_socket_ = next_client_tcp_socket;
+ }
+ std::unique_ptr<webrtc::AsyncDnsResolverInterface> CreateAsyncDnsResolver()
+ override {
+ return nullptr;
+ }
+
+ private:
+ AsyncPacketSocket* next_udp_socket_;
+ AsyncListenSocket* next_server_tcp_socket_;
+ absl::optional<AsyncPacketSocket*> next_client_tcp_socket_;
+};
+
+class FakeAsyncPacketSocket : public AsyncPacketSocket {
+ public:
+ // Returns current local address. Address may be set to NULL if the
+ // socket is not bound yet (GetState() returns STATE_BINDING).
+ virtual SocketAddress GetLocalAddress() const { return local_address_; }
+
+ // Returns remote address. Returns zeroes if this is not a client TCP socket.
+ virtual SocketAddress GetRemoteAddress() const { return remote_address_; }
+
+ // Send a packet.
+ virtual int Send(const void* pv,
+ size_t cb,
+ const rtc::PacketOptions& options) {
+ if (error_ == 0) {
+ return static_cast<int>(cb);
+ } else {
+ return -1;
+ }
+ }
+ virtual int SendTo(const void* pv,
+ size_t cb,
+ const SocketAddress& addr,
+ const rtc::PacketOptions& options) {
+ if (error_ == 0) {
+ return static_cast<int>(cb);
+ } else {
+ return -1;
+ }
+ }
+ virtual int Close() { return 0; }
+
+ virtual State GetState() const { return state_; }
+ virtual int GetOption(Socket::Option opt, int* value) { return 0; }
+ virtual int SetOption(Socket::Option opt, int value) { return 0; }
+ virtual int GetError() const { return 0; }
+ virtual void SetError(int error) { error_ = error; }
+
+ void set_state(State state) { state_ = state; }
+
+ SocketAddress local_address_;
+ SocketAddress remote_address_;
+
+ private:
+ int error_ = 0;
+ State state_;
+};
+
+class FakeAsyncListenSocket : public AsyncListenSocket {
+ public:
+ // Returns current local address. Address may be set to NULL if the
+ // socket is not bound yet (GetState() returns STATE_BINDING).
+ virtual SocketAddress GetLocalAddress() const { return local_address_; }
+ void Bind(const SocketAddress& address) {
+ local_address_ = address;
+ state_ = State::kBound;
+ }
+ virtual int GetOption(Socket::Option opt, int* value) { return 0; }
+ virtual int SetOption(Socket::Option opt, int value) { return 0; }
+ virtual State GetState() const { return state_; }
+
+ private:
+ SocketAddress local_address_;
+ State state_ = State::kClosed;
+};
+
+// Local -> XXXX
+TEST_F(PortTest, TestLocalToLocal) {
+ TestLocalToLocal();
+}
+
+TEST_F(PortTest, TestLocalToConeNat) {
+ TestLocalToStun(NAT_OPEN_CONE);
+}
+
+TEST_F(PortTest, TestLocalToARNat) {
+ TestLocalToStun(NAT_ADDR_RESTRICTED);
+}
+
+TEST_F(PortTest, TestLocalToPRNat) {
+ TestLocalToStun(NAT_PORT_RESTRICTED);
+}
+
+TEST_F(PortTest, TestLocalToSymNat) {
+ TestLocalToStun(NAT_SYMMETRIC);
+}
+
+// Flaky: https://code.google.com/p/webrtc/issues/detail?id=3316.
+TEST_F(PortTest, DISABLED_TestLocalToTurn) {
+ TestLocalToRelay(PROTO_UDP);
+}
+
+// Cone NAT -> XXXX
+TEST_F(PortTest, TestConeNatToLocal) {
+ TestStunToLocal(NAT_OPEN_CONE);
+}
+
+TEST_F(PortTest, TestConeNatToConeNat) {
+ TestStunToStun(NAT_OPEN_CONE, NAT_OPEN_CONE);
+}
+
+TEST_F(PortTest, TestConeNatToARNat) {
+ TestStunToStun(NAT_OPEN_CONE, NAT_ADDR_RESTRICTED);
+}
+
+TEST_F(PortTest, TestConeNatToPRNat) {
+ TestStunToStun(NAT_OPEN_CONE, NAT_PORT_RESTRICTED);
+}
+
+TEST_F(PortTest, TestConeNatToSymNat) {
+ TestStunToStun(NAT_OPEN_CONE, NAT_SYMMETRIC);
+}
+
+TEST_F(PortTest, TestConeNatToTurn) {
+ TestStunToRelay(NAT_OPEN_CONE, PROTO_UDP);
+}
+
+// Address-restricted NAT -> XXXX
+TEST_F(PortTest, TestARNatToLocal) {
+ TestStunToLocal(NAT_ADDR_RESTRICTED);
+}
+
+TEST_F(PortTest, TestARNatToConeNat) {
+ TestStunToStun(NAT_ADDR_RESTRICTED, NAT_OPEN_CONE);
+}
+
+TEST_F(PortTest, TestARNatToARNat) {
+ TestStunToStun(NAT_ADDR_RESTRICTED, NAT_ADDR_RESTRICTED);
+}
+
+TEST_F(PortTest, TestARNatToPRNat) {
+ TestStunToStun(NAT_ADDR_RESTRICTED, NAT_PORT_RESTRICTED);
+}
+
+TEST_F(PortTest, TestARNatToSymNat) {
+ TestStunToStun(NAT_ADDR_RESTRICTED, NAT_SYMMETRIC);
+}
+
+TEST_F(PortTest, TestARNatToTurn) {
+ TestStunToRelay(NAT_ADDR_RESTRICTED, PROTO_UDP);
+}
+
+// Port-restricted NAT -> XXXX
+TEST_F(PortTest, TestPRNatToLocal) {
+ TestStunToLocal(NAT_PORT_RESTRICTED);
+}
+
+TEST_F(PortTest, TestPRNatToConeNat) {
+ TestStunToStun(NAT_PORT_RESTRICTED, NAT_OPEN_CONE);
+}
+
+TEST_F(PortTest, TestPRNatToARNat) {
+ TestStunToStun(NAT_PORT_RESTRICTED, NAT_ADDR_RESTRICTED);
+}
+
+TEST_F(PortTest, TestPRNatToPRNat) {
+ TestStunToStun(NAT_PORT_RESTRICTED, NAT_PORT_RESTRICTED);
+}
+
+TEST_F(PortTest, TestPRNatToSymNat) {
+ // Will "fail"
+ TestStunToStun(NAT_PORT_RESTRICTED, NAT_SYMMETRIC);
+}
+
+TEST_F(PortTest, TestPRNatToTurn) {
+ TestStunToRelay(NAT_PORT_RESTRICTED, PROTO_UDP);
+}
+
+// Symmetric NAT -> XXXX
+TEST_F(PortTest, TestSymNatToLocal) {
+ TestStunToLocal(NAT_SYMMETRIC);
+}
+
+TEST_F(PortTest, TestSymNatToConeNat) {
+ TestStunToStun(NAT_SYMMETRIC, NAT_OPEN_CONE);
+}
+
+TEST_F(PortTest, TestSymNatToARNat) {
+ TestStunToStun(NAT_SYMMETRIC, NAT_ADDR_RESTRICTED);
+}
+
+TEST_F(PortTest, TestSymNatToPRNat) {
+ // Will "fail"
+ TestStunToStun(NAT_SYMMETRIC, NAT_PORT_RESTRICTED);
+}
+
+TEST_F(PortTest, TestSymNatToSymNat) {
+ // Will "fail"
+ TestStunToStun(NAT_SYMMETRIC, NAT_SYMMETRIC);
+}
+
+TEST_F(PortTest, TestSymNatToTurn) {
+ TestStunToRelay(NAT_SYMMETRIC, PROTO_UDP);
+}
+
+// Outbound TCP -> XXXX
+TEST_F(PortTest, TestTcpToTcp) {
+ TestTcpToTcp();
+}
+
+TEST_F(PortTest, TestTcpReconnectOnSendPacket) {
+ TestTcpReconnect(false /* ping */, true /* send */);
+}
+
+TEST_F(PortTest, TestTcpReconnectOnPing) {
+ TestTcpReconnect(true /* ping */, false /* send */);
+}
+
+TEST_F(PortTest, TestTcpReconnectTimeout) {
+ TestTcpReconnect(false /* ping */, false /* send */);
+}
+
+// Test when TcpConnection never connects, the OnClose() will be called to
+// destroy the connection.
+TEST_F(PortTest, TestTcpNeverConnect) {
+ auto port1 = CreateTcpPort(kLocalAddr1);
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
+
+ // Set up a channel and ensure the port will be deleted.
+ TestChannel ch1(std::move(port1));
+ EXPECT_EQ(0, ch1.complete_count());
+
+ ch1.Start();
+ ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
+
+ std::unique_ptr<rtc::Socket> server(
+ vss()->CreateSocket(kLocalAddr2.family(), SOCK_STREAM));
+ // Bind but not listen.
+ EXPECT_EQ(0, server->Bind(kLocalAddr2));
+
+ Candidate c = GetCandidate(ch1.port());
+ c.set_address(server->GetLocalAddress());
+
+ ch1.CreateConnection(c);
+ EXPECT_TRUE(ch1.conn());
+ EXPECT_TRUE_WAIT(!ch1.conn(), kDefaultTimeout); // for TCP connect
+}
+
+/* TODO(?): Enable these once testrelayserver can accept external TCP.
+TEST_F(PortTest, TestTcpToTcpRelay) {
+ TestTcpToRelay(PROTO_TCP);
+}
+
+TEST_F(PortTest, TestTcpToSslTcpRelay) {
+ TestTcpToRelay(PROTO_SSLTCP);
+}
+*/
+
+// Outbound SSLTCP -> XXXX
+/* TODO(?): Enable these once testrelayserver can accept external SSL.
+TEST_F(PortTest, TestSslTcpToTcpRelay) {
+ TestSslTcpToRelay(PROTO_TCP);
+}
+
+TEST_F(PortTest, TestSslTcpToSslTcpRelay) {
+ TestSslTcpToRelay(PROTO_SSLTCP);
+}
+*/
+
+// Test that a connection will be dead and deleted if
+// i) it has never received anything for MIN_CONNECTION_LIFETIME milliseconds
+// since it was created, or
+// ii) it has not received anything for DEAD_CONNECTION_RECEIVE_TIMEOUT
+// milliseconds since last receiving.
+TEST_F(PortTest, TestConnectionDead) {
+ TestChannel ch1(CreateUdpPort(kLocalAddr1));
+ TestChannel ch2(CreateUdpPort(kLocalAddr2));
+ // Acquire address.
+ ch1.Start();
+ ch2.Start();
+ ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
+ ASSERT_EQ_WAIT(1, ch2.complete_count(), kDefaultTimeout);
+
+ // Test case that the connection has never received anything.
+ int64_t before_created = rtc::TimeMillis();
+ ch1.CreateConnection(GetCandidate(ch2.port()));
+ int64_t after_created = rtc::TimeMillis();
+ Connection* conn = ch1.conn();
+ ASSERT_NE(conn, nullptr);
+ // It is not dead if it is after MIN_CONNECTION_LIFETIME but not pruned.
+ conn->UpdateState(after_created + MIN_CONNECTION_LIFETIME + 1);
+ rtc::Thread::Current()->ProcessMessages(0);
+ EXPECT_TRUE(ch1.conn() != nullptr);
+ // It is not dead if it is before MIN_CONNECTION_LIFETIME and pruned.
+ conn->UpdateState(before_created + MIN_CONNECTION_LIFETIME - 1);
+ conn->Prune();
+ rtc::Thread::Current()->ProcessMessages(0);
+ EXPECT_TRUE(ch1.conn() != nullptr);
+ // It will be dead after MIN_CONNECTION_LIFETIME and pruned.
+ conn->UpdateState(after_created + MIN_CONNECTION_LIFETIME + 1);
+ EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kDefaultTimeout);
+
+ // Test case that the connection has received something.
+ // Create a connection again and receive a ping.
+ ch1.CreateConnection(GetCandidate(ch2.port()));
+ conn = ch1.conn();
+ ASSERT_NE(conn, nullptr);
+ int64_t before_last_receiving = rtc::TimeMillis();
+ conn->ReceivedPing();
+ int64_t after_last_receiving = rtc::TimeMillis();
+ // The connection will be dead after DEAD_CONNECTION_RECEIVE_TIMEOUT
+ conn->UpdateState(before_last_receiving + DEAD_CONNECTION_RECEIVE_TIMEOUT -
+ 1);
+ rtc::Thread::Current()->ProcessMessages(100);
+ EXPECT_TRUE(ch1.conn() != nullptr);
+ conn->UpdateState(after_last_receiving + DEAD_CONNECTION_RECEIVE_TIMEOUT + 1);
+ EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kDefaultTimeout);
+}
+
+TEST_F(PortTest, TestConnectionDeadWithDeadConnectionTimeout) {
+ TestChannel ch1(CreateUdpPort(kLocalAddr1));
+ TestChannel ch2(CreateUdpPort(kLocalAddr2));
+ // Acquire address.
+ ch1.Start();
+ ch2.Start();
+ ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
+ ASSERT_EQ_WAIT(1, ch2.complete_count(), kDefaultTimeout);
+
+ // Note: set field trials manually since they are parsed by
+ // P2PTransportChannel but P2PTransportChannel is not used in this test.
+ IceFieldTrials field_trials;
+ field_trials.dead_connection_timeout_ms = 90000;
+
+ // Create a connection again and receive a ping.
+ ch1.CreateConnection(GetCandidate(ch2.port()));
+ auto conn = ch1.conn();
+ conn->SetIceFieldTrials(&field_trials);
+
+ ASSERT_NE(conn, nullptr);
+ int64_t before_last_receiving = rtc::TimeMillis();
+ conn->ReceivedPing();
+ int64_t after_last_receiving = rtc::TimeMillis();
+ // The connection will be dead after 90s
+ conn->UpdateState(before_last_receiving + 90000 - 1);
+ rtc::Thread::Current()->ProcessMessages(100);
+ EXPECT_TRUE(ch1.conn() != nullptr);
+ conn->UpdateState(after_last_receiving + 90000 + 1);
+ EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kDefaultTimeout);
+}
+
+TEST_F(PortTest, TestConnectionDeadOutstandingPing) {
+ auto port1 = CreateUdpPort(kLocalAddr1);
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ port1->SetIceTiebreaker(kTiebreaker1);
+ auto port2 = CreateUdpPort(kLocalAddr2);
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ port2->SetIceTiebreaker(kTiebreaker2);
+
+ TestChannel ch1(std::move(port1));
+ TestChannel ch2(std::move(port2));
+ // Acquire address.
+ ch1.Start();
+ ch2.Start();
+ ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
+ ASSERT_EQ_WAIT(1, ch2.complete_count(), kDefaultTimeout);
+
+ // Note: set field trials manually since they are parsed by
+ // P2PTransportChannel but P2PTransportChannel is not used in this test.
+ IceFieldTrials field_trials;
+ field_trials.dead_connection_timeout_ms = 360000;
+
+ // Create a connection again and receive a ping and then send
+ // a ping and keep it outstanding.
+ ch1.CreateConnection(GetCandidate(ch2.port()));
+ auto conn = ch1.conn();
+ conn->SetIceFieldTrials(&field_trials);
+
+ ASSERT_NE(conn, nullptr);
+ conn->ReceivedPing();
+ int64_t send_ping_timestamp = rtc::TimeMillis();
+ conn->Ping(send_ping_timestamp);
+
+ // The connection will be dead 30s after the ping was sent.
+ conn->UpdateState(send_ping_timestamp + DEAD_CONNECTION_RECEIVE_TIMEOUT - 1);
+ rtc::Thread::Current()->ProcessMessages(100);
+ EXPECT_TRUE(ch1.conn() != nullptr);
+ conn->UpdateState(send_ping_timestamp + DEAD_CONNECTION_RECEIVE_TIMEOUT + 1);
+ EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kDefaultTimeout);
+}
+
+// This test case verifies standard ICE features in STUN messages. Currently it
+// verifies Message Integrity attribute in STUN messages and username in STUN
+// binding request will have colon (":") between remote and local username.
+TEST_F(PortTest, TestLocalToLocalStandard) {
+ auto port1 = CreateUdpPort(kLocalAddr1);
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ port1->SetIceTiebreaker(kTiebreaker1);
+ auto port2 = CreateUdpPort(kLocalAddr2);
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ port2->SetIceTiebreaker(kTiebreaker2);
+ // Same parameters as TestLocalToLocal above.
+ TestConnectivity("udp", std::move(port1), "udp", std::move(port2), true, true,
+ true, true);
+}
+
+// This test is trying to validate a successful and failure scenario in a
+// loopback test when protocol is RFC5245. For success IceTiebreaker, username
+// should remain equal to the request generated by the port and role of port
+// must be in controlling.
+TEST_F(PortTest, TestLoopbackCall) {
+ auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
+ lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ lport->SetIceTiebreaker(kTiebreaker1);
+ lport->PrepareAddress();
+ ASSERT_FALSE(lport->Candidates().empty());
+ Connection* conn =
+ lport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
+ conn->Ping(0);
+
+ ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
+ IceMessage* msg = lport->last_stun_msg();
+ EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
+ conn->OnReadPacket(lport->last_stun_buf()->data<char>(),
+ lport->last_stun_buf()->size(), /* packet_time_us */ -1);
+ ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
+ msg = lport->last_stun_msg();
+ EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
+
+ // If the tiebreaker value is different from port, we expect a error
+ // response.
+ lport->Reset();
+ lport->AddCandidateAddress(kLocalAddr2);
+ // Creating a different connection as `conn` is receiving.
+ Connection* conn1 =
+ lport->CreateConnection(lport->Candidates()[1], Port::ORIGIN_MESSAGE);
+ conn1->Ping(0);
+
+ ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
+ msg = lport->last_stun_msg();
+ EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
+ std::unique_ptr<IceMessage> modified_req(
+ CreateStunMessage(STUN_BINDING_REQUEST));
+ const StunByteStringAttribute* username_attr =
+ msg->GetByteString(STUN_ATTR_USERNAME);
+ modified_req->AddAttribute(std::make_unique<StunByteStringAttribute>(
+ STUN_ATTR_USERNAME, username_attr->string_view()));
+ // To make sure we receive error response, adding tiebreaker less than
+ // what's present in request.
+ modified_req->AddAttribute(std::make_unique<StunUInt64Attribute>(
+ STUN_ATTR_ICE_CONTROLLING, kTiebreaker1 - 1));
+ modified_req->AddMessageIntegrity("lpass");
+ modified_req->AddFingerprint();
+
+ lport->Reset();
+ auto buf = std::make_unique<ByteBufferWriter>();
+ WriteStunMessage(*modified_req, buf.get());
+ conn1->OnReadPacket(buf->Data(), buf->Length(), /* packet_time_us */ -1);
+ ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
+ msg = lport->last_stun_msg();
+ EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
+}
+
+// This test verifies role conflict signal is received when there is
+// conflict in the role. In this case both ports are in controlling and
+// `rport` has higher tiebreaker value than `lport`. Since `lport` has lower
+// value of tiebreaker, when it receives ping request from `rport` it will
+// send role conflict signal.
+TEST_F(PortTest, TestIceRoleConflict) {
+ auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
+ lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ lport->SetIceTiebreaker(kTiebreaker1);
+ auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
+ rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ rport->SetIceTiebreaker(kTiebreaker2);
+
+ lport->PrepareAddress();
+ rport->PrepareAddress();
+ ASSERT_FALSE(lport->Candidates().empty());
+ ASSERT_FALSE(rport->Candidates().empty());
+ Connection* lconn =
+ lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
+ Connection* rconn =
+ rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
+ rconn->Ping(0);
+
+ ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout);
+ IceMessage* msg = rport->last_stun_msg();
+ EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
+ // Send rport binding request to lport.
+ lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
+ rport->last_stun_buf()->size(), /* packet_time_us */ -1);
+
+ ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
+ EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
+ EXPECT_TRUE(role_conflict());
+}
+
+TEST_F(PortTest, TestTcpNoDelay) {
+ rtc::ScopedFakeClock clock;
+ auto port1 = CreateTcpPort(kLocalAddr1);
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ int option_value = -1;
+ int success = port1->GetOption(rtc::Socket::OPT_NODELAY, &option_value);
+ ASSERT_EQ(0, success); // GetOption() should complete successfully w/ 0
+ EXPECT_EQ(1, option_value);
+
+ auto port2 = CreateTcpPort(kLocalAddr2);
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+
+ // Set up a connection, and verify that option is set on connected sockets at
+ // both ends.
+ TestChannel ch1(std::move(port1));
+ TestChannel ch2(std::move(port2));
+ // Acquire addresses.
+ ch1.Start();
+ ch2.Start();
+ ASSERT_EQ_SIMULATED_WAIT(1, ch1.complete_count(), kDefaultTimeout, clock);
+ ASSERT_EQ_SIMULATED_WAIT(1, ch2.complete_count(), kDefaultTimeout, clock);
+ // Connect and send a ping from src to dst.
+ ch1.CreateConnection(GetCandidate(ch2.port()));
+ ASSERT_TRUE(ch1.conn() != NULL);
+ EXPECT_TRUE_SIMULATED_WAIT(ch1.conn()->connected(), kDefaultTimeout,
+ clock); // for TCP connect
+ ch1.Ping();
+ SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock);
+
+ // Accept the connection.
+ ch2.AcceptConnection(GetCandidate(ch1.port()));
+ ASSERT_TRUE(ch2.conn() != NULL);
+
+ option_value = -1;
+ success = static_cast<TCPConnection*>(ch1.conn())
+ ->socket()
+ ->GetOption(rtc::Socket::OPT_NODELAY, &option_value);
+ ASSERT_EQ(0, success);
+ EXPECT_EQ(1, option_value);
+
+ option_value = -1;
+ success = static_cast<TCPConnection*>(ch2.conn())
+ ->socket()
+ ->GetOption(rtc::Socket::OPT_NODELAY, &option_value);
+ ASSERT_EQ(0, success);
+ EXPECT_EQ(1, option_value);
+}
+
+TEST_F(PortTest, TestDelayedBindingUdp) {
+ FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket();
+ FakePacketSocketFactory socket_factory;
+
+ socket_factory.set_next_udp_socket(socket);
+ auto port = CreateUdpPort(kLocalAddr1, &socket_factory);
+
+ socket->set_state(AsyncPacketSocket::STATE_BINDING);
+ port->PrepareAddress();
+
+ EXPECT_EQ(0U, port->Candidates().size());
+ socket->SignalAddressReady(socket, kLocalAddr2);
+
+ EXPECT_EQ(1U, port->Candidates().size());
+}
+
+TEST_F(PortTest, TestDisableInterfaceOfTcpPort) {
+ FakeAsyncListenSocket* lsocket = new FakeAsyncListenSocket();
+ FakeAsyncListenSocket* rsocket = new FakeAsyncListenSocket();
+ FakePacketSocketFactory socket_factory;
+
+ socket_factory.set_next_server_tcp_socket(lsocket);
+ auto lport = CreateTcpPort(kLocalAddr1, &socket_factory);
+
+ socket_factory.set_next_server_tcp_socket(rsocket);
+ auto rport = CreateTcpPort(kLocalAddr2, &socket_factory);
+
+ lsocket->Bind(kLocalAddr1);
+ rsocket->Bind(kLocalAddr2);
+
+ lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ lport->SetIceTiebreaker(kTiebreaker1);
+ rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ rport->SetIceTiebreaker(kTiebreaker2);
+
+ lport->PrepareAddress();
+ rport->PrepareAddress();
+ ASSERT_FALSE(rport->Candidates().empty());
+
+ // A client socket.
+ FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket();
+ socket->local_address_ = kLocalAddr1;
+ socket->remote_address_ = kLocalAddr2;
+ socket_factory.set_next_client_tcp_socket(socket);
+ Connection* lconn =
+ lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
+ ASSERT_NE(lconn, nullptr);
+ socket->SignalConnect(socket);
+ lconn->Ping(0);
+
+ // Now disconnect the client socket...
+ socket->NotifyClosedForTest(1);
+
+ // And prevent new sockets from being created.
+ socket_factory.set_next_client_tcp_socket(nullptr);
+
+ // Test that Ping() does not cause SEGV.
+ lconn->Ping(0);
+}
+
+void PortTest::TestCrossFamilyPorts(int type) {
+ FakePacketSocketFactory factory;
+ std::unique_ptr<Port> ports[4];
+ SocketAddress addresses[4] = {
+ SocketAddress("192.168.1.3", 0), SocketAddress("192.168.1.4", 0),
+ SocketAddress("2001:db8::1", 0), SocketAddress("2001:db8::2", 0)};
+ for (int i = 0; i < 4; i++) {
+ if (type == SOCK_DGRAM) {
+ FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket();
+ factory.set_next_udp_socket(socket);
+ ports[i] = CreateUdpPort(addresses[i], &factory);
+ socket->set_state(AsyncPacketSocket::STATE_BINDING);
+ socket->SignalAddressReady(socket, addresses[i]);
+ } else if (type == SOCK_STREAM) {
+ FakeAsyncListenSocket* socket = new FakeAsyncListenSocket();
+ factory.set_next_server_tcp_socket(socket);
+ ports[i] = CreateTcpPort(addresses[i], &factory);
+ socket->Bind(addresses[i]);
+ }
+ ports[i]->PrepareAddress();
+ }
+
+ // IPv4 Port, connects to IPv6 candidate and then to IPv4 candidate.
+ if (type == SOCK_STREAM) {
+ FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
+ factory.set_next_client_tcp_socket(clientsocket);
+ }
+ Connection* c = ports[0]->CreateConnection(GetCandidate(ports[2].get()),
+ Port::ORIGIN_MESSAGE);
+ EXPECT_TRUE(NULL == c);
+ EXPECT_EQ(0U, ports[0]->connections().size());
+ c = ports[0]->CreateConnection(GetCandidate(ports[1].get()),
+ Port::ORIGIN_MESSAGE);
+ EXPECT_FALSE(NULL == c);
+ EXPECT_EQ(1U, ports[0]->connections().size());
+
+ // IPv6 Port, connects to IPv4 candidate and to IPv6 candidate.
+ if (type == SOCK_STREAM) {
+ FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
+ factory.set_next_client_tcp_socket(clientsocket);
+ }
+ c = ports[2]->CreateConnection(GetCandidate(ports[0].get()),
+ Port::ORIGIN_MESSAGE);
+ EXPECT_TRUE(NULL == c);
+ EXPECT_EQ(0U, ports[2]->connections().size());
+ c = ports[2]->CreateConnection(GetCandidate(ports[3].get()),
+ Port::ORIGIN_MESSAGE);
+ EXPECT_FALSE(NULL == c);
+ EXPECT_EQ(1U, ports[2]->connections().size());
+}
+
+TEST_F(PortTest, TestSkipCrossFamilyTcp) {
+ TestCrossFamilyPorts(SOCK_STREAM);
+}
+
+TEST_F(PortTest, TestSkipCrossFamilyUdp) {
+ TestCrossFamilyPorts(SOCK_DGRAM);
+}
+
+void PortTest::ExpectPortsCanConnect(bool can_connect, Port* p1, Port* p2) {
+ Connection* c = p1->CreateConnection(GetCandidate(p2), Port::ORIGIN_MESSAGE);
+ if (can_connect) {
+ EXPECT_FALSE(NULL == c);
+ EXPECT_EQ(1U, p1->connections().size());
+ } else {
+ EXPECT_TRUE(NULL == c);
+ EXPECT_EQ(0U, p1->connections().size());
+ }
+}
+
+TEST_F(PortTest, TestUdpSingleAddressV6CrossTypePorts) {
+ FakePacketSocketFactory factory;
+ std::unique_ptr<Port> ports[4];
+ SocketAddress addresses[4] = {
+ SocketAddress("2001:db8::1", 0), SocketAddress("fe80::1", 0),
+ SocketAddress("fe80::2", 0), SocketAddress("::1", 0)};
+ for (int i = 0; i < 4; i++) {
+ FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket();
+ factory.set_next_udp_socket(socket);
+ ports[i] = CreateUdpPort(addresses[i], &factory);
+ socket->set_state(AsyncPacketSocket::STATE_BINDING);
+ socket->SignalAddressReady(socket, addresses[i]);
+ ports[i]->PrepareAddress();
+ }
+
+ Port* standard = ports[0].get();
+ Port* link_local1 = ports[1].get();
+ Port* link_local2 = ports[2].get();
+ Port* localhost = ports[3].get();
+
+ ExpectPortsCanConnect(false, link_local1, standard);
+ ExpectPortsCanConnect(false, standard, link_local1);
+ ExpectPortsCanConnect(false, link_local1, localhost);
+ ExpectPortsCanConnect(false, localhost, link_local1);
+
+ ExpectPortsCanConnect(true, link_local1, link_local2);
+ ExpectPortsCanConnect(true, localhost, standard);
+ ExpectPortsCanConnect(true, standard, localhost);
+}
+
+TEST_F(PortTest, TestUdpMultipleAddressesV6CrossTypePorts) {
+ webrtc::test::ScopedKeyValueConfig field_trials(
+ "WebRTC-IPv6NetworkResolutionFixes/Enabled/");
+ FakePacketSocketFactory factory;
+ std::unique_ptr<Port> ports[5];
+ SocketAddress addresses[5] = {
+ SocketAddress("2001:db8::1", 0), SocketAddress("2001:db8::2", 0),
+ SocketAddress("fe80::1", 0), SocketAddress("fe80::2", 0),
+ SocketAddress("::1", 0)};
+ for (int i = 0; i < 5; i++) {
+ FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket();
+ factory.set_next_udp_socket(socket);
+ ports[i] = CreateUdpPortMultipleAddrs(addresses[i], kLinkLocalIPv6Addr,
+ &factory, field_trials);
+ socket->set_state(AsyncPacketSocket::STATE_BINDING);
+ socket->SignalAddressReady(socket, addresses[i]);
+ ports[i]->PrepareAddress();
+ }
+
+ Port* standard1 = ports[0].get();
+ Port* standard2 = ports[1].get();
+ Port* link_local1 = ports[2].get();
+ Port* link_local2 = ports[3].get();
+ Port* localhost = ports[4].get();
+
+ ExpectPortsCanConnect(false, link_local1, standard1);
+ ExpectPortsCanConnect(false, standard1, link_local1);
+ ExpectPortsCanConnect(false, link_local1, localhost);
+ ExpectPortsCanConnect(false, localhost, link_local1);
+
+ ExpectPortsCanConnect(true, link_local1, link_local2);
+ ExpectPortsCanConnect(true, localhost, standard1);
+ ExpectPortsCanConnect(true, standard1, localhost);
+ ExpectPortsCanConnect(true, standard2, standard1);
+}
+
+// This test verifies DSCP value set through SetOption interface can be
+// get through DefaultDscpValue.
+TEST_F(PortTest, TestDefaultDscpValue) {
+ int dscp;
+ auto udpport = CreateUdpPort(kLocalAddr1);
+ EXPECT_EQ(0, udpport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS6));
+ EXPECT_EQ(0, udpport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
+ auto tcpport = CreateTcpPort(kLocalAddr1);
+ EXPECT_EQ(0, tcpport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_AF31));
+ EXPECT_EQ(0, tcpport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
+ EXPECT_EQ(rtc::DSCP_AF31, dscp);
+ auto stunport = CreateStunPort(kLocalAddr1, nat_socket_factory1());
+ EXPECT_EQ(0, stunport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_AF41));
+ EXPECT_EQ(0, stunport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
+ EXPECT_EQ(rtc::DSCP_AF41, dscp);
+ auto turnport1 =
+ CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP);
+ // Socket is created in PrepareAddress.
+ turnport1->PrepareAddress();
+ EXPECT_EQ(0, turnport1->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS7));
+ EXPECT_EQ(0, turnport1->GetOption(rtc::Socket::OPT_DSCP, &dscp));
+ EXPECT_EQ(rtc::DSCP_CS7, dscp);
+ // This will verify correct value returned without the socket.
+ auto turnport2 =
+ CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP);
+ EXPECT_EQ(0, turnport2->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS6));
+ EXPECT_EQ(0, turnport2->GetOption(rtc::Socket::OPT_DSCP, &dscp));
+ EXPECT_EQ(rtc::DSCP_CS6, dscp);
+}
+
+// Test sending STUN messages.
+TEST_F(PortTest, TestSendStunMessage) {
+ auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
+ auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
+ lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ lport->SetIceTiebreaker(kTiebreaker1);
+ rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ rport->SetIceTiebreaker(kTiebreaker2);
+
+ // Send a fake ping from lport to rport.
+ lport->PrepareAddress();
+ rport->PrepareAddress();
+ ASSERT_FALSE(rport->Candidates().empty());
+ Connection* lconn =
+ lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
+ Connection* rconn =
+ rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
+ lconn->Ping(0);
+
+ // Check that it's a proper BINDING-REQUEST.
+ ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
+ IceMessage* msg = lport->last_stun_msg();
+ EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
+ EXPECT_FALSE(msg->IsLegacy());
+ const StunByteStringAttribute* username_attr =
+ msg->GetByteString(STUN_ATTR_USERNAME);
+ ASSERT_TRUE(username_attr != NULL);
+ const StunUInt32Attribute* priority_attr = msg->GetUInt32(STUN_ATTR_PRIORITY);
+ ASSERT_TRUE(priority_attr != NULL);
+ EXPECT_EQ(kDefaultPrflxPriority, priority_attr->value());
+ EXPECT_EQ("rfrag:lfrag", username_attr->string_view());
+ EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
+ EXPECT_EQ(StunMessage::IntegrityStatus::kIntegrityOk,
+ msg->ValidateMessageIntegrity("rpass"));
+ const StunUInt64Attribute* ice_controlling_attr =
+ msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
+ ASSERT_TRUE(ice_controlling_attr != NULL);
+ EXPECT_EQ(lport->IceTiebreaker(), ice_controlling_attr->value());
+ EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
+ EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
+ EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
+ EXPECT_TRUE(StunMessage::ValidateFingerprint(
+ lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size()));
+
+ // Request should not include ping count.
+ ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
+
+ // Save a copy of the BINDING-REQUEST for use below.
+ std::unique_ptr<IceMessage> request = CopyStunMessage(*msg);
+
+ // Receive the BINDING-REQUEST and respond with BINDING-RESPONSE.
+ rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
+ lport->last_stun_buf()->size(), /* packet_time_us */ -1);
+ msg = rport->last_stun_msg();
+ ASSERT_TRUE(msg != NULL);
+ EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
+ // Received a BINDING-RESPONSE.
+ lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
+ rport->last_stun_buf()->size(), /* packet_time_us */ -1);
+ // Verify the STUN Stats.
+ EXPECT_EQ(1U, lconn->stats().sent_ping_requests_total);
+ EXPECT_EQ(1U, lconn->stats().sent_ping_requests_before_first_response);
+ EXPECT_EQ(1U, lconn->stats().recv_ping_responses);
+ EXPECT_EQ(1U, rconn->stats().recv_ping_requests);
+ EXPECT_EQ(1U, rconn->stats().sent_ping_responses);
+
+ EXPECT_FALSE(msg->IsLegacy());
+ const StunAddressAttribute* addr_attr =
+ msg->GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
+ ASSERT_TRUE(addr_attr != NULL);
+ EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
+ EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
+ EXPECT_EQ(StunMessage::IntegrityStatus::kIntegrityOk,
+ msg->ValidateMessageIntegrity("rpass"));
+ EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
+ EXPECT_TRUE(StunMessage::ValidateFingerprint(
+ lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size()));
+ // No USERNAME or PRIORITY in ICE responses.
+ EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
+ EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
+ EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MAPPED_ADDRESS) == NULL);
+ EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLING) == NULL);
+ EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
+ EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
+
+ // Response should not include ping count.
+ ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
+
+ // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
+ // but we can do it here.
+ rport->SendBindingErrorResponse(
+ request.get(), lport->Candidates()[0].address(), STUN_ERROR_SERVER_ERROR,
+ STUN_ERROR_REASON_SERVER_ERROR);
+ msg = rport->last_stun_msg();
+ ASSERT_TRUE(msg != NULL);
+ EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
+ EXPECT_FALSE(msg->IsLegacy());
+ const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
+ ASSERT_TRUE(error_attr != NULL);
+ EXPECT_EQ(STUN_ERROR_SERVER_ERROR, error_attr->code());
+ EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
+ EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
+ EXPECT_EQ(StunMessage::IntegrityStatus::kIntegrityOk,
+ msg->ValidateMessageIntegrity("rpass"));
+ EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
+ EXPECT_TRUE(StunMessage::ValidateFingerprint(
+ lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size()));
+ // No USERNAME with ICE.
+ EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
+ EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
+
+ // Testing STUN binding requests from rport --> lport, having ICE_CONTROLLED
+ // and (incremented) RETRANSMIT_COUNT attributes.
+ rport->Reset();
+ rport->set_send_retransmit_count_attribute(true);
+ rconn->Ping(0);
+ rconn->Ping(0);
+ rconn->Ping(0);
+ ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout);
+ msg = rport->last_stun_msg();
+ EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
+ const StunUInt64Attribute* ice_controlled_attr =
+ msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED);
+ ASSERT_TRUE(ice_controlled_attr != NULL);
+ EXPECT_EQ(rport->IceTiebreaker(), ice_controlled_attr->value());
+ EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
+
+ // Request should include ping count.
+ const StunUInt32Attribute* retransmit_attr =
+ msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
+ ASSERT_TRUE(retransmit_attr != NULL);
+ EXPECT_EQ(2U, retransmit_attr->value());
+
+ // Respond with a BINDING-RESPONSE.
+ request = CopyStunMessage(*msg);
+ lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
+ rport->last_stun_buf()->size(), /* packet_time_us */ -1);
+ msg = lport->last_stun_msg();
+ // Receive the BINDING-RESPONSE.
+ rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
+ lport->last_stun_buf()->size(), /* packet_time_us */ -1);
+
+ // Verify the Stun ping stats.
+ EXPECT_EQ(3U, rconn->stats().sent_ping_requests_total);
+ EXPECT_EQ(3U, rconn->stats().sent_ping_requests_before_first_response);
+ EXPECT_EQ(1U, rconn->stats().recv_ping_responses);
+ EXPECT_EQ(1U, lconn->stats().sent_ping_responses);
+ EXPECT_EQ(1U, lconn->stats().recv_ping_requests);
+ // Ping after receiver the first response
+ rconn->Ping(0);
+ rconn->Ping(0);
+ EXPECT_EQ(5U, rconn->stats().sent_ping_requests_total);
+ EXPECT_EQ(3U, rconn->stats().sent_ping_requests_before_first_response);
+
+ // Response should include same ping count.
+ retransmit_attr = msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
+ ASSERT_TRUE(retransmit_attr != NULL);
+ EXPECT_EQ(2U, retransmit_attr->value());
+}
+
+TEST_F(PortTest, TestNomination) {
+ auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
+ auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
+ lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ lport->SetIceTiebreaker(kTiebreaker1);
+ rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ rport->SetIceTiebreaker(kTiebreaker2);
+
+ lport->PrepareAddress();
+ rport->PrepareAddress();
+ ASSERT_FALSE(lport->Candidates().empty());
+ ASSERT_FALSE(rport->Candidates().empty());
+ Connection* lconn =
+ lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
+ Connection* rconn =
+ rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
+
+ // `lconn` is controlling, `rconn` is controlled.
+ uint32_t nomination = 1234;
+ lconn->set_nomination(nomination);
+
+ EXPECT_FALSE(lconn->nominated());
+ EXPECT_FALSE(rconn->nominated());
+ EXPECT_EQ(lconn->nominated(), lconn->stats().nominated);
+ EXPECT_EQ(rconn->nominated(), rconn->stats().nominated);
+
+ // Send ping (including the nomination value) from `lconn` to `rconn`. This
+ // should set the remote nomination of `rconn`.
+ lconn->Ping(0);
+ ASSERT_TRUE_WAIT(lport->last_stun_msg(), kDefaultTimeout);
+ ASSERT_TRUE(lport->last_stun_buf());
+ rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
+ lport->last_stun_buf()->size(), /* packet_time_us */ -1);
+ EXPECT_EQ(nomination, rconn->remote_nomination());
+ EXPECT_FALSE(lconn->nominated());
+ EXPECT_TRUE(rconn->nominated());
+ EXPECT_EQ(lconn->nominated(), lconn->stats().nominated);
+ EXPECT_EQ(rconn->nominated(), rconn->stats().nominated);
+
+ // This should result in an acknowledgment sent back from `rconn` to `lconn`,
+ // updating the acknowledged nomination of `lconn`.
+ ASSERT_TRUE_WAIT(rport->last_stun_msg(), kDefaultTimeout);
+ ASSERT_TRUE(rport->last_stun_buf());
+ lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
+ rport->last_stun_buf()->size(), /* packet_time_us */ -1);
+ EXPECT_EQ(nomination, lconn->acked_nomination());
+ EXPECT_TRUE(lconn->nominated());
+ EXPECT_TRUE(rconn->nominated());
+ EXPECT_EQ(lconn->nominated(), lconn->stats().nominated);
+ EXPECT_EQ(rconn->nominated(), rconn->stats().nominated);
+}
+
+TEST_F(PortTest, TestRoundTripTime) {
+ rtc::ScopedFakeClock clock;
+
+ auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
+ auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
+ lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ lport->SetIceTiebreaker(kTiebreaker1);
+ rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ rport->SetIceTiebreaker(kTiebreaker2);
+
+ lport->PrepareAddress();
+ rport->PrepareAddress();
+ ASSERT_FALSE(lport->Candidates().empty());
+ ASSERT_FALSE(rport->Candidates().empty());
+ Connection* lconn =
+ lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
+ Connection* rconn =
+ rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
+
+ EXPECT_EQ(0u, lconn->stats().total_round_trip_time_ms);
+ EXPECT_FALSE(lconn->stats().current_round_trip_time_ms);
+
+ SendPingAndReceiveResponse(lconn, lport.get(), rconn, rport.get(), &clock,
+ 10);
+ EXPECT_EQ(10u, lconn->stats().total_round_trip_time_ms);
+ ASSERT_TRUE(lconn->stats().current_round_trip_time_ms);
+ EXPECT_EQ(10u, *lconn->stats().current_round_trip_time_ms);
+
+ SendPingAndReceiveResponse(lconn, lport.get(), rconn, rport.get(), &clock,
+ 20);
+ EXPECT_EQ(30u, lconn->stats().total_round_trip_time_ms);
+ ASSERT_TRUE(lconn->stats().current_round_trip_time_ms);
+ EXPECT_EQ(20u, *lconn->stats().current_round_trip_time_ms);
+
+ SendPingAndReceiveResponse(lconn, lport.get(), rconn, rport.get(), &clock,
+ 30);
+ EXPECT_EQ(60u, lconn->stats().total_round_trip_time_ms);
+ ASSERT_TRUE(lconn->stats().current_round_trip_time_ms);
+ EXPECT_EQ(30u, *lconn->stats().current_round_trip_time_ms);
+}
+
+TEST_F(PortTest, TestUseCandidateAttribute) {
+ auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
+ auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
+ lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ lport->SetIceTiebreaker(kTiebreaker1);
+ rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ rport->SetIceTiebreaker(kTiebreaker2);
+
+ // Send a fake ping from lport to rport.
+ lport->PrepareAddress();
+ rport->PrepareAddress();
+ ASSERT_FALSE(rport->Candidates().empty());
+ Connection* lconn =
+ lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
+ lconn->Ping(0);
+ ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
+ IceMessage* msg = lport->last_stun_msg();
+ const StunUInt64Attribute* ice_controlling_attr =
+ msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
+ ASSERT_TRUE(ice_controlling_attr != NULL);
+ const StunByteStringAttribute* use_candidate_attr =
+ msg->GetByteString(STUN_ATTR_USE_CANDIDATE);
+ ASSERT_TRUE(use_candidate_attr != NULL);
+}
+
+// Tests that when the network type changes, the network cost of the port will
+// change, the network cost of the local candidates will change. Also tests that
+// the remote network costs are updated with the stun binding requests.
+TEST_F(PortTest, TestNetworkCostChange) {
+ rtc::Network* test_network = MakeNetwork(kLocalAddr1);
+ auto lport = CreateTestPort(test_network, "lfrag", "lpass");
+ auto rport = CreateTestPort(test_network, "rfrag", "rpass");
+ lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ lport->SetIceTiebreaker(kTiebreaker1);
+ rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ rport->SetIceTiebreaker(kTiebreaker2);
+ lport->PrepareAddress();
+ rport->PrepareAddress();
+
+ // Default local port cost is rtc::kNetworkCostUnknown.
+ EXPECT_EQ(rtc::kNetworkCostUnknown, lport->network_cost());
+ ASSERT_TRUE(!lport->Candidates().empty());
+ for (const cricket::Candidate& candidate : lport->Candidates()) {
+ EXPECT_EQ(rtc::kNetworkCostUnknown, candidate.network_cost());
+ }
+
+ // Change the network type to wifi.
+ test_network->set_type(rtc::ADAPTER_TYPE_WIFI);
+ EXPECT_EQ(rtc::kNetworkCostLow, lport->network_cost());
+ for (const cricket::Candidate& candidate : lport->Candidates()) {
+ EXPECT_EQ(rtc::kNetworkCostLow, candidate.network_cost());
+ }
+
+ // Add a connection and then change the network type.
+ Connection* lconn =
+ lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
+ // Change the network type to cellular.
+ test_network->set_type(rtc::ADAPTER_TYPE_CELLULAR);
+ EXPECT_EQ(rtc::kNetworkCostHigh, lport->network_cost());
+ for (const cricket::Candidate& candidate : lport->Candidates()) {
+ EXPECT_EQ(rtc::kNetworkCostHigh, candidate.network_cost());
+ }
+
+ test_network->set_type(rtc::ADAPTER_TYPE_WIFI);
+ Connection* rconn =
+ rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
+ test_network->set_type(rtc::ADAPTER_TYPE_CELLULAR);
+ lconn->Ping(0);
+ // The rconn's remote candidate cost is rtc::kNetworkCostLow, but the ping
+ // contains an attribute of network cost of rtc::kNetworkCostHigh. Once the
+ // message is handled in rconn, The rconn's remote candidate will have cost
+ // rtc::kNetworkCostHigh;
+ EXPECT_EQ(rtc::kNetworkCostLow, rconn->remote_candidate().network_cost());
+ ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
+ IceMessage* msg = lport->last_stun_msg();
+ EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
+ // Pass the binding request to rport.
+ rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
+ lport->last_stun_buf()->size(), /* packet_time_us */ -1);
+ // Wait until rport sends the response and then check the remote network cost.
+ ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout);
+ EXPECT_EQ(rtc::kNetworkCostHigh, rconn->remote_candidate().network_cost());
+}
+
+TEST_F(PortTest, TestNetworkInfoAttribute) {
+ rtc::Network* test_network = MakeNetwork(kLocalAddr1);
+ auto lport = CreateTestPort(test_network, "lfrag", "lpass");
+ auto rport = CreateTestPort(test_network, "rfrag", "rpass");
+ lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ lport->SetIceTiebreaker(kTiebreaker1);
+ rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ rport->SetIceTiebreaker(kTiebreaker2);
+
+ uint16_t lnetwork_id = 9;
+ test_network->set_id(lnetwork_id);
+ // Send a fake ping from lport to rport.
+ lport->PrepareAddress();
+ rport->PrepareAddress();
+ Connection* lconn =
+ lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
+ lconn->Ping(0);
+ ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
+ IceMessage* msg = lport->last_stun_msg();
+ const StunUInt32Attribute* network_info_attr =
+ msg->GetUInt32(STUN_ATTR_GOOG_NETWORK_INFO);
+ ASSERT_TRUE(network_info_attr != NULL);
+ uint32_t network_info = network_info_attr->value();
+ EXPECT_EQ(lnetwork_id, network_info >> 16);
+ // Default network has unknown type and cost kNetworkCostUnknown.
+ EXPECT_EQ(rtc::kNetworkCostUnknown, network_info & 0xFFFF);
+
+ // Set the network type to be cellular so its cost will be kNetworkCostHigh.
+ // Send a fake ping from rport to lport.
+ test_network->set_type(rtc::ADAPTER_TYPE_CELLULAR);
+ uint16_t rnetwork_id = 8;
+ test_network->set_id(rnetwork_id);
+ Connection* rconn =
+ rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
+ rconn->Ping(0);
+ ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout);
+ msg = rport->last_stun_msg();
+ network_info_attr = msg->GetUInt32(STUN_ATTR_GOOG_NETWORK_INFO);
+ ASSERT_TRUE(network_info_attr != NULL);
+ network_info = network_info_attr->value();
+ EXPECT_EQ(rnetwork_id, network_info >> 16);
+ EXPECT_EQ(rtc::kNetworkCostHigh, network_info & 0xFFFF);
+}
+
+// Test handling STUN messages.
+TEST_F(PortTest, TestHandleStunMessage) {
+ // Our port will act as the "remote" port.
+ auto port = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
+
+ std::unique_ptr<IceMessage> in_msg, out_msg;
+ auto buf = std::make_unique<ByteBufferWriter>();
+ rtc::SocketAddress addr(kLocalAddr1);
+ std::string username;
+
+ // BINDING-REQUEST from local to remote with valid ICE username,
+ // MESSAGE-INTEGRITY, and FINGERPRINT.
+ in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag");
+ in_msg->AddMessageIntegrity("rpass");
+ in_msg->AddFingerprint();
+ WriteStunMessage(*in_msg, buf.get());
+ EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ EXPECT_TRUE(out_msg.get() != NULL);
+ EXPECT_EQ("lfrag", username);
+
+ // BINDING-RESPONSE without username, with MESSAGE-INTEGRITY and FINGERPRINT.
+ in_msg = CreateStunMessage(STUN_BINDING_RESPONSE);
+ in_msg->AddAttribute(std::make_unique<StunXorAddressAttribute>(
+ STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
+ in_msg->AddMessageIntegrity("rpass");
+ in_msg->AddFingerprint();
+ WriteStunMessage(*in_msg, buf.get());
+ EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ EXPECT_TRUE(out_msg.get() != NULL);
+ EXPECT_EQ("", username);
+
+ // BINDING-ERROR-RESPONSE without username, with error, M-I, and FINGERPRINT.
+ in_msg = CreateStunMessage(STUN_BINDING_ERROR_RESPONSE);
+ in_msg->AddAttribute(std::make_unique<StunErrorCodeAttribute>(
+ STUN_ATTR_ERROR_CODE, STUN_ERROR_SERVER_ERROR,
+ STUN_ERROR_REASON_SERVER_ERROR));
+ in_msg->AddFingerprint();
+ WriteStunMessage(*in_msg, buf.get());
+ EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ EXPECT_TRUE(out_msg.get() != NULL);
+ EXPECT_EQ("", username);
+ ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
+ EXPECT_EQ(STUN_ERROR_SERVER_ERROR, out_msg->GetErrorCode()->code());
+ EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
+ out_msg->GetErrorCode()->reason());
+}
+
+// Tests handling of ICE binding requests with missing or incorrect usernames.
+TEST_F(PortTest, TestHandleStunMessageBadUsername) {
+ auto port = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
+
+ std::unique_ptr<IceMessage> in_msg, out_msg;
+ auto buf = std::make_unique<ByteBufferWriter>();
+ rtc::SocketAddress addr(kLocalAddr1);
+ std::string username;
+
+ // BINDING-REQUEST with no username.
+ in_msg = CreateStunMessage(STUN_BINDING_REQUEST);
+ in_msg->AddMessageIntegrity("rpass");
+ in_msg->AddFingerprint();
+ WriteStunMessage(*in_msg, buf.get());
+ EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ EXPECT_TRUE(out_msg.get() == NULL);
+ EXPECT_EQ("", username);
+ EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
+
+ // BINDING-REQUEST with empty username.
+ in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "");
+ in_msg->AddMessageIntegrity("rpass");
+ in_msg->AddFingerprint();
+ WriteStunMessage(*in_msg, buf.get());
+ EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ EXPECT_TRUE(out_msg.get() == NULL);
+ EXPECT_EQ("", username);
+ EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
+
+ // BINDING-REQUEST with too-short username.
+ in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfra");
+ in_msg->AddMessageIntegrity("rpass");
+ in_msg->AddFingerprint();
+ WriteStunMessage(*in_msg, buf.get());
+ EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ EXPECT_TRUE(out_msg.get() == NULL);
+ EXPECT_EQ("", username);
+ EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
+
+ // BINDING-REQUEST with reversed username.
+ in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "lfrag:rfrag");
+ in_msg->AddMessageIntegrity("rpass");
+ in_msg->AddFingerprint();
+ WriteStunMessage(*in_msg, buf.get());
+ EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ EXPECT_TRUE(out_msg.get() == NULL);
+ EXPECT_EQ("", username);
+ EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
+
+ // BINDING-REQUEST with garbage username.
+ in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "abcd:efgh");
+ in_msg->AddMessageIntegrity("rpass");
+ in_msg->AddFingerprint();
+ WriteStunMessage(*in_msg, buf.get());
+ EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ EXPECT_TRUE(out_msg.get() == NULL);
+ EXPECT_EQ("", username);
+ EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
+}
+
+// Test handling STUN messages with missing or malformed M-I.
+TEST_F(PortTest, TestHandleStunMessageBadMessageIntegrity) {
+ // Our port will act as the "remote" port.
+ auto port = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
+
+ std::unique_ptr<IceMessage> in_msg, out_msg;
+ auto buf = std::make_unique<ByteBufferWriter>();
+ rtc::SocketAddress addr(kLocalAddr1);
+ std::string username;
+
+ // BINDING-REQUEST from local to remote with valid ICE username and
+ // FINGERPRINT, but no MESSAGE-INTEGRITY.
+ in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag");
+ in_msg->AddFingerprint();
+ WriteStunMessage(*in_msg, buf.get());
+ EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ EXPECT_TRUE(out_msg.get() == NULL);
+ EXPECT_EQ("", username);
+ EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
+
+ // BINDING-REQUEST from local to remote with valid ICE username and
+ // FINGERPRINT, but invalid MESSAGE-INTEGRITY.
+ in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag");
+ in_msg->AddMessageIntegrity("invalid");
+ in_msg->AddFingerprint();
+ WriteStunMessage(*in_msg, buf.get());
+ EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ EXPECT_TRUE(out_msg.get() == NULL);
+ EXPECT_EQ("", username);
+ EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
+
+ // TODO(?): BINDING-RESPONSES and BINDING-ERROR-RESPONSES are checked
+ // by the Connection, not the Port, since they require the remote username.
+ // Change this test to pass in data via Connection::OnReadPacket instead.
+}
+
+// Test handling STUN messages with missing or malformed FINGERPRINT.
+TEST_F(PortTest, TestHandleStunMessageBadFingerprint) {
+ // Our port will act as the "remote" port.
+ auto port = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
+
+ std::unique_ptr<IceMessage> in_msg, out_msg;
+ auto buf = std::make_unique<ByteBufferWriter>();
+ rtc::SocketAddress addr(kLocalAddr1);
+ std::string username;
+
+ // BINDING-REQUEST from local to remote with valid ICE username and
+ // MESSAGE-INTEGRITY, but no FINGERPRINT; GetStunMessage should fail.
+ in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag");
+ in_msg->AddMessageIntegrity("rpass");
+ WriteStunMessage(*in_msg, buf.get());
+ EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ EXPECT_EQ(0, port->last_stun_error_code());
+
+ // Now, add a fingerprint, but munge the message so it's not valid.
+ in_msg->AddFingerprint();
+ in_msg->SetTransactionIdForTesting("TESTTESTBADD");
+ WriteStunMessage(*in_msg, buf.get());
+ EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ EXPECT_EQ(0, port->last_stun_error_code());
+
+ // Valid BINDING-RESPONSE, except no FINGERPRINT.
+ in_msg = CreateStunMessage(STUN_BINDING_RESPONSE);
+ in_msg->AddAttribute(std::make_unique<StunXorAddressAttribute>(
+ STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
+ in_msg->AddMessageIntegrity("rpass");
+ WriteStunMessage(*in_msg, buf.get());
+ EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ EXPECT_EQ(0, port->last_stun_error_code());
+
+ // Now, add a fingerprint, but munge the message so it's not valid.
+ in_msg->AddFingerprint();
+ in_msg->SetTransactionIdForTesting("TESTTESTBADD");
+ WriteStunMessage(*in_msg, buf.get());
+ EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ EXPECT_EQ(0, port->last_stun_error_code());
+
+ // Valid BINDING-ERROR-RESPONSE, except no FINGERPRINT.
+ in_msg = CreateStunMessage(STUN_BINDING_ERROR_RESPONSE);
+ in_msg->AddAttribute(std::make_unique<StunErrorCodeAttribute>(
+ STUN_ATTR_ERROR_CODE, STUN_ERROR_SERVER_ERROR,
+ STUN_ERROR_REASON_SERVER_ERROR));
+ in_msg->AddMessageIntegrity("rpass");
+ WriteStunMessage(*in_msg, buf.get());
+ EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ EXPECT_EQ(0, port->last_stun_error_code());
+
+ // Now, add a fingerprint, but munge the message so it's not valid.
+ in_msg->AddFingerprint();
+ in_msg->SetTransactionIdForTesting("TESTTESTBADD");
+ WriteStunMessage(*in_msg, buf.get());
+ EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ EXPECT_EQ(0, port->last_stun_error_code());
+}
+
+// Test handling a STUN message with unknown attributes in the
+// "comprehension-required" range. Should respond with an error with the
+// unknown attributes' IDs.
+TEST_F(PortTest,
+ TestHandleStunRequestWithUnknownComprehensionRequiredAttribute) {
+ // Our port will act as the "remote" port.
+ std::unique_ptr<TestPort> port(CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
+
+ std::unique_ptr<IceMessage> in_msg, out_msg;
+ auto buf = std::make_unique<ByteBufferWriter>();
+ rtc::SocketAddress addr(kLocalAddr1);
+ std::string username;
+
+ // Build ordinary message with valid ufrag/pass.
+ in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag");
+ in_msg->AddMessageIntegrity("rpass");
+ // Add a couple attributes with ID in comprehension-required range.
+ in_msg->AddAttribute(StunAttribute::CreateUInt32(0x7777));
+ in_msg->AddAttribute(StunAttribute::CreateUInt32(0x4567));
+ // ... And one outside the range.
+ in_msg->AddAttribute(StunAttribute::CreateUInt32(0xdead));
+ in_msg->AddFingerprint();
+ WriteStunMessage(*in_msg, buf.get());
+ ASSERT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ IceMessage* error_response = port->last_stun_msg();
+ ASSERT_NE(nullptr, error_response);
+
+ // Verify that the "unknown attribute" error response has the right error
+ // code, and includes an attribute that lists out the unrecognized attribute
+ // types.
+ EXPECT_EQ(STUN_ERROR_UNKNOWN_ATTRIBUTE, error_response->GetErrorCodeValue());
+ const StunUInt16ListAttribute* unknown_attributes =
+ error_response->GetUnknownAttributes();
+ ASSERT_NE(nullptr, unknown_attributes);
+ ASSERT_EQ(2u, unknown_attributes->Size());
+ EXPECT_EQ(0x7777, unknown_attributes->GetType(0));
+ EXPECT_EQ(0x4567, unknown_attributes->GetType(1));
+}
+
+// Similar to the above, but with a response instead of a request. In this
+// case the response should just be ignored and transaction treated is failed.
+TEST_F(PortTest,
+ TestHandleStunResponseWithUnknownComprehensionRequiredAttribute) {
+ // Generic setup.
+ auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
+ lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
+ rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ lport->PrepareAddress();
+ rport->PrepareAddress();
+ ASSERT_FALSE(lport->Candidates().empty());
+ ASSERT_FALSE(rport->Candidates().empty());
+ Connection* lconn =
+ lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
+ Connection* rconn =
+ rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
+
+ // Send request.
+ lconn->Ping(0);
+ ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
+ rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
+ lport->last_stun_buf()->size(), /* packet_time_us */ -1);
+
+ // Intercept request and add comprehension required attribute.
+ ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout);
+ auto modified_response = rport->last_stun_msg()->Clone();
+ modified_response->AddAttribute(StunAttribute::CreateUInt32(0x7777));
+ modified_response->RemoveAttribute(STUN_ATTR_FINGERPRINT);
+ modified_response->AddFingerprint();
+ ByteBufferWriter buf;
+ WriteStunMessage(*modified_response, &buf);
+ lconn->OnReadPacket(buf.Data(), buf.Length(), /* packet_time_us */ -1);
+ // Response should have been ignored, leaving us unwritable still.
+ EXPECT_FALSE(lconn->writable());
+}
+
+// Similar to the above, but with an indication. As with a response, it should
+// just be ignored.
+TEST_F(PortTest,
+ TestHandleStunIndicationWithUnknownComprehensionRequiredAttribute) {
+ // Generic set up.
+ auto lport = CreateTestPort(kLocalAddr2, "lfrag", "lpass");
+ lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
+ rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ lport->PrepareAddress();
+ rport->PrepareAddress();
+ ASSERT_FALSE(lport->Candidates().empty());
+ ASSERT_FALSE(rport->Candidates().empty());
+ Connection* lconn =
+ lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
+
+ // Generate indication with comprehension required attribute and verify it
+ // doesn't update last_ping_received.
+ auto in_msg = CreateStunMessage(STUN_BINDING_INDICATION);
+ in_msg->AddAttribute(StunAttribute::CreateUInt32(0x7777));
+ in_msg->AddFingerprint();
+ ByteBufferWriter buf;
+ WriteStunMessage(*in_msg, &buf);
+ lconn->OnReadPacket(buf.Data(), buf.Length(), /* packet_time_us */ -1);
+ EXPECT_EQ(0u, lconn->last_ping_received());
+}
+
+// Test handling of STUN binding indication messages . STUN binding
+// indications are allowed only to the connection which is in read mode.
+TEST_F(PortTest, TestHandleStunBindingIndication) {
+ auto lport = CreateTestPort(kLocalAddr2, "lfrag", "lpass");
+ lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ lport->SetIceTiebreaker(kTiebreaker1);
+
+ // Verifying encoding and decoding STUN indication message.
+ std::unique_ptr<IceMessage> in_msg, out_msg;
+ std::unique_ptr<ByteBufferWriter> buf(new ByteBufferWriter());
+ rtc::SocketAddress addr(kLocalAddr1);
+ std::string username;
+
+ in_msg = CreateStunMessage(STUN_BINDING_INDICATION);
+ in_msg->AddFingerprint();
+ WriteStunMessage(*in_msg, buf.get());
+ EXPECT_TRUE(lport->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
+ &username));
+ EXPECT_TRUE(out_msg.get() != NULL);
+ EXPECT_EQ(out_msg->type(), STUN_BINDING_INDICATION);
+ EXPECT_EQ("", username);
+
+ // Verify connection can handle STUN indication and updates
+ // last_ping_received.
+ auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
+ rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ rport->SetIceTiebreaker(kTiebreaker2);
+
+ lport->PrepareAddress();
+ rport->PrepareAddress();
+ ASSERT_FALSE(lport->Candidates().empty());
+ ASSERT_FALSE(rport->Candidates().empty());
+
+ Connection* lconn =
+ lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
+ Connection* rconn =
+ rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
+ rconn->Ping(0);
+
+ ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout);
+ IceMessage* msg = rport->last_stun_msg();
+ EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
+ // Send rport binding request to lport.
+ lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
+ rport->last_stun_buf()->size(), /* packet_time_us */ -1);
+ ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
+ EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
+ int64_t last_ping_received1 = lconn->last_ping_received();
+
+ // Adding a delay of 100ms.
+ rtc::Thread::Current()->ProcessMessages(100);
+ // Pinging lconn using stun indication message.
+ lconn->OnReadPacket(buf->Data(), buf->Length(), /* packet_time_us */ -1);
+ int64_t last_ping_received2 = lconn->last_ping_received();
+ EXPECT_GT(last_ping_received2, last_ping_received1);
+}
+
+TEST_F(PortTest, TestComputeCandidatePriority) {
+ auto port = CreateTestPort(kLocalAddr1, "name", "pass");
+ port->set_type_preference(90);
+ port->set_component(177);
+ port->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
+ port->AddCandidateAddress(SocketAddress("2001:db8::1234", 1234));
+ port->AddCandidateAddress(SocketAddress("fc12:3456::1234", 1234));
+ port->AddCandidateAddress(SocketAddress("::ffff:192.168.1.4", 1234));
+ port->AddCandidateAddress(SocketAddress("::192.168.1.4", 1234));
+ port->AddCandidateAddress(SocketAddress("2002::1234:5678", 1234));
+ port->AddCandidateAddress(SocketAddress("2001::1234:5678", 1234));
+ port->AddCandidateAddress(SocketAddress("fecf::1234:5678", 1234));
+ port->AddCandidateAddress(SocketAddress("3ffe::1234:5678", 1234));
+ // These should all be:
+ // (90 << 24) | ([rfc3484 pref value] << 8) | (256 - 177)
+ uint32_t expected_priority_v4 = 1509957199U;
+ uint32_t expected_priority_v6 = 1509959759U;
+ uint32_t expected_priority_ula = 1509962319U;
+ uint32_t expected_priority_v4mapped = expected_priority_v4;
+ uint32_t expected_priority_v4compat = 1509949775U;
+ uint32_t expected_priority_6to4 = 1509954639U;
+ uint32_t expected_priority_teredo = 1509952079U;
+ uint32_t expected_priority_sitelocal = 1509949775U;
+ uint32_t expected_priority_6bone = 1509949775U;
+ ASSERT_EQ(expected_priority_v4, port->Candidates()[0].priority());
+ ASSERT_EQ(expected_priority_v6, port->Candidates()[1].priority());
+ ASSERT_EQ(expected_priority_ula, port->Candidates()[2].priority());
+ ASSERT_EQ(expected_priority_v4mapped, port->Candidates()[3].priority());
+ ASSERT_EQ(expected_priority_v4compat, port->Candidates()[4].priority());
+ ASSERT_EQ(expected_priority_6to4, port->Candidates()[5].priority());
+ ASSERT_EQ(expected_priority_teredo, port->Candidates()[6].priority());
+ ASSERT_EQ(expected_priority_sitelocal, port->Candidates()[7].priority());
+ ASSERT_EQ(expected_priority_6bone, port->Candidates()[8].priority());
+}
+
+// In the case of shared socket, one port may be shared by local and stun.
+// Test that candidates with different types will have different foundation.
+TEST_F(PortTest, TestFoundation) {
+ auto testport = CreateTestPort(kLocalAddr1, "name", "pass");
+ testport->AddCandidateAddress(kLocalAddr1, kLocalAddr1, LOCAL_PORT_TYPE,
+ cricket::ICE_TYPE_PREFERENCE_HOST, false);
+ testport->AddCandidateAddress(kLocalAddr2, kLocalAddr1, STUN_PORT_TYPE,
+ cricket::ICE_TYPE_PREFERENCE_SRFLX, true);
+ EXPECT_NE(testport->Candidates()[0].foundation(),
+ testport->Candidates()[1].foundation());
+}
+
+// This test verifies the foundation of different types of ICE candidates.
+TEST_F(PortTest, TestCandidateFoundation) {
+ std::unique_ptr<rtc::NATServer> nat_server(
+ CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
+ auto udpport1 = CreateUdpPort(kLocalAddr1);
+ udpport1->PrepareAddress();
+ auto udpport2 = CreateUdpPort(kLocalAddr1);
+ udpport2->PrepareAddress();
+ EXPECT_EQ(udpport1->Candidates()[0].foundation(),
+ udpport2->Candidates()[0].foundation());
+ auto tcpport1 = CreateTcpPort(kLocalAddr1);
+ tcpport1->PrepareAddress();
+ auto tcpport2 = CreateTcpPort(kLocalAddr1);
+ tcpport2->PrepareAddress();
+ EXPECT_EQ(tcpport1->Candidates()[0].foundation(),
+ tcpport2->Candidates()[0].foundation());
+ auto stunport = CreateStunPort(kLocalAddr1, nat_socket_factory1());
+ stunport->PrepareAddress();
+ ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kDefaultTimeout);
+ EXPECT_NE(tcpport1->Candidates()[0].foundation(),
+ stunport->Candidates()[0].foundation());
+ EXPECT_NE(tcpport2->Candidates()[0].foundation(),
+ stunport->Candidates()[0].foundation());
+ EXPECT_NE(udpport1->Candidates()[0].foundation(),
+ stunport->Candidates()[0].foundation());
+ EXPECT_NE(udpport2->Candidates()[0].foundation(),
+ stunport->Candidates()[0].foundation());
+ // Verifying TURN candidate foundation.
+ auto turnport1 =
+ CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP);
+ turnport1->PrepareAddress();
+ ASSERT_EQ_WAIT(1U, turnport1->Candidates().size(), kDefaultTimeout);
+ EXPECT_NE(udpport1->Candidates()[0].foundation(),
+ turnport1->Candidates()[0].foundation());
+ EXPECT_NE(udpport2->Candidates()[0].foundation(),
+ turnport1->Candidates()[0].foundation());
+ EXPECT_NE(stunport->Candidates()[0].foundation(),
+ turnport1->Candidates()[0].foundation());
+ auto turnport2 =
+ CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP);
+ turnport2->PrepareAddress();
+ ASSERT_EQ_WAIT(1U, turnport2->Candidates().size(), kDefaultTimeout);
+ EXPECT_EQ(turnport1->Candidates()[0].foundation(),
+ turnport2->Candidates()[0].foundation());
+
+ // Running a second turn server, to get different base IP address.
+ SocketAddress kTurnUdpIntAddr2("99.99.98.4", STUN_SERVER_PORT);
+ SocketAddress kTurnUdpExtAddr2("99.99.98.5", 0);
+ TestTurnServer turn_server2(rtc::Thread::Current(), vss(), kTurnUdpIntAddr2,
+ kTurnUdpExtAddr2);
+ auto turnport3 = CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP,
+ PROTO_UDP, kTurnUdpIntAddr2);
+ turnport3->PrepareAddress();
+ ASSERT_EQ_WAIT(1U, turnport3->Candidates().size(), kDefaultTimeout);
+ EXPECT_NE(turnport3->Candidates()[0].foundation(),
+ turnport2->Candidates()[0].foundation());
+
+ // Start a TCP turn server, and check that two turn candidates have
+ // different foundations if their relay protocols are different.
+ TestTurnServer turn_server3(rtc::Thread::Current(), vss(), kTurnTcpIntAddr,
+ kTurnUdpExtAddr, PROTO_TCP);
+ auto turnport4 =
+ CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_TCP, PROTO_UDP);
+ turnport4->PrepareAddress();
+ ASSERT_EQ_WAIT(1U, turnport4->Candidates().size(), kDefaultTimeout);
+ EXPECT_NE(turnport2->Candidates()[0].foundation(),
+ turnport4->Candidates()[0].foundation());
+}
+
+// This test verifies the related addresses of different types of
+// ICE candidates.
+TEST_F(PortTest, TestCandidateRelatedAddress) {
+ auto nat_server = CreateNatServer(kNatAddr1, NAT_OPEN_CONE);
+ auto udpport = CreateUdpPort(kLocalAddr1);
+ udpport->PrepareAddress();
+ // For UDPPort, related address will be empty.
+ EXPECT_TRUE(udpport->Candidates()[0].related_address().IsNil());
+ // Testing related address for stun candidates.
+ // For stun candidate related address must be equal to the base
+ // socket address.
+ auto stunport = CreateStunPort(kLocalAddr1, nat_socket_factory1());
+ stunport->PrepareAddress();
+ ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kDefaultTimeout);
+ // Check STUN candidate address.
+ EXPECT_EQ(stunport->Candidates()[0].address().ipaddr(), kNatAddr1.ipaddr());
+ // Check STUN candidate related address.
+ EXPECT_EQ(stunport->Candidates()[0].related_address(),
+ stunport->GetLocalAddress());
+ // Verifying the related address for TURN candidate.
+ // For TURN related address must be equal to the mapped address.
+ auto turnport =
+ CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP);
+ turnport->PrepareAddress();
+ ASSERT_EQ_WAIT(1U, turnport->Candidates().size(), kDefaultTimeout);
+ EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
+ turnport->Candidates()[0].address().ipaddr());
+ EXPECT_EQ(kNatAddr1.ipaddr(),
+ turnport->Candidates()[0].related_address().ipaddr());
+}
+
+// Test priority value overflow handling when preference is set to 3.
+TEST_F(PortTest, TestCandidatePriority) {
+ cricket::Candidate cand1;
+ cand1.set_priority(3);
+ cricket::Candidate cand2;
+ cand2.set_priority(1);
+ EXPECT_TRUE(cand1.priority() > cand2.priority());
+}
+
+// Test the Connection priority is calculated correctly.
+TEST_F(PortTest, TestConnectionPriority) {
+ auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
+ lport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_HOST);
+ auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
+ rport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_RELAY_UDP);
+ lport->set_component(123);
+ lport->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
+ rport->set_component(23);
+ rport->AddCandidateAddress(SocketAddress("10.1.1.100", 1234));
+
+ EXPECT_EQ(0x7E001E85U, lport->Candidates()[0].priority());
+ EXPECT_EQ(0x2001EE9U, rport->Candidates()[0].priority());
+
+ // RFC 5245
+ // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)
+ lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ Connection* lconn =
+ lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
+#if defined(WEBRTC_WIN)
+ EXPECT_EQ(0x2001EE9FC003D0BU, lconn->priority());
+#else
+ EXPECT_EQ(0x2001EE9FC003D0BLLU, lconn->priority());
+#endif
+
+ lport->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ Connection* rconn =
+ rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
+#if defined(WEBRTC_WIN)
+ EXPECT_EQ(0x2001EE9FC003D0AU, rconn->priority());
+#else
+ EXPECT_EQ(0x2001EE9FC003D0ALLU, rconn->priority());
+#endif
+}
+
+// Note that UpdateState takes into account the estimated RTT, and the
+// correctness of using `kMaxExpectedSimulatedRtt` as an upper bound of RTT in
+// the following tests depends on the link rate and the delay distriubtion
+// configured in VirtualSocketServer::AddPacketToNetwork. The tests below use
+// the default setup where the RTT is deterministically one, which generates an
+// estimate given by `MINIMUM_RTT` = 100.
+TEST_F(PortTest, TestWritableState) {
+ rtc::ScopedFakeClock clock;
+ auto port1 = CreateUdpPort(kLocalAddr1);
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ auto port2 = CreateUdpPort(kLocalAddr2);
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+
+ // Set up channels.
+ TestChannel ch1(std::move(port1));
+ TestChannel ch2(std::move(port2));
+
+ // Acquire addresses.
+ ch1.Start();
+ ch2.Start();
+ ASSERT_EQ_SIMULATED_WAIT(1, ch1.complete_count(), kDefaultTimeout, clock);
+ ASSERT_EQ_SIMULATED_WAIT(1, ch2.complete_count(), kDefaultTimeout, clock);
+
+ // Send a ping from src to dst.
+ ch1.CreateConnection(GetCandidate(ch2.port()));
+ ASSERT_TRUE(ch1.conn() != NULL);
+ EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
+ // for TCP connect
+ EXPECT_TRUE_SIMULATED_WAIT(ch1.conn()->connected(), kDefaultTimeout, clock);
+ ch1.Ping();
+ SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock);
+
+ // Data should be sendable before the connection is accepted.
+ char data[] = "abcd";
+ int data_size = arraysize(data);
+ rtc::PacketOptions options;
+ EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
+
+ // Accept the connection to return the binding response, transition to
+ // writable, and allow data to be sent.
+ ch2.AcceptConnection(GetCandidate(ch1.port()));
+ EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
+ ch1.conn()->write_state(), kDefaultTimeout, clock);
+ EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
+
+ // Ask the connection to update state as if enough time has passed to lose
+ // full writability and 5 pings went unresponded to. We'll accomplish the
+ // latter by sending pings but not pumping messages.
+ for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
+ ch1.Ping(i);
+ }
+ int unreliable_timeout_delay =
+ CONNECTION_WRITE_CONNECT_TIMEOUT + kMaxExpectedSimulatedRtt;
+ ch1.conn()->UpdateState(unreliable_timeout_delay);
+ EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state());
+
+ // Data should be able to be sent in this state.
+ EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
+
+ // And now allow the other side to process the pings and send binding
+ // responses.
+ EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
+ ch1.conn()->write_state(), kDefaultTimeout, clock);
+ // Wait long enough for a full timeout (past however long we've already
+ // waited).
+ for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
+ ch1.Ping(unreliable_timeout_delay + i);
+ }
+ ch1.conn()->UpdateState(unreliable_timeout_delay + CONNECTION_WRITE_TIMEOUT +
+ kMaxExpectedSimulatedRtt);
+ EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
+
+ // Even if the connection has timed out, the Connection shouldn't block
+ // the sending of data.
+ EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
+
+ ch1.Stop();
+ ch2.Stop();
+}
+
+// Test writability states using the configured threshold value to replace
+// the default value given by `CONNECTION_WRITE_CONNECT_TIMEOUT` and
+// `CONNECTION_WRITE_CONNECT_FAILURES`.
+TEST_F(PortTest, TestWritableStateWithConfiguredThreshold) {
+ rtc::ScopedFakeClock clock;
+ auto port1 = CreateUdpPort(kLocalAddr1);
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ auto port2 = CreateUdpPort(kLocalAddr2);
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+
+ // Set up channels.
+ TestChannel ch1(std::move(port1));
+ TestChannel ch2(std::move(port2));
+
+ // Acquire addresses.
+ ch1.Start();
+ ch2.Start();
+ ASSERT_EQ_SIMULATED_WAIT(1, ch1.complete_count(), kDefaultTimeout, clock);
+ ASSERT_EQ_SIMULATED_WAIT(1, ch2.complete_count(), kDefaultTimeout, clock);
+
+ // Send a ping from src to dst.
+ ch1.CreateConnection(GetCandidate(ch2.port()));
+ ASSERT_TRUE(ch1.conn() != NULL);
+ ch1.Ping();
+ SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock);
+
+ // Accept the connection to return the binding response, transition to
+ // writable, and allow data to be sent.
+ ch2.AcceptConnection(GetCandidate(ch1.port()));
+ EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
+ ch1.conn()->write_state(), kDefaultTimeout, clock);
+
+ ch1.conn()->set_unwritable_timeout(1000);
+ ch1.conn()->set_unwritable_min_checks(3);
+ // Send two checks.
+ ch1.Ping(1);
+ ch1.Ping(2);
+ // We have not reached the timeout nor have we sent the minimum number of
+ // checks to change the state to Unreliable.
+ ch1.conn()->UpdateState(999);
+ EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
+ // We have not sent the minimum number of checks without responses.
+ ch1.conn()->UpdateState(1000 + kMaxExpectedSimulatedRtt);
+ EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
+ // Last ping after which the candidate pair should become Unreliable after
+ // timeout.
+ ch1.Ping(3);
+ // We have not reached the timeout.
+ ch1.conn()->UpdateState(999);
+ EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
+ // We should be in the state Unreliable now.
+ ch1.conn()->UpdateState(1000 + kMaxExpectedSimulatedRtt);
+ EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state());
+
+ ch1.Stop();
+ ch2.Stop();
+}
+
+TEST_F(PortTest, TestTimeoutForNeverWritable) {
+ auto port1 = CreateUdpPort(kLocalAddr1);
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ auto port2 = CreateUdpPort(kLocalAddr2);
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+
+ // Set up channels.
+ TestChannel ch1(std::move(port1));
+ TestChannel ch2(std::move(port2));
+
+ // Acquire addresses.
+ ch1.Start();
+ ch2.Start();
+
+ ch1.CreateConnection(GetCandidate(ch2.port()));
+ ASSERT_TRUE(ch1.conn() != NULL);
+ EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
+
+ // Attempt to go directly to write timeout.
+ for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
+ ch1.Ping(i);
+ }
+ ch1.conn()->UpdateState(CONNECTION_WRITE_TIMEOUT + kMaxExpectedSimulatedRtt);
+ EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
+}
+
+// This test verifies the connection setup between ICEMODE_FULL
+// and ICEMODE_LITE.
+// In this test `ch1` behaves like FULL mode client and we have created
+// port which responds to the ping message just like LITE client.
+TEST_F(PortTest, TestIceLiteConnectivity) {
+ auto ice_full_port =
+ CreateTestPort(kLocalAddr1, "lfrag", "lpass",
+ cricket::ICEROLE_CONTROLLING, kTiebreaker1);
+ auto* ice_full_port_ptr = ice_full_port.get();
+
+ auto ice_lite_port = CreateTestPort(
+ kLocalAddr2, "rfrag", "rpass", cricket::ICEROLE_CONTROLLED, kTiebreaker2);
+ // Setup TestChannel. This behaves like FULL mode client.
+ TestChannel ch1(std::move(ice_full_port));
+ ch1.SetIceMode(ICEMODE_FULL);
+
+ // Start gathering candidates.
+ ch1.Start();
+ ice_lite_port->PrepareAddress();
+
+ ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
+ ASSERT_FALSE(ice_lite_port->Candidates().empty());
+
+ ch1.CreateConnection(GetCandidate(ice_lite_port.get()));
+ ASSERT_TRUE(ch1.conn() != NULL);
+ EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
+
+ // Send ping from full mode client.
+ // This ping must not have USE_CANDIDATE_ATTR.
+ ch1.Ping();
+
+ // Verify stun ping is without USE_CANDIDATE_ATTR. Getting message directly
+ // from port.
+ ASSERT_TRUE_WAIT(ice_full_port_ptr->last_stun_msg() != NULL, kDefaultTimeout);
+ IceMessage* msg = ice_full_port_ptr->last_stun_msg();
+ EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
+
+ // Respond with a BINDING-RESPONSE from litemode client.
+ // NOTE: Ideally we should't create connection at this stage from lite
+ // port, as it should be done only after receiving ping with USE_CANDIDATE.
+ // But we need a connection to send a response message.
+ auto* con = ice_lite_port->CreateConnection(
+ ice_full_port_ptr->Candidates()[0], cricket::Port::ORIGIN_MESSAGE);
+ std::unique_ptr<IceMessage> request = CopyStunMessage(*msg);
+ con->SendStunBindingResponse(request.get());
+
+ // Feeding the respone message from litemode to the full mode connection.
+ ch1.conn()->OnReadPacket(ice_lite_port->last_stun_buf()->data<char>(),
+ ice_lite_port->last_stun_buf()->size(),
+ /* packet_time_us */ -1);
+ // Verifying full mode connection becomes writable from the response.
+ EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
+ kDefaultTimeout);
+ EXPECT_TRUE_WAIT(ch1.nominated(), kDefaultTimeout);
+
+ // Clear existing stun messsages. Otherwise we will process old stun
+ // message right after we send ping.
+ ice_full_port_ptr->Reset();
+ // Send ping. This must have USE_CANDIDATE_ATTR.
+ ch1.Ping();
+ ASSERT_TRUE_WAIT(ice_full_port_ptr->last_stun_msg() != NULL, kDefaultTimeout);
+ msg = ice_full_port_ptr->last_stun_msg();
+ EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
+ ch1.Stop();
+}
+
+namespace {
+
+// Utility function for testing goog ping.
+absl::optional<int> GetSupportedGoogPingVersion(const StunMessage* msg) {
+ auto goog_misc = msg->GetUInt16List(STUN_ATTR_GOOG_MISC_INFO);
+ if (goog_misc == nullptr) {
+ return absl::nullopt;
+ }
+
+ if (msg->type() == STUN_BINDING_REQUEST) {
+ if (goog_misc->Size() <
+ static_cast<int>(cricket::IceGoogMiscInfoBindingRequestAttributeIndex::
+ SUPPORT_GOOG_PING_VERSION)) {
+ return absl::nullopt;
+ }
+
+ return goog_misc->GetType(
+ static_cast<int>(cricket::IceGoogMiscInfoBindingRequestAttributeIndex::
+ SUPPORT_GOOG_PING_VERSION));
+ }
+
+ if (msg->type() == STUN_BINDING_RESPONSE) {
+ if (goog_misc->Size() <
+ static_cast<int>(cricket::IceGoogMiscInfoBindingResponseAttributeIndex::
+ SUPPORT_GOOG_PING_VERSION)) {
+ return absl::nullopt;
+ }
+
+ return goog_misc->GetType(
+ static_cast<int>(cricket::IceGoogMiscInfoBindingResponseAttributeIndex::
+ SUPPORT_GOOG_PING_VERSION));
+ }
+ return absl::nullopt;
+}
+
+} // namespace
+
+class GoogPingTest
+ : public PortTest,
+ public ::testing::WithParamInterface<std::pair<bool, bool>> {};
+
+// This test verifies the announce/enable on/off behavior
+TEST_P(GoogPingTest, TestGoogPingAnnounceEnable) {
+ IceFieldTrials trials;
+ trials.announce_goog_ping = GetParam().first;
+ trials.enable_goog_ping = GetParam().second;
+ RTC_LOG(LS_INFO) << "Testing combination: "
+ " announce: "
+ << trials.announce_goog_ping
+ << " enable:" << trials.enable_goog_ping;
+
+ auto port1_unique =
+ CreateTestPort(kLocalAddr1, "lfrag", "lpass",
+ cricket::ICEROLE_CONTROLLING, kTiebreaker1);
+ auto* port1 = port1_unique.get();
+ auto port2 = CreateTestPort(kLocalAddr2, "rfrag", "rpass",
+ cricket::ICEROLE_CONTROLLED, kTiebreaker2);
+
+ TestChannel ch1(std::move(port1_unique));
+ // Block usage of STUN_ATTR_USE_CANDIDATE so that
+ // ch1.conn() will sent GOOG_PING_REQUEST directly.
+ // This only makes test a bit shorter...
+ ch1.SetIceMode(ICEMODE_LITE);
+ // Start gathering candidates.
+ ch1.Start();
+ port2->PrepareAddress();
+
+ ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
+ ASSERT_FALSE(port2->Candidates().empty());
+
+ ch1.CreateConnection(GetCandidate(port2.get()));
+ ASSERT_TRUE(ch1.conn() != NULL);
+ EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
+ ch1.conn()->SetIceFieldTrials(&trials);
+
+ // Send ping.
+ ch1.Ping();
+
+ ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
+ const IceMessage* request1 = port1->last_stun_msg();
+
+ ASSERT_EQ(trials.enable_goog_ping,
+ GetSupportedGoogPingVersion(request1) &&
+ GetSupportedGoogPingVersion(request1) >= kGoogPingVersion);
+
+ auto* con = port2->CreateConnection(port1->Candidates()[0],
+ cricket::Port::ORIGIN_MESSAGE);
+ con->SetIceFieldTrials(&trials);
+
+ con->SendStunBindingResponse(request1);
+
+ // Then check the response matches the settings.
+ const auto* response = port2->last_stun_msg();
+ EXPECT_EQ(response->type(), STUN_BINDING_RESPONSE);
+ EXPECT_EQ(trials.enable_goog_ping && trials.announce_goog_ping,
+ GetSupportedGoogPingVersion(response) &&
+ GetSupportedGoogPingVersion(response) >= kGoogPingVersion);
+
+ // Feeding the respone message back.
+ ch1.conn()->OnReadPacket(port2->last_stun_buf()->data<char>(),
+ port2->last_stun_buf()->size(),
+ /* packet_time_us */ -1);
+
+ port1->Reset();
+ port2->Reset();
+
+ ch1.Ping();
+ ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
+ const IceMessage* request2 = port1->last_stun_msg();
+
+ // It should be a GOOG_PING if both of these are TRUE
+ if (trials.announce_goog_ping && trials.enable_goog_ping) {
+ ASSERT_EQ(request2->type(), GOOG_PING_REQUEST);
+ con->SendGoogPingResponse(request2);
+ } else {
+ ASSERT_EQ(request2->type(), STUN_BINDING_REQUEST);
+ // If we sent a BINDING with enable, and we got a reply that
+ // didn't contain announce, the next ping should not contain
+ // the enable again.
+ ASSERT_FALSE(GetSupportedGoogPingVersion(request2).has_value());
+ con->SendStunBindingResponse(request2);
+ }
+
+ const auto* response2 = port2->last_stun_msg();
+ ASSERT_TRUE(response2 != nullptr);
+
+ // It should be a GOOG_PING_RESPONSE if both of these are TRUE
+ if (trials.announce_goog_ping && trials.enable_goog_ping) {
+ ASSERT_EQ(response2->type(), GOOG_PING_RESPONSE);
+ } else {
+ ASSERT_EQ(response2->type(), STUN_BINDING_RESPONSE);
+ }
+
+ ch1.Stop();
+}
+
+// This test if a someone send a STUN_BINDING with unsupported version
+// (kGoogPingVersion == 0)
+TEST_F(PortTest, TestGoogPingUnsupportedVersionInStunBinding) {
+ IceFieldTrials trials;
+ trials.announce_goog_ping = true;
+ trials.enable_goog_ping = true;
+
+ auto port1_unique =
+ CreateTestPort(kLocalAddr1, "lfrag", "lpass",
+ cricket::ICEROLE_CONTROLLING, kTiebreaker1);
+ auto* port1 = port1_unique.get();
+ auto port2 = CreateTestPort(kLocalAddr2, "rfrag", "rpass",
+ cricket::ICEROLE_CONTROLLED, kTiebreaker2);
+
+ TestChannel ch1(std::move(port1_unique));
+ // Block usage of STUN_ATTR_USE_CANDIDATE so that
+ // ch1.conn() will sent GOOG_PING_REQUEST directly.
+ // This only makes test a bit shorter...
+ ch1.SetIceMode(ICEMODE_LITE);
+ // Start gathering candidates.
+ ch1.Start();
+ port2->PrepareAddress();
+
+ ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
+ ASSERT_FALSE(port2->Candidates().empty());
+
+ ch1.CreateConnection(GetCandidate(port2.get()));
+ ASSERT_TRUE(ch1.conn() != NULL);
+ EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
+ ch1.conn()->SetIceFieldTrials(&trials);
+
+ // Send ping.
+ ch1.Ping();
+
+ ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
+ const IceMessage* request1 = port1->last_stun_msg();
+
+ ASSERT_TRUE(GetSupportedGoogPingVersion(request1) &&
+ GetSupportedGoogPingVersion(request1) >= kGoogPingVersion);
+
+ // Modify the STUN message request1 to send GetSupportedGoogPingVersion == 0
+ auto modified_request1 = request1->Clone();
+ ASSERT_TRUE(modified_request1->RemoveAttribute(STUN_ATTR_GOOG_MISC_INFO) !=
+ nullptr);
+ ASSERT_TRUE(modified_request1->RemoveAttribute(STUN_ATTR_MESSAGE_INTEGRITY) !=
+ nullptr);
+ {
+ auto list =
+ StunAttribute::CreateUInt16ListAttribute(STUN_ATTR_GOOG_MISC_INFO);
+ list->AddTypeAtIndex(
+ static_cast<uint16_t>(
+ cricket::IceGoogMiscInfoBindingRequestAttributeIndex::
+ SUPPORT_GOOG_PING_VERSION),
+ /* version */ 0);
+ modified_request1->AddAttribute(std::move(list));
+ modified_request1->AddMessageIntegrity("rpass");
+ }
+ auto* con = port2->CreateConnection(port1->Candidates()[0],
+ cricket::Port::ORIGIN_MESSAGE);
+ con->SetIceFieldTrials(&trials);
+
+ con->SendStunBindingResponse(modified_request1.get());
+
+ // Then check the response matches the settings.
+ const auto* response = port2->last_stun_msg();
+ EXPECT_EQ(response->type(), STUN_BINDING_RESPONSE);
+ EXPECT_FALSE(GetSupportedGoogPingVersion(response));
+
+ ch1.Stop();
+}
+
+// This test if a someone send a STUN_BINDING_RESPONSE with unsupported version
+// (kGoogPingVersion == 0)
+TEST_F(PortTest, TestGoogPingUnsupportedVersionInStunBindingResponse) {
+ IceFieldTrials trials;
+ trials.announce_goog_ping = true;
+ trials.enable_goog_ping = true;
+
+ auto port1_unique =
+ CreateTestPort(kLocalAddr1, "lfrag", "lpass",
+ cricket::ICEROLE_CONTROLLING, kTiebreaker1);
+ auto* port1 = port1_unique.get();
+ auto port2 = CreateTestPort(kLocalAddr2, "rfrag", "rpass",
+ cricket::ICEROLE_CONTROLLED, kTiebreaker2);
+
+ TestChannel ch1(std::move(port1_unique));
+ // Block usage of STUN_ATTR_USE_CANDIDATE so that
+ // ch1.conn() will sent GOOG_PING_REQUEST directly.
+ // This only makes test a bit shorter...
+ ch1.SetIceMode(ICEMODE_LITE);
+ // Start gathering candidates.
+ ch1.Start();
+ port2->PrepareAddress();
+
+ ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
+ ASSERT_FALSE(port2->Candidates().empty());
+
+ ch1.CreateConnection(GetCandidate(port2.get()));
+ ASSERT_TRUE(ch1.conn() != NULL);
+ EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
+ ch1.conn()->SetIceFieldTrials(&trials);
+
+ // Send ping.
+ ch1.Ping();
+
+ ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
+ const IceMessage* request1 = port1->last_stun_msg();
+
+ ASSERT_TRUE(GetSupportedGoogPingVersion(request1) &&
+ GetSupportedGoogPingVersion(request1) >= kGoogPingVersion);
+
+ auto* con = port2->CreateConnection(port1->Candidates()[0],
+ cricket::Port::ORIGIN_MESSAGE);
+ con->SetIceFieldTrials(&trials);
+
+ con->SendStunBindingResponse(request1);
+
+ // Then check the response matches the settings.
+ const auto* response = port2->last_stun_msg();
+ EXPECT_EQ(response->type(), STUN_BINDING_RESPONSE);
+ EXPECT_TRUE(GetSupportedGoogPingVersion(response));
+
+ // Modify the STUN message response to contain GetSupportedGoogPingVersion ==
+ // 0
+ auto modified_response = response->Clone();
+ ASSERT_TRUE(modified_response->RemoveAttribute(STUN_ATTR_GOOG_MISC_INFO) !=
+ nullptr);
+ ASSERT_TRUE(modified_response->RemoveAttribute(STUN_ATTR_MESSAGE_INTEGRITY) !=
+ nullptr);
+ ASSERT_TRUE(modified_response->RemoveAttribute(STUN_ATTR_FINGERPRINT) !=
+ nullptr);
+ {
+ auto list =
+ StunAttribute::CreateUInt16ListAttribute(STUN_ATTR_GOOG_MISC_INFO);
+ list->AddTypeAtIndex(
+ static_cast<uint16_t>(
+ cricket::IceGoogMiscInfoBindingResponseAttributeIndex::
+ SUPPORT_GOOG_PING_VERSION),
+ /* version */ 0);
+ modified_response->AddAttribute(std::move(list));
+ modified_response->AddMessageIntegrity("rpass");
+ modified_response->AddFingerprint();
+ }
+
+ rtc::ByteBufferWriter buf;
+ modified_response->Write(&buf);
+
+ // Feeding the modified respone message back.
+ ch1.conn()->OnReadPacket(buf.Data(), buf.Length(), /* packet_time_us */ -1);
+
+ port1->Reset();
+ port2->Reset();
+
+ ch1.Ping();
+ ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
+
+ // This should now be a STUN_BINDING...without a kGoogPingVersion
+ const IceMessage* request2 = port1->last_stun_msg();
+ EXPECT_EQ(request2->type(), STUN_BINDING_REQUEST);
+ EXPECT_FALSE(GetSupportedGoogPingVersion(request2));
+
+ ch1.Stop();
+}
+
+INSTANTIATE_TEST_SUITE_P(GoogPingTest,
+ GoogPingTest,
+ // test all combinations of <announce, enable> pairs.
+ ::testing::Values(std::make_pair(false, false),
+ std::make_pair(true, false),
+ std::make_pair(false, true),
+ std::make_pair(true, true)));
+
+// This test checks that a change in attributes falls back to STUN_BINDING
+TEST_F(PortTest, TestChangeInAttributeMakesGoogPingFallsbackToStunBinding) {
+ IceFieldTrials trials;
+ trials.announce_goog_ping = true;
+ trials.enable_goog_ping = true;
+
+ auto port1_unique =
+ CreateTestPort(kLocalAddr1, "lfrag", "lpass",
+ cricket::ICEROLE_CONTROLLING, kTiebreaker1);
+ auto* port1 = port1_unique.get();
+ auto port2 = CreateTestPort(kLocalAddr2, "rfrag", "rpass",
+ cricket::ICEROLE_CONTROLLED, kTiebreaker2);
+
+ TestChannel ch1(std::move(port1_unique));
+ // Block usage of STUN_ATTR_USE_CANDIDATE so that
+ // ch1.conn() will sent GOOG_PING_REQUEST directly.
+ // This only makes test a bit shorter...
+ ch1.SetIceMode(ICEMODE_LITE);
+ // Start gathering candidates.
+ ch1.Start();
+ port2->PrepareAddress();
+
+ ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
+ ASSERT_FALSE(port2->Candidates().empty());
+
+ ch1.CreateConnection(GetCandidate(port2.get()));
+ ASSERT_TRUE(ch1.conn() != nullptr);
+ EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
+ ch1.conn()->SetIceFieldTrials(&trials);
+
+ // Send ping.
+ ch1.Ping();
+
+ ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
+ const IceMessage* msg = port1->last_stun_msg();
+ auto* con = port2->CreateConnection(port1->Candidates()[0],
+ cricket::Port::ORIGIN_MESSAGE);
+ con->SetIceFieldTrials(&trials);
+
+ // Feed the message into the connection.
+ con->SendStunBindingResponse(msg);
+
+ // The check reply wrt to settings.
+ const auto* response = port2->last_stun_msg();
+ ASSERT_EQ(response->type(), STUN_BINDING_RESPONSE);
+ ASSERT_TRUE(GetSupportedGoogPingVersion(response) >= kGoogPingVersion);
+
+ // Feeding the respone message back.
+ ch1.conn()->OnReadPacket(port2->last_stun_buf()->data<char>(),
+ port2->last_stun_buf()->size(),
+ /* packet_time_us */ -1);
+
+ port1->Reset();
+ port2->Reset();
+
+ ch1.Ping();
+ ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
+ const IceMessage* msg2 = port1->last_stun_msg();
+
+ // It should be a GOOG_PING if both of these are TRUE
+ ASSERT_EQ(msg2->type(), GOOG_PING_REQUEST);
+ con->SendGoogPingResponse(msg2);
+
+ const auto* response2 = port2->last_stun_msg();
+ ASSERT_TRUE(response2 != nullptr);
+
+ // It should be a GOOG_PING_RESPONSE.
+ ASSERT_EQ(response2->type(), GOOG_PING_RESPONSE);
+
+ // And now the third ping.
+ port1->Reset();
+ port2->Reset();
+
+ // Modify the message to be sent.
+ ch1.conn()->set_use_candidate_attr(!ch1.conn()->use_candidate_attr());
+
+ ch1.Ping();
+ ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
+ const IceMessage* msg3 = port1->last_stun_msg();
+
+ // It should be a STUN_BINDING_REQUEST
+ ASSERT_EQ(msg3->type(), STUN_BINDING_REQUEST);
+
+ ch1.Stop();
+}
+
+// This test that an error response fall back to STUN_BINDING.
+TEST_F(PortTest, TestErrorResponseMakesGoogPingFallBackToStunBinding) {
+ IceFieldTrials trials;
+ trials.announce_goog_ping = true;
+ trials.enable_goog_ping = true;
+
+ auto port1_unique =
+ CreateTestPort(kLocalAddr1, "lfrag", "lpass",
+ cricket::ICEROLE_CONTROLLING, kTiebreaker1);
+ auto* port1 = port1_unique.get();
+ auto port2 = CreateTestPort(kLocalAddr2, "rfrag", "rpass",
+ cricket::ICEROLE_CONTROLLED, kTiebreaker2);
+
+ TestChannel ch1(std::move(port1_unique));
+ // Block usage of STUN_ATTR_USE_CANDIDATE so that
+ // ch1.conn() will sent GOOG_PING_REQUEST directly.
+ // This only makes test a bit shorter...
+ ch1.SetIceMode(ICEMODE_LITE);
+ // Start gathering candidates.
+ ch1.Start();
+ port2->PrepareAddress();
+
+ ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
+ ASSERT_FALSE(port2->Candidates().empty());
+
+ ch1.CreateConnection(GetCandidate(port2.get()));
+ ASSERT_TRUE(ch1.conn() != NULL);
+ EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
+ ch1.conn()->SetIceFieldTrials(&trials);
+
+ // Send ping.
+ ch1.Ping();
+
+ ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
+ const IceMessage* msg = port1->last_stun_msg();
+ auto* con = port2->CreateConnection(port1->Candidates()[0],
+ cricket::Port::ORIGIN_MESSAGE);
+ con->SetIceFieldTrials(&trials);
+
+ // Feed the message into the connection.
+ con->SendStunBindingResponse(msg);
+
+ // The check reply wrt to settings.
+ const auto* response = port2->last_stun_msg();
+ ASSERT_EQ(response->type(), STUN_BINDING_RESPONSE);
+ ASSERT_TRUE(GetSupportedGoogPingVersion(response) >= kGoogPingVersion);
+
+ // Feeding the respone message back.
+ ch1.conn()->OnReadPacket(port2->last_stun_buf()->data<char>(),
+ port2->last_stun_buf()->size(),
+ /* packet_time_us */ -1);
+
+ port1->Reset();
+ port2->Reset();
+
+ ch1.Ping();
+ ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
+ const IceMessage* msg2 = port1->last_stun_msg();
+
+ // It should be a GOOG_PING.
+ ASSERT_EQ(msg2->type(), GOOG_PING_REQUEST);
+ con->SendGoogPingResponse(msg2);
+
+ const auto* response2 = port2->last_stun_msg();
+ ASSERT_TRUE(response2 != nullptr);
+
+ // It should be a GOOG_PING_RESPONSE.
+ ASSERT_EQ(response2->type(), GOOG_PING_RESPONSE);
+
+ // But rather than the RESPONSE...feedback an error.
+ StunMessage error_response(GOOG_PING_ERROR_RESPONSE);
+ error_response.SetTransactionIdForTesting(response2->transaction_id());
+ error_response.AddMessageIntegrity32("rpass");
+ rtc::ByteBufferWriter buf;
+ error_response.Write(&buf);
+
+ ch1.conn()->OnReadPacket(buf.Data(), buf.Length(),
+ /* packet_time_us */ -1);
+
+ // And now the third ping...this should be a binding.
+ port1->Reset();
+ port2->Reset();
+
+ ch1.Ping();
+ ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout);
+ const IceMessage* msg3 = port1->last_stun_msg();
+
+ // It should be a STUN_BINDING_REQUEST
+ ASSERT_EQ(msg3->type(), STUN_BINDING_REQUEST);
+
+ ch1.Stop();
+}
+
+// This test case verifies that both the controlling port and the controlled
+// port will time out after connectivity is lost, if they are not marked as
+// "keep alive until pruned."
+TEST_F(PortTest, TestPortTimeoutIfNotKeptAlive) {
+ rtc::ScopedFakeClock clock;
+ int timeout_delay = 100;
+ auto port1 = CreateUdpPort(kLocalAddr1);
+ ConnectToSignalDestroyed(port1.get());
+ port1->set_timeout_delay(timeout_delay); // milliseconds
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ port1->SetIceTiebreaker(kTiebreaker1);
+
+ auto port2 = CreateUdpPort(kLocalAddr2);
+ ConnectToSignalDestroyed(port2.get());
+ port2->set_timeout_delay(timeout_delay); // milliseconds
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ port2->SetIceTiebreaker(kTiebreaker2);
+
+ // Set up channels and ensure both ports will be deleted.
+ TestChannel ch1(std::move(port1));
+ TestChannel ch2(std::move(port2));
+
+ // Simulate a connection that succeeds, and then is destroyed.
+ StartConnectAndStopChannels(&ch1, &ch2);
+ // After the connection is destroyed, the port will be destroyed because
+ // none of them is marked as "keep alive until pruned.
+ EXPECT_EQ_SIMULATED_WAIT(2, ports_destroyed(), 110, clock);
+}
+
+// Test that if after all connection are destroyed, new connections are created
+// and destroyed again, ports won't be destroyed until a timeout period passes
+// after the last set of connections are all destroyed.
+TEST_F(PortTest, TestPortTimeoutAfterNewConnectionCreatedAndDestroyed) {
+ rtc::ScopedFakeClock clock;
+ int timeout_delay = 100;
+ auto port1 = CreateUdpPort(kLocalAddr1);
+ ConnectToSignalDestroyed(port1.get());
+ port1->set_timeout_delay(timeout_delay); // milliseconds
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ port1->SetIceTiebreaker(kTiebreaker1);
+
+ auto port2 = CreateUdpPort(kLocalAddr2);
+ ConnectToSignalDestroyed(port2.get());
+ port2->set_timeout_delay(timeout_delay); // milliseconds
+
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ port2->SetIceTiebreaker(kTiebreaker2);
+
+ // Set up channels and ensure both ports will be deleted.
+ TestChannel ch1(std::move(port1));
+ TestChannel ch2(std::move(port2));
+
+ // Simulate a connection that succeeds, and then is destroyed.
+ StartConnectAndStopChannels(&ch1, &ch2);
+ SIMULATED_WAIT(ports_destroyed() > 0, 80, clock);
+ EXPECT_EQ(0, ports_destroyed());
+
+ // Start the second set of connection and destroy them.
+ ch1.CreateConnection(GetCandidate(ch2.port()));
+ ch2.CreateConnection(GetCandidate(ch1.port()));
+ ch1.Stop();
+ ch2.Stop();
+
+ SIMULATED_WAIT(ports_destroyed() > 0, 80, clock);
+ EXPECT_EQ(0, ports_destroyed());
+
+ // The ports on both sides should be destroyed after timeout.
+ EXPECT_TRUE_SIMULATED_WAIT(ports_destroyed() == 2, 30, clock);
+}
+
+// This test case verifies that neither the controlling port nor the controlled
+// port will time out after connectivity is lost if they are marked as "keep
+// alive until pruned". They will time out after they are pruned.
+TEST_F(PortTest, TestPortNotTimeoutUntilPruned) {
+ rtc::ScopedFakeClock clock;
+ int timeout_delay = 100;
+ auto port1 = CreateUdpPort(kLocalAddr1);
+ ConnectToSignalDestroyed(port1.get());
+ port1->set_timeout_delay(timeout_delay); // milliseconds
+ port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ port1->SetIceTiebreaker(kTiebreaker1);
+
+ auto port2 = CreateUdpPort(kLocalAddr2);
+ ConnectToSignalDestroyed(port2.get());
+ port2->set_timeout_delay(timeout_delay); // milliseconds
+ port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ port2->SetIceTiebreaker(kTiebreaker2);
+ // The connection must not be destroyed before a connection is attempted.
+ EXPECT_EQ(0, ports_destroyed());
+
+ port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
+ port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
+
+ // Set up channels and keep the port alive.
+ TestChannel ch1(std::move(port1));
+ TestChannel ch2(std::move(port2));
+ // Simulate a connection that succeeds, and then is destroyed. But ports
+ // are kept alive. Ports won't be destroyed.
+ StartConnectAndStopChannels(&ch1, &ch2);
+ ch1.port()->KeepAliveUntilPruned();
+ ch2.port()->KeepAliveUntilPruned();
+ SIMULATED_WAIT(ports_destroyed() > 0, 150, clock);
+ EXPECT_EQ(0, ports_destroyed());
+
+ // If they are pruned now, they will be destroyed right away.
+ ch1.port()->Prune();
+ ch2.port()->Prune();
+ // The ports on both sides should be destroyed after timeout.
+ EXPECT_TRUE_SIMULATED_WAIT(ports_destroyed() == 2, 1, clock);
+}
+
+TEST_F(PortTest, TestSupportsProtocol) {
+ auto udp_port = CreateUdpPort(kLocalAddr1);
+ EXPECT_TRUE(udp_port->SupportsProtocol(UDP_PROTOCOL_NAME));
+ EXPECT_FALSE(udp_port->SupportsProtocol(TCP_PROTOCOL_NAME));
+
+ auto stun_port = CreateStunPort(kLocalAddr1, nat_socket_factory1());
+ EXPECT_TRUE(stun_port->SupportsProtocol(UDP_PROTOCOL_NAME));
+ EXPECT_FALSE(stun_port->SupportsProtocol(TCP_PROTOCOL_NAME));
+
+ auto tcp_port = CreateTcpPort(kLocalAddr1);
+ EXPECT_TRUE(tcp_port->SupportsProtocol(TCP_PROTOCOL_NAME));
+ EXPECT_TRUE(tcp_port->SupportsProtocol(SSLTCP_PROTOCOL_NAME));
+ EXPECT_FALSE(tcp_port->SupportsProtocol(UDP_PROTOCOL_NAME));
+
+ auto turn_port =
+ CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP);
+ EXPECT_TRUE(turn_port->SupportsProtocol(UDP_PROTOCOL_NAME));
+ EXPECT_FALSE(turn_port->SupportsProtocol(TCP_PROTOCOL_NAME));
+}
+
+// Test that SetIceParameters updates the component, ufrag and password
+// on both the port itself and its candidates.
+TEST_F(PortTest, TestSetIceParameters) {
+ auto port = CreateTestPort(kLocalAddr1, "ufrag1", "password1");
+ port->PrepareAddress();
+ EXPECT_EQ(1UL, port->Candidates().size());
+ port->SetIceParameters(1, "ufrag2", "password2");
+ EXPECT_EQ(1, port->component());
+ EXPECT_EQ("ufrag2", port->username_fragment());
+ EXPECT_EQ("password2", port->password());
+ const Candidate& candidate = port->Candidates()[0];
+ EXPECT_EQ(1, candidate.component());
+ EXPECT_EQ("ufrag2", candidate.username());
+ EXPECT_EQ("password2", candidate.password());
+}
+
+TEST_F(PortTest, TestAddConnectionWithSameAddress) {
+ auto port = CreateTestPort(kLocalAddr1, "ufrag1", "password1");
+ port->PrepareAddress();
+ EXPECT_EQ(1u, port->Candidates().size());
+ rtc::SocketAddress address("1.1.1.1", 5000);
+ cricket::Candidate candidate(1, "udp", address, 0, "", "", "relay", 0, "");
+ cricket::Connection* conn1 =
+ port->CreateConnection(candidate, Port::ORIGIN_MESSAGE);
+ cricket::Connection* conn_in_use = port->GetConnection(address);
+ EXPECT_EQ(conn1, conn_in_use);
+ EXPECT_EQ(0u, conn_in_use->remote_candidate().generation());
+
+ // Creating with a candidate with the same address again will get us a
+ // different connection with the new candidate.
+ candidate.set_generation(2);
+ cricket::Connection* conn2 =
+ port->CreateConnection(candidate, Port::ORIGIN_MESSAGE);
+ EXPECT_NE(conn1, conn2);
+ conn_in_use = port->GetConnection(address);
+ EXPECT_EQ(conn2, conn_in_use);
+ EXPECT_EQ(2u, conn_in_use->remote_candidate().generation());
+
+ // Make sure the new connection was not deleted.
+ rtc::Thread::Current()->ProcessMessages(300);
+ EXPECT_TRUE(port->GetConnection(address) != nullptr);
+}
+
+// TODO(webrtc:11463) : Move Connection tests into separate unit test
+// splitting out shared test code as needed.
+
+class ConnectionTest : public PortTest {
+ public:
+ ConnectionTest() {
+ lport_ = CreateTestPort(kLocalAddr1, "lfrag", "lpass");
+ rport_ = CreateTestPort(kLocalAddr2, "rfrag", "rpass");
+ lport_->SetIceRole(cricket::ICEROLE_CONTROLLING);
+ lport_->SetIceTiebreaker(kTiebreaker1);
+ rport_->SetIceRole(cricket::ICEROLE_CONTROLLED);
+ rport_->SetIceTiebreaker(kTiebreaker2);
+
+ lport_->PrepareAddress();
+ rport_->PrepareAddress();
+ }
+
+ rtc::ScopedFakeClock clock_;
+ int num_state_changes_ = 0;
+
+ Connection* CreateConnection(IceRole role) {
+ Connection* conn;
+ if (role == cricket::ICEROLE_CONTROLLING) {
+ conn = lport_->CreateConnection(rport_->Candidates()[0],
+ Port::ORIGIN_MESSAGE);
+ } else {
+ conn = rport_->CreateConnection(lport_->Candidates()[0],
+ Port::ORIGIN_MESSAGE);
+ }
+ conn->SignalStateChange.connect(this,
+ &ConnectionTest::OnConnectionStateChange);
+ return conn;
+ }
+
+ void SendPingAndCaptureReply(Connection* lconn,
+ Connection* rconn,
+ int64_t ms,
+ rtc::BufferT<uint8_t>* reply) {
+ TestPort* lport =
+ lconn->PortForTest() == lport_.get() ? lport_.get() : rport_.get();
+ TestPort* rport =
+ rconn->PortForTest() == rport_.get() ? rport_.get() : lport_.get();
+ lconn->Ping(rtc::TimeMillis());
+ ASSERT_TRUE_WAIT(lport->last_stun_msg(), kDefaultTimeout);
+ ASSERT_TRUE(lport->last_stun_buf());
+ rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
+ lport->last_stun_buf()->size(),
+ /* packet_time_us */ -1);
+ clock_.AdvanceTime(webrtc::TimeDelta::Millis(ms));
+ ASSERT_TRUE_WAIT(rport->last_stun_msg(), kDefaultTimeout);
+ ASSERT_TRUE(rport->last_stun_buf());
+ *reply = std::move(*rport->last_stun_buf());
+ }
+
+ void SendPingAndReceiveResponse(Connection* lconn,
+ Connection* rconn,
+ int64_t ms) {
+ rtc::BufferT<uint8_t> reply;
+ SendPingAndCaptureReply(lconn, rconn, ms, &reply);
+ lconn->OnReadPacket(reply.data<char>(), reply.size(),
+ /* packet_time_us */ -1);
+ }
+
+ void OnConnectionStateChange(Connection* connection) { num_state_changes_++; }
+
+ private:
+ std::unique_ptr<TestPort> lport_;
+ std::unique_ptr<TestPort> rport_;
+};
+
+TEST_F(ConnectionTest, ConnectionForgetLearnedState) {
+ Connection* lconn = CreateConnection(ICEROLE_CONTROLLING);
+ Connection* rconn = CreateConnection(ICEROLE_CONTROLLED);
+
+ EXPECT_FALSE(lconn->writable());
+ EXPECT_FALSE(lconn->receiving());
+ EXPECT_TRUE(std::isnan(lconn->GetRttEstimate().GetAverage()));
+ EXPECT_EQ(lconn->GetRttEstimate().GetVariance(),
+ std::numeric_limits<double>::infinity());
+
+ SendPingAndReceiveResponse(lconn, rconn, 10);
+
+ EXPECT_TRUE(lconn->writable());
+ EXPECT_TRUE(lconn->receiving());
+ EXPECT_EQ(lconn->GetRttEstimate().GetAverage(), 10);
+ EXPECT_EQ(lconn->GetRttEstimate().GetVariance(),
+ std::numeric_limits<double>::infinity());
+
+ SendPingAndReceiveResponse(lconn, rconn, 11);
+
+ EXPECT_TRUE(lconn->writable());
+ EXPECT_TRUE(lconn->receiving());
+ EXPECT_NEAR(lconn->GetRttEstimate().GetAverage(), 10, 0.5);
+ EXPECT_LT(lconn->GetRttEstimate().GetVariance(),
+ std::numeric_limits<double>::infinity());
+
+ lconn->ForgetLearnedState();
+
+ EXPECT_FALSE(lconn->writable());
+ EXPECT_FALSE(lconn->receiving());
+ EXPECT_TRUE(std::isnan(lconn->GetRttEstimate().GetAverage()));
+ EXPECT_EQ(lconn->GetRttEstimate().GetVariance(),
+ std::numeric_limits<double>::infinity());
+}
+
+TEST_F(ConnectionTest, ConnectionForgetLearnedStateDiscardsPendingPings) {
+ Connection* lconn = CreateConnection(ICEROLE_CONTROLLING);
+ Connection* rconn = CreateConnection(ICEROLE_CONTROLLED);
+
+ SendPingAndReceiveResponse(lconn, rconn, 10);
+
+ EXPECT_TRUE(lconn->writable());
+ EXPECT_TRUE(lconn->receiving());
+
+ rtc::BufferT<uint8_t> reply;
+ SendPingAndCaptureReply(lconn, rconn, 10, &reply);
+
+ lconn->ForgetLearnedState();
+
+ EXPECT_FALSE(lconn->writable());
+ EXPECT_FALSE(lconn->receiving());
+
+ lconn->OnReadPacket(reply.data<char>(), reply.size(),
+ /* packet_time_us */ -1);
+
+ // That reply was discarded due to the ForgetLearnedState() while it was
+ // outstanding.
+ EXPECT_FALSE(lconn->writable());
+ EXPECT_FALSE(lconn->receiving());
+
+ // But sending a new ping and getting a reply works.
+ SendPingAndReceiveResponse(lconn, rconn, 11);
+ EXPECT_TRUE(lconn->writable());
+ EXPECT_TRUE(lconn->receiving());
+}
+
+TEST_F(ConnectionTest, ConnectionForgetLearnedStateDoesNotTriggerStateChange) {
+ Connection* lconn = CreateConnection(ICEROLE_CONTROLLING);
+ Connection* rconn = CreateConnection(ICEROLE_CONTROLLED);
+
+ EXPECT_EQ(num_state_changes_, 0);
+ SendPingAndReceiveResponse(lconn, rconn, 10);
+
+ EXPECT_TRUE(lconn->writable());
+ EXPECT_TRUE(lconn->receiving());
+ EXPECT_EQ(num_state_changes_, 2);
+
+ lconn->ForgetLearnedState();
+
+ EXPECT_FALSE(lconn->writable());
+ EXPECT_FALSE(lconn->receiving());
+ EXPECT_EQ(num_state_changes_, 2);
+}
+
+} // namespace cricket