diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
commit | 43a97878ce14b72f0981164f87f2e35e14151312 (patch) | |
tree | 620249daf56c0258faa40cbdcf9cfba06de2a846 /third_party/libwebrtc/rtc_base/virtual_socket_unittest.cc | |
parent | Initial commit. (diff) | |
download | firefox-43a97878ce14b72f0981164f87f2e35e14151312.tar.xz firefox-43a97878ce14b72f0981164f87f2e35e14151312.zip |
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/libwebrtc/rtc_base/virtual_socket_unittest.cc')
-rw-r--r-- | third_party/libwebrtc/rtc_base/virtual_socket_unittest.cc | 1138 |
1 files changed, 1138 insertions, 0 deletions
diff --git a/third_party/libwebrtc/rtc_base/virtual_socket_unittest.cc b/third_party/libwebrtc/rtc_base/virtual_socket_unittest.cc new file mode 100644 index 0000000000..2c34033969 --- /dev/null +++ b/third_party/libwebrtc/rtc_base/virtual_socket_unittest.cc @@ -0,0 +1,1138 @@ +/* + * Copyright 2006 The WebRTC Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include <math.h> +#include <stdint.h> +#include <stdlib.h> +#include <string.h> +#include <time.h> +#if defined(WEBRTC_POSIX) +#include <netinet/in.h> +#endif + +#include <algorithm> +#include <memory> +#include <utility> + +#include "absl/memory/memory.h" +#include "rtc_base/arraysize.h" +#include "rtc_base/async_packet_socket.h" +#include "rtc_base/async_udp_socket.h" +#include "rtc_base/fake_clock.h" +#include "rtc_base/gunit.h" +#include "rtc_base/ip_address.h" +#include "rtc_base/location.h" +#include "rtc_base/logging.h" +#include "rtc_base/message_handler.h" +#include "rtc_base/socket.h" +#include "rtc_base/socket_address.h" +#include "rtc_base/test_client.h" +#include "rtc_base/test_utils.h" +#include "rtc_base/third_party/sigslot/sigslot.h" +#include "rtc_base/thread.h" +#include "rtc_base/time_utils.h" +#include "rtc_base/virtual_socket_server.h" +#include "test/gtest.h" + +namespace rtc { +namespace { + +using webrtc::testing::SSE_CLOSE; +using webrtc::testing::SSE_ERROR; +using webrtc::testing::SSE_OPEN; +using webrtc::testing::SSE_READ; +using webrtc::testing::SSE_WRITE; +using webrtc::testing::StreamSink; + +// Sends at a constant rate but with random packet sizes. +struct Sender : public MessageHandlerAutoCleanup { + Sender(Thread* th, Socket* s, uint32_t rt) + : thread(th), + socket(std::make_unique<AsyncUDPSocket>(s)), + done(false), + rate(rt), + count(0) { + last_send = rtc::TimeMillis(); + thread->PostDelayed(RTC_FROM_HERE, NextDelay(), this, 1); + } + + uint32_t NextDelay() { + uint32_t size = (rand() % 4096) + 1; + return 1000 * size / rate; + } + + void OnMessage(Message* pmsg) override { + ASSERT_EQ(1u, pmsg->message_id); + + if (done) + return; + + int64_t cur_time = rtc::TimeMillis(); + int64_t delay = cur_time - last_send; + uint32_t size = static_cast<uint32_t>(rate * delay / 1000); + size = std::min<uint32_t>(size, 4096); + size = std::max<uint32_t>(size, sizeof(uint32_t)); + + count += size; + memcpy(dummy, &cur_time, sizeof(cur_time)); + socket->Send(dummy, size, options); + + last_send = cur_time; + thread->PostDelayed(RTC_FROM_HERE, NextDelay(), this, 1); + } + + Thread* thread; + std::unique_ptr<AsyncUDPSocket> socket; + rtc::PacketOptions options; + bool done; + uint32_t rate; // bytes per second + uint32_t count; + int64_t last_send; + char dummy[4096]; +}; + +struct Receiver : public MessageHandlerAutoCleanup, + public sigslot::has_slots<> { + Receiver(Thread* th, Socket* s, uint32_t bw) + : thread(th), + socket(std::make_unique<AsyncUDPSocket>(s)), + bandwidth(bw), + done(false), + count(0), + sec_count(0), + sum(0), + sum_sq(0), + samples(0) { + socket->SignalReadPacket.connect(this, &Receiver::OnReadPacket); + thread->PostDelayed(RTC_FROM_HERE, 1000, this, 1); + } + + ~Receiver() override { thread->Clear(this); } + + void OnReadPacket(AsyncPacketSocket* s, + const char* data, + size_t size, + const SocketAddress& remote_addr, + const int64_t& /* packet_time_us */) { + ASSERT_EQ(socket.get(), s); + ASSERT_GE(size, 4U); + + count += size; + sec_count += size; + + uint32_t send_time = *reinterpret_cast<const uint32_t*>(data); + uint32_t recv_time = rtc::TimeMillis(); + uint32_t delay = recv_time - send_time; + sum += delay; + sum_sq += delay * delay; + samples += 1; + } + + void OnMessage(Message* pmsg) override { + ASSERT_EQ(1u, pmsg->message_id); + + if (done) + return; + + // It is always possible for us to receive more than expected because + // packets can be further delayed in delivery. + if (bandwidth > 0) + ASSERT_TRUE(sec_count <= 5 * bandwidth / 4); + sec_count = 0; + thread->PostDelayed(RTC_FROM_HERE, 1000, this, 1); + } + + Thread* thread; + std::unique_ptr<AsyncUDPSocket> socket; + uint32_t bandwidth; + bool done; + size_t count; + size_t sec_count; + double sum; + double sum_sq; + uint32_t samples; +}; + +// Note: This test uses a fake clock in addition to a virtual network. +class VirtualSocketServerTest : public ::testing::Test { + public: + VirtualSocketServerTest() + : ss_(&fake_clock_), + thread_(&ss_), + kIPv4AnyAddress(IPAddress(INADDR_ANY), 0), + kIPv6AnyAddress(IPAddress(in6addr_any), 0) {} + + void CheckPortIncrementalization(const SocketAddress& post, + const SocketAddress& pre) { + EXPECT_EQ(post.port(), pre.port() + 1); + IPAddress post_ip = post.ipaddr(); + IPAddress pre_ip = pre.ipaddr(); + EXPECT_EQ(pre_ip.family(), post_ip.family()); + if (post_ip.family() == AF_INET) { + in_addr pre_ipv4 = pre_ip.ipv4_address(); + in_addr post_ipv4 = post_ip.ipv4_address(); + EXPECT_EQ(post_ipv4.s_addr, pre_ipv4.s_addr); + } else if (post_ip.family() == AF_INET6) { + in6_addr post_ip6 = post_ip.ipv6_address(); + in6_addr pre_ip6 = pre_ip.ipv6_address(); + uint32_t* post_as_ints = reinterpret_cast<uint32_t*>(&post_ip6.s6_addr); + uint32_t* pre_as_ints = reinterpret_cast<uint32_t*>(&pre_ip6.s6_addr); + EXPECT_EQ(post_as_ints[3], pre_as_ints[3]); + } + } + + // Test a client can bind to the any address, and all sent packets will have + // the default source address. Also, it can receive packets sent to the + // default address. + void TestDefaultSourceAddress(const IPAddress& default_address) { + ss_.SetDefaultSourceAddress(default_address); + + // Create client1 bound to the any address. + Socket* socket = ss_.CreateSocket(default_address.family(), SOCK_DGRAM); + socket->Bind(EmptySocketAddressWithFamily(default_address.family())); + SocketAddress client1_any_addr = socket->GetLocalAddress(); + EXPECT_TRUE(client1_any_addr.IsAnyIP()); + auto client1 = std::make_unique<TestClient>( + std::make_unique<AsyncUDPSocket>(socket), &fake_clock_); + + // Create client2 bound to the address route. + Socket* socket2 = ss_.CreateSocket(default_address.family(), SOCK_DGRAM); + socket2->Bind(SocketAddress(default_address, 0)); + SocketAddress client2_addr = socket2->GetLocalAddress(); + EXPECT_FALSE(client2_addr.IsAnyIP()); + auto client2 = std::make_unique<TestClient>( + std::make_unique<AsyncUDPSocket>(socket2), &fake_clock_); + + // Client1 sends to client2, client2 should see the default address as + // client1's address. + SocketAddress client1_addr; + EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr)); + EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr)); + EXPECT_EQ(client1_addr, + SocketAddress(default_address, client1_any_addr.port())); + + // Client2 can send back to client1's default address. + EXPECT_EQ(3, client2->SendTo("foo", 3, client1_addr)); + EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr)); + } + + void BasicTest(const SocketAddress& initial_addr) { + Socket* socket = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM); + socket->Bind(initial_addr); + SocketAddress server_addr = socket->GetLocalAddress(); + // Make sure VSS didn't switch families on us. + EXPECT_EQ(server_addr.family(), initial_addr.family()); + + auto client1 = std::make_unique<TestClient>( + std::make_unique<AsyncUDPSocket>(socket), &fake_clock_); + Socket* socket2 = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM); + auto client2 = std::make_unique<TestClient>( + std::make_unique<AsyncUDPSocket>(socket2), &fake_clock_); + + SocketAddress client2_addr; + EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr)); + EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr)); + + SocketAddress client1_addr; + EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr)); + EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr)); + EXPECT_EQ(client1_addr, server_addr); + + SocketAddress empty = EmptySocketAddressWithFamily(initial_addr.family()); + for (int i = 0; i < 10; i++) { + client2 = std::make_unique<TestClient>( + absl::WrapUnique(AsyncUDPSocket::Create(&ss_, empty)), &fake_clock_); + + SocketAddress next_client2_addr; + EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr)); + EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &next_client2_addr)); + CheckPortIncrementalization(next_client2_addr, client2_addr); + // EXPECT_EQ(next_client2_addr.port(), client2_addr.port() + 1); + + SocketAddress server_addr2; + EXPECT_EQ(6, client1->SendTo("bizbaz", 6, next_client2_addr)); + EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &server_addr2)); + EXPECT_EQ(server_addr2, server_addr); + + client2_addr = next_client2_addr; + } + } + + // initial_addr should be made from either INADDR_ANY or in6addr_any. + void ConnectTest(const SocketAddress& initial_addr) { + StreamSink sink; + SocketAddress accept_addr; + const SocketAddress kEmptyAddr = + EmptySocketAddressWithFamily(initial_addr.family()); + + // Create client + std::unique_ptr<Socket> client = + absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); + sink.Monitor(client.get()); + EXPECT_EQ(client->GetState(), Socket::CS_CLOSED); + EXPECT_TRUE(client->GetLocalAddress().IsNil()); + + // Create server + std::unique_ptr<Socket> server = + absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); + sink.Monitor(server.get()); + EXPECT_NE(0, server->Listen(5)); // Bind required + EXPECT_EQ(0, server->Bind(initial_addr)); + EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); + EXPECT_EQ(0, server->Listen(5)); + EXPECT_EQ(server->GetState(), Socket::CS_CONNECTING); + + // No pending server connections + EXPECT_FALSE(sink.Check(server.get(), SSE_READ)); + EXPECT_TRUE(nullptr == server->Accept(&accept_addr)); + EXPECT_EQ(AF_UNSPEC, accept_addr.family()); + + // Attempt connect to listening socket + EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); + EXPECT_NE(client->GetLocalAddress(), kEmptyAddr); // Implicit Bind + EXPECT_NE(AF_UNSPEC, client->GetLocalAddress().family()); // Implicit Bind + EXPECT_NE(client->GetLocalAddress(), server->GetLocalAddress()); + + // Client is connecting + EXPECT_EQ(client->GetState(), Socket::CS_CONNECTING); + EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN)); + EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE)); + + ss_.ProcessMessagesUntilIdle(); + + // Client still connecting + EXPECT_EQ(client->GetState(), Socket::CS_CONNECTING); + EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN)); + EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE)); + + // Server has pending connection + EXPECT_TRUE(sink.Check(server.get(), SSE_READ)); + std::unique_ptr<Socket> accepted = + absl::WrapUnique(server->Accept(&accept_addr)); + EXPECT_TRUE(nullptr != accepted); + EXPECT_NE(accept_addr, kEmptyAddr); + EXPECT_EQ(accepted->GetRemoteAddress(), accept_addr); + + EXPECT_EQ(accepted->GetState(), Socket::CS_CONNECTED); + EXPECT_EQ(accepted->GetLocalAddress(), server->GetLocalAddress()); + EXPECT_EQ(accepted->GetRemoteAddress(), client->GetLocalAddress()); + + ss_.ProcessMessagesUntilIdle(); + + // Client has connected + EXPECT_EQ(client->GetState(), Socket::CS_CONNECTED); + EXPECT_TRUE(sink.Check(client.get(), SSE_OPEN)); + EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE)); + EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress()); + EXPECT_EQ(client->GetRemoteAddress(), accepted->GetLocalAddress()); + } + + void ConnectToNonListenerTest(const SocketAddress& initial_addr) { + StreamSink sink; + SocketAddress accept_addr; + const SocketAddress nil_addr; + const SocketAddress empty_addr = + EmptySocketAddressWithFamily(initial_addr.family()); + + // Create client + std::unique_ptr<Socket> client = + absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); + sink.Monitor(client.get()); + + // Create server + std::unique_ptr<Socket> server = + absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); + sink.Monitor(server.get()); + EXPECT_EQ(0, server->Bind(initial_addr)); + EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); + // Attempt connect to non-listening socket + EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); + + ss_.ProcessMessagesUntilIdle(); + + // No pending server connections + EXPECT_FALSE(sink.Check(server.get(), SSE_READ)); + EXPECT_TRUE(nullptr == server->Accept(&accept_addr)); + EXPECT_EQ(accept_addr, nil_addr); + + // Connection failed + EXPECT_EQ(client->GetState(), Socket::CS_CLOSED); + EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN)); + EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR)); + EXPECT_EQ(client->GetRemoteAddress(), nil_addr); + } + + void CloseDuringConnectTest(const SocketAddress& initial_addr) { + StreamSink sink; + SocketAddress accept_addr; + const SocketAddress empty_addr = + EmptySocketAddressWithFamily(initial_addr.family()); + + // Create client and server + std::unique_ptr<Socket> client( + ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); + sink.Monitor(client.get()); + std::unique_ptr<Socket> server( + ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); + sink.Monitor(server.get()); + + // Initiate connect + EXPECT_EQ(0, server->Bind(initial_addr)); + EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); + + EXPECT_EQ(0, server->Listen(5)); + EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); + + // Server close before socket enters accept queue + EXPECT_FALSE(sink.Check(server.get(), SSE_READ)); + server->Close(); + + ss_.ProcessMessagesUntilIdle(); + + // Result: connection failed + EXPECT_EQ(client->GetState(), Socket::CS_CLOSED); + EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR)); + + server.reset(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); + sink.Monitor(server.get()); + + // Initiate connect + EXPECT_EQ(0, server->Bind(initial_addr)); + EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); + + EXPECT_EQ(0, server->Listen(5)); + EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); + + ss_.ProcessMessagesUntilIdle(); + + // Server close while socket is in accept queue + EXPECT_TRUE(sink.Check(server.get(), SSE_READ)); + server->Close(); + + ss_.ProcessMessagesUntilIdle(); + + // Result: connection failed + EXPECT_EQ(client->GetState(), Socket::CS_CLOSED); + EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR)); + + // New server + server.reset(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); + sink.Monitor(server.get()); + + // Initiate connect + EXPECT_EQ(0, server->Bind(initial_addr)); + EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); + + EXPECT_EQ(0, server->Listen(5)); + EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); + + ss_.ProcessMessagesUntilIdle(); + + // Server accepts connection + EXPECT_TRUE(sink.Check(server.get(), SSE_READ)); + std::unique_ptr<Socket> accepted(server->Accept(&accept_addr)); + ASSERT_TRUE(nullptr != accepted.get()); + sink.Monitor(accepted.get()); + + // Client closes before connection complets + EXPECT_EQ(accepted->GetState(), Socket::CS_CONNECTED); + + // Connected message has not been processed yet. + EXPECT_EQ(client->GetState(), Socket::CS_CONNECTING); + client->Close(); + + ss_.ProcessMessagesUntilIdle(); + + // Result: accepted socket closes + EXPECT_EQ(accepted->GetState(), Socket::CS_CLOSED); + EXPECT_TRUE(sink.Check(accepted.get(), SSE_CLOSE)); + EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE)); + } + + void CloseTest(const SocketAddress& initial_addr) { + StreamSink sink; + const SocketAddress kEmptyAddr; + + // Create clients + std::unique_ptr<Socket> a = + absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); + sink.Monitor(a.get()); + a->Bind(initial_addr); + EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family()); + + std::unique_ptr<Socket> b = + absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); + sink.Monitor(b.get()); + b->Bind(initial_addr); + EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family()); + + EXPECT_EQ(0, a->Connect(b->GetLocalAddress())); + EXPECT_EQ(0, b->Connect(a->GetLocalAddress())); + + ss_.ProcessMessagesUntilIdle(); + + EXPECT_TRUE(sink.Check(a.get(), SSE_OPEN)); + EXPECT_EQ(a->GetState(), Socket::CS_CONNECTED); + EXPECT_EQ(a->GetRemoteAddress(), b->GetLocalAddress()); + + EXPECT_TRUE(sink.Check(b.get(), SSE_OPEN)); + EXPECT_EQ(b->GetState(), Socket::CS_CONNECTED); + EXPECT_EQ(b->GetRemoteAddress(), a->GetLocalAddress()); + + EXPECT_EQ(1, a->Send("a", 1)); + b->Close(); + EXPECT_EQ(1, a->Send("b", 1)); + + ss_.ProcessMessagesUntilIdle(); + + char buffer[10]; + EXPECT_FALSE(sink.Check(b.get(), SSE_READ)); + EXPECT_EQ(-1, b->Recv(buffer, 10, nullptr)); + + EXPECT_TRUE(sink.Check(a.get(), SSE_CLOSE)); + EXPECT_EQ(a->GetState(), Socket::CS_CLOSED); + EXPECT_EQ(a->GetRemoteAddress(), kEmptyAddr); + + // No signal for Closer + EXPECT_FALSE(sink.Check(b.get(), SSE_CLOSE)); + EXPECT_EQ(b->GetState(), Socket::CS_CLOSED); + EXPECT_EQ(b->GetRemoteAddress(), kEmptyAddr); + } + + void TcpSendTest(const SocketAddress& initial_addr) { + StreamSink sink; + const SocketAddress kEmptyAddr; + + // Connect two sockets + std::unique_ptr<Socket> a = + absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); + sink.Monitor(a.get()); + a->Bind(initial_addr); + EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family()); + + std::unique_ptr<Socket> b = + absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); + sink.Monitor(b.get()); + b->Bind(initial_addr); + EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family()); + + EXPECT_EQ(0, a->Connect(b->GetLocalAddress())); + EXPECT_EQ(0, b->Connect(a->GetLocalAddress())); + + ss_.ProcessMessagesUntilIdle(); + + const size_t kBufferSize = 2000; + ss_.set_send_buffer_capacity(kBufferSize); + ss_.set_recv_buffer_capacity(kBufferSize); + + const size_t kDataSize = 5000; + char send_buffer[kDataSize], recv_buffer[kDataSize]; + for (size_t i = 0; i < kDataSize; ++i) + send_buffer[i] = static_cast<char>(i % 256); + memset(recv_buffer, 0, sizeof(recv_buffer)); + size_t send_pos = 0, recv_pos = 0; + + // Can't send more than send buffer in one write + int result = a->Send(send_buffer + send_pos, kDataSize - send_pos); + EXPECT_EQ(static_cast<int>(kBufferSize), result); + send_pos += result; + + ss_.ProcessMessagesUntilIdle(); + EXPECT_FALSE(sink.Check(a.get(), SSE_WRITE)); + EXPECT_TRUE(sink.Check(b.get(), SSE_READ)); + + // Receive buffer is already filled, fill send buffer again + result = a->Send(send_buffer + send_pos, kDataSize - send_pos); + EXPECT_EQ(static_cast<int>(kBufferSize), result); + send_pos += result; + + ss_.ProcessMessagesUntilIdle(); + EXPECT_FALSE(sink.Check(a.get(), SSE_WRITE)); + EXPECT_FALSE(sink.Check(b.get(), SSE_READ)); + + // No more room in send or receive buffer + result = a->Send(send_buffer + send_pos, kDataSize - send_pos); + EXPECT_EQ(-1, result); + EXPECT_TRUE(a->IsBlocking()); + + // Read a subset of the data + result = b->Recv(recv_buffer + recv_pos, 500, nullptr); + EXPECT_EQ(500, result); + recv_pos += result; + + ss_.ProcessMessagesUntilIdle(); + EXPECT_TRUE(sink.Check(a.get(), SSE_WRITE)); + EXPECT_TRUE(sink.Check(b.get(), SSE_READ)); + + // Room for more on the sending side + result = a->Send(send_buffer + send_pos, kDataSize - send_pos); + EXPECT_EQ(500, result); + send_pos += result; + + // Empty the recv buffer + while (true) { + result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr); + if (result < 0) { + EXPECT_EQ(-1, result); + EXPECT_TRUE(b->IsBlocking()); + break; + } + recv_pos += result; + } + + ss_.ProcessMessagesUntilIdle(); + EXPECT_TRUE(sink.Check(b.get(), SSE_READ)); + + // Continue to empty the recv buffer + while (true) { + result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr); + if (result < 0) { + EXPECT_EQ(-1, result); + EXPECT_TRUE(b->IsBlocking()); + break; + } + recv_pos += result; + } + + // Send last of the data + result = a->Send(send_buffer + send_pos, kDataSize - send_pos); + EXPECT_EQ(500, result); + send_pos += result; + + ss_.ProcessMessagesUntilIdle(); + EXPECT_TRUE(sink.Check(b.get(), SSE_READ)); + + // Receive the last of the data + while (true) { + result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr); + if (result < 0) { + EXPECT_EQ(-1, result); + EXPECT_TRUE(b->IsBlocking()); + break; + } + recv_pos += result; + } + + ss_.ProcessMessagesUntilIdle(); + EXPECT_FALSE(sink.Check(b.get(), SSE_READ)); + + // The received data matches the sent data + EXPECT_EQ(kDataSize, send_pos); + EXPECT_EQ(kDataSize, recv_pos); + EXPECT_EQ(0, memcmp(recv_buffer, send_buffer, kDataSize)); + } + + void TcpSendsPacketsInOrderTest(const SocketAddress& initial_addr) { + const SocketAddress kEmptyAddr; + + // Connect two sockets + std::unique_ptr<Socket> a = + absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); + std::unique_ptr<Socket> b = + absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); + a->Bind(initial_addr); + EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family()); + + b->Bind(initial_addr); + EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family()); + + EXPECT_EQ(0, a->Connect(b->GetLocalAddress())); + EXPECT_EQ(0, b->Connect(a->GetLocalAddress())); + ss_.ProcessMessagesUntilIdle(); + + // First, deliver all packets in 0 ms. + char buffer[2] = {0, 0}; + const char cNumPackets = 10; + for (char i = 0; i < cNumPackets; ++i) { + buffer[0] = '0' + i; + EXPECT_EQ(1, a->Send(buffer, 1)); + } + + ss_.ProcessMessagesUntilIdle(); + + for (char i = 0; i < cNumPackets; ++i) { + EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer), nullptr)); + EXPECT_EQ(static_cast<char>('0' + i), buffer[0]); + } + + // Next, deliver packets at random intervals + const uint32_t mean = 50; + const uint32_t stddev = 50; + + ss_.set_delay_mean(mean); + ss_.set_delay_stddev(stddev); + ss_.UpdateDelayDistribution(); + + for (char i = 0; i < cNumPackets; ++i) { + buffer[0] = 'A' + i; + EXPECT_EQ(1, a->Send(buffer, 1)); + } + + ss_.ProcessMessagesUntilIdle(); + + for (char i = 0; i < cNumPackets; ++i) { + EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer), nullptr)); + EXPECT_EQ(static_cast<char>('A' + i), buffer[0]); + } + } + + // It is important that initial_addr's port has to be 0 such that the + // incremental port behavior could ensure the 2 Binds result in different + // address. + void BandwidthTest(const SocketAddress& initial_addr) { + Socket* send_socket = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM); + Socket* recv_socket = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM); + ASSERT_EQ(0, send_socket->Bind(initial_addr)); + ASSERT_EQ(0, recv_socket->Bind(initial_addr)); + EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family()); + EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family()); + ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress())); + + uint32_t bandwidth = 64 * 1024; + ss_.set_bandwidth(bandwidth); + + Thread* pthMain = Thread::Current(); + Sender sender(pthMain, send_socket, 80 * 1024); + Receiver receiver(pthMain, recv_socket, bandwidth); + + // Allow the sender to run for 5 (simulated) seconds, then be stopped for 5 + // seconds. + SIMULATED_WAIT(false, 5000, fake_clock_); + sender.done = true; + SIMULATED_WAIT(false, 5000, fake_clock_); + + // Ensure the observed bandwidth fell within a reasonable margin of error. + EXPECT_TRUE(receiver.count >= 5 * 3 * bandwidth / 4); + EXPECT_TRUE(receiver.count <= 6 * bandwidth); // queue could drain for 1s + + ss_.set_bandwidth(0); + } + + // It is important that initial_addr's port has to be 0 such that the + // incremental port behavior could ensure the 2 Binds result in different + // address. + void DelayTest(const SocketAddress& initial_addr) { + time_t seed = ::time(nullptr); + RTC_LOG(LS_VERBOSE) << "seed = " << seed; + srand(static_cast<unsigned int>(seed)); + + const uint32_t mean = 2000; + const uint32_t stddev = 500; + + ss_.set_delay_mean(mean); + ss_.set_delay_stddev(stddev); + ss_.UpdateDelayDistribution(); + + Socket* send_socket = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM); + Socket* recv_socket = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM); + ASSERT_EQ(0, send_socket->Bind(initial_addr)); + ASSERT_EQ(0, recv_socket->Bind(initial_addr)); + EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family()); + EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family()); + ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress())); + + Thread* pthMain = Thread::Current(); + // Avg packet size is 2K, so at 200KB/s for 10s, we should see about + // 1000 packets, which is necessary to get a good distribution. + Sender sender(pthMain, send_socket, 100 * 2 * 1024); + Receiver receiver(pthMain, recv_socket, 0); + + // Simulate 10 seconds of packets being sent, then check the observed delay + // distribution. + SIMULATED_WAIT(false, 10000, fake_clock_); + sender.done = receiver.done = true; + ss_.ProcessMessagesUntilIdle(); + + const double sample_mean = receiver.sum / receiver.samples; + double num = + receiver.samples * receiver.sum_sq - receiver.sum * receiver.sum; + double den = receiver.samples * (receiver.samples - 1); + const double sample_stddev = sqrt(num / den); + RTC_LOG(LS_VERBOSE) << "mean=" << sample_mean + << " stddev=" << sample_stddev; + + EXPECT_LE(500u, receiver.samples); + // We initially used a 0.1 fudge factor, but on the build machine, we + // have seen the value differ by as much as 0.13. + EXPECT_NEAR(mean, sample_mean, 0.15 * mean); + EXPECT_NEAR(stddev, sample_stddev, 0.15 * stddev); + + ss_.set_delay_mean(0); + ss_.set_delay_stddev(0); + ss_.UpdateDelayDistribution(); + } + + // Test cross-family communication between a client bound to client_addr and a + // server bound to server_addr. shouldSucceed indicates if communication is + // expected to work or not. + void CrossFamilyConnectionTest(const SocketAddress& client_addr, + const SocketAddress& server_addr, + bool shouldSucceed) { + StreamSink sink; + SocketAddress accept_address; + const SocketAddress kEmptyAddr; + + // Client gets a IPv4 address + std::unique_ptr<Socket> client = + absl::WrapUnique(ss_.CreateSocket(client_addr.family(), SOCK_STREAM)); + sink.Monitor(client.get()); + EXPECT_EQ(client->GetState(), Socket::CS_CLOSED); + EXPECT_EQ(client->GetLocalAddress(), kEmptyAddr); + client->Bind(client_addr); + + // Server gets a non-mapped non-any IPv6 address. + // IPv4 sockets should not be able to connect to this. + std::unique_ptr<Socket> server = + absl::WrapUnique(ss_.CreateSocket(server_addr.family(), SOCK_STREAM)); + sink.Monitor(server.get()); + server->Bind(server_addr); + server->Listen(5); + + if (shouldSucceed) { + EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); + ss_.ProcessMessagesUntilIdle(); + EXPECT_TRUE(sink.Check(server.get(), SSE_READ)); + std::unique_ptr<Socket> accepted = + absl::WrapUnique(server->Accept(&accept_address)); + EXPECT_TRUE(nullptr != accepted); + EXPECT_NE(kEmptyAddr, accept_address); + ss_.ProcessMessagesUntilIdle(); + EXPECT_TRUE(sink.Check(client.get(), SSE_OPEN)); + EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress()); + } else { + // Check that the connection failed. + EXPECT_EQ(-1, client->Connect(server->GetLocalAddress())); + ss_.ProcessMessagesUntilIdle(); + + EXPECT_FALSE(sink.Check(server.get(), SSE_READ)); + EXPECT_TRUE(nullptr == server->Accept(&accept_address)); + EXPECT_EQ(accept_address, kEmptyAddr); + EXPECT_EQ(client->GetState(), Socket::CS_CLOSED); + EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN)); + EXPECT_EQ(client->GetRemoteAddress(), kEmptyAddr); + } + } + + // Test cross-family datagram sending between a client bound to client_addr + // and a server bound to server_addr. shouldSucceed indicates if sending is + // expected to succeed or not. + void CrossFamilyDatagramTest(const SocketAddress& client_addr, + const SocketAddress& server_addr, + bool shouldSucceed) { + Socket* socket = ss_.CreateSocket(AF_INET, SOCK_DGRAM); + socket->Bind(server_addr); + SocketAddress bound_server_addr = socket->GetLocalAddress(); + auto client1 = std::make_unique<TestClient>( + std::make_unique<AsyncUDPSocket>(socket), &fake_clock_); + + Socket* socket2 = ss_.CreateSocket(AF_INET, SOCK_DGRAM); + socket2->Bind(client_addr); + auto client2 = std::make_unique<TestClient>( + std::make_unique<AsyncUDPSocket>(socket2), &fake_clock_); + SocketAddress client2_addr; + + if (shouldSucceed) { + EXPECT_EQ(3, client2->SendTo("foo", 3, bound_server_addr)); + EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr)); + SocketAddress client1_addr; + EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr)); + EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr)); + EXPECT_EQ(client1_addr, bound_server_addr); + } else { + EXPECT_EQ(-1, client2->SendTo("foo", 3, bound_server_addr)); + EXPECT_TRUE(client1->CheckNoPacket()); + } + } + + protected: + rtc::ScopedFakeClock fake_clock_; + VirtualSocketServer ss_; + AutoSocketServerThread thread_; + const SocketAddress kIPv4AnyAddress; + const SocketAddress kIPv6AnyAddress; +}; + +TEST_F(VirtualSocketServerTest, basic_v4) { + SocketAddress ipv4_test_addr(IPAddress(INADDR_ANY), 5000); + BasicTest(ipv4_test_addr); +} + +TEST_F(VirtualSocketServerTest, basic_v6) { + SocketAddress ipv6_test_addr(IPAddress(in6addr_any), 5000); + BasicTest(ipv6_test_addr); +} + +TEST_F(VirtualSocketServerTest, TestDefaultRoute_v4) { + IPAddress ipv4_default_addr(0x01020304); + TestDefaultSourceAddress(ipv4_default_addr); +} + +TEST_F(VirtualSocketServerTest, TestDefaultRoute_v6) { + IPAddress ipv6_default_addr; + EXPECT_TRUE( + IPFromString("2401:fa00:4:1000:be30:5bff:fee5:c3", &ipv6_default_addr)); + TestDefaultSourceAddress(ipv6_default_addr); +} + +TEST_F(VirtualSocketServerTest, connect_v4) { + ConnectTest(kIPv4AnyAddress); +} + +TEST_F(VirtualSocketServerTest, connect_v6) { + ConnectTest(kIPv6AnyAddress); +} + +TEST_F(VirtualSocketServerTest, connect_to_non_listener_v4) { + ConnectToNonListenerTest(kIPv4AnyAddress); +} + +TEST_F(VirtualSocketServerTest, connect_to_non_listener_v6) { + ConnectToNonListenerTest(kIPv6AnyAddress); +} + +TEST_F(VirtualSocketServerTest, close_during_connect_v4) { + CloseDuringConnectTest(kIPv4AnyAddress); +} + +TEST_F(VirtualSocketServerTest, close_during_connect_v6) { + CloseDuringConnectTest(kIPv6AnyAddress); +} + +TEST_F(VirtualSocketServerTest, close_v4) { + CloseTest(kIPv4AnyAddress); +} + +TEST_F(VirtualSocketServerTest, close_v6) { + CloseTest(kIPv6AnyAddress); +} + +TEST_F(VirtualSocketServerTest, tcp_send_v4) { + TcpSendTest(kIPv4AnyAddress); +} + +TEST_F(VirtualSocketServerTest, tcp_send_v6) { + TcpSendTest(kIPv6AnyAddress); +} + +TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v4) { + TcpSendsPacketsInOrderTest(kIPv4AnyAddress); +} + +TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v6) { + TcpSendsPacketsInOrderTest(kIPv6AnyAddress); +} + +TEST_F(VirtualSocketServerTest, bandwidth_v4) { + BandwidthTest(kIPv4AnyAddress); +} + +TEST_F(VirtualSocketServerTest, bandwidth_v6) { + BandwidthTest(kIPv6AnyAddress); +} + +TEST_F(VirtualSocketServerTest, delay_v4) { + DelayTest(kIPv4AnyAddress); +} + +TEST_F(VirtualSocketServerTest, delay_v6) { + DelayTest(kIPv6AnyAddress); +} + +// Works, receiving socket sees 127.0.0.2. +TEST_F(VirtualSocketServerTest, CanConnectFromMappedIPv6ToIPv4Any) { + CrossFamilyConnectionTest(SocketAddress("::ffff:127.0.0.2", 0), + SocketAddress("0.0.0.0", 5000), true); +} + +// Fails. +TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToIPv4Any) { + CrossFamilyConnectionTest(SocketAddress("::2", 0), + SocketAddress("0.0.0.0", 5000), false); +} + +// Fails. +TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToMappedIPv6) { + CrossFamilyConnectionTest(SocketAddress("::2", 0), + SocketAddress("::ffff:127.0.0.1", 5000), false); +} + +// Works. receiving socket sees ::ffff:127.0.0.2. +TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToIPv6Any) { + CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0), + SocketAddress("::", 5000), true); +} + +// Fails. +TEST_F(VirtualSocketServerTest, CantConnectFromIPv4ToUnMappedIPv6) { + CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0), + SocketAddress("::1", 5000), false); +} + +// Works. Receiving socket sees ::ffff:127.0.0.1. +TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToMappedIPv6) { + CrossFamilyConnectionTest(SocketAddress("127.0.0.1", 0), + SocketAddress("::ffff:127.0.0.2", 5000), true); +} + +// Works, receiving socket sees a result from GetNextIP. +TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv6ToIPv4Any) { + CrossFamilyConnectionTest(SocketAddress("::", 0), + SocketAddress("0.0.0.0", 5000), true); +} + +// Works, receiving socket sees whatever GetNextIP gave the client. +TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv4ToIPv6Any) { + CrossFamilyConnectionTest(SocketAddress("0.0.0.0", 0), + SocketAddress("::", 5000), true); +} + +TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv4ToIPv6Any) { + CrossFamilyDatagramTest(SocketAddress("0.0.0.0", 0), + SocketAddress("::", 5000), true); +} + +TEST_F(VirtualSocketServerTest, CanSendDatagramFromMappedIPv6ToIPv4Any) { + CrossFamilyDatagramTest(SocketAddress("::ffff:127.0.0.1", 0), + SocketAddress("0.0.0.0", 5000), true); +} + +TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToIPv4Any) { + CrossFamilyDatagramTest(SocketAddress("::2", 0), + SocketAddress("0.0.0.0", 5000), false); +} + +TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToMappedIPv6) { + CrossFamilyDatagramTest(SocketAddress("::2", 0), + SocketAddress("::ffff:127.0.0.1", 5000), false); +} + +TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToIPv6Any) { + CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0), + SocketAddress("::", 5000), true); +} + +TEST_F(VirtualSocketServerTest, CantSendDatagramFromIPv4ToUnMappedIPv6) { + CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0), + SocketAddress("::1", 5000), false); +} + +TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToMappedIPv6) { + CrossFamilyDatagramTest(SocketAddress("127.0.0.1", 0), + SocketAddress("::ffff:127.0.0.2", 5000), true); +} + +TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv6ToIPv4Any) { + CrossFamilyDatagramTest(SocketAddress("::", 0), + SocketAddress("0.0.0.0", 5000), true); +} + +TEST_F(VirtualSocketServerTest, SetSendingBlockedWithUdpSocket) { + Socket* socket1 = ss_.CreateSocket(kIPv4AnyAddress.family(), SOCK_DGRAM); + std::unique_ptr<Socket> socket2 = + absl::WrapUnique(ss_.CreateSocket(kIPv4AnyAddress.family(), SOCK_DGRAM)); + socket1->Bind(kIPv4AnyAddress); + socket2->Bind(kIPv4AnyAddress); + auto client1 = std::make_unique<TestClient>( + std::make_unique<AsyncUDPSocket>(socket1), &fake_clock_); + + ss_.SetSendingBlocked(true); + EXPECT_EQ(-1, client1->SendTo("foo", 3, socket2->GetLocalAddress())); + EXPECT_TRUE(socket1->IsBlocking()); + EXPECT_EQ(0, client1->ready_to_send_count()); + + ss_.SetSendingBlocked(false); + EXPECT_EQ(1, client1->ready_to_send_count()); + EXPECT_EQ(3, client1->SendTo("foo", 3, socket2->GetLocalAddress())); +} + +TEST_F(VirtualSocketServerTest, SetSendingBlockedWithTcpSocket) { + constexpr size_t kBufferSize = 1024; + ss_.set_send_buffer_capacity(kBufferSize); + ss_.set_recv_buffer_capacity(kBufferSize); + + StreamSink sink; + std::unique_ptr<Socket> socket1 = + absl::WrapUnique(ss_.CreateSocket(kIPv4AnyAddress.family(), SOCK_STREAM)); + std::unique_ptr<Socket> socket2 = + absl::WrapUnique(ss_.CreateSocket(kIPv4AnyAddress.family(), SOCK_STREAM)); + sink.Monitor(socket1.get()); + sink.Monitor(socket2.get()); + socket1->Bind(kIPv4AnyAddress); + socket2->Bind(kIPv4AnyAddress); + + // Connect sockets. + EXPECT_EQ(0, socket1->Connect(socket2->GetLocalAddress())); + EXPECT_EQ(0, socket2->Connect(socket1->GetLocalAddress())); + ss_.ProcessMessagesUntilIdle(); + + char data[kBufferSize] = {}; + + // First Send call will fill the send buffer but not send anything. + ss_.SetSendingBlocked(true); + EXPECT_EQ(static_cast<int>(kBufferSize), socket1->Send(data, kBufferSize)); + ss_.ProcessMessagesUntilIdle(); + EXPECT_FALSE(sink.Check(socket1.get(), SSE_WRITE)); + EXPECT_FALSE(sink.Check(socket2.get(), SSE_READ)); + EXPECT_FALSE(socket1->IsBlocking()); + + // Since the send buffer is full, next Send will result in EWOULDBLOCK. + EXPECT_EQ(-1, socket1->Send(data, kBufferSize)); + EXPECT_FALSE(sink.Check(socket1.get(), SSE_WRITE)); + EXPECT_FALSE(sink.Check(socket2.get(), SSE_READ)); + EXPECT_TRUE(socket1->IsBlocking()); + + // When sending is unblocked, the buffered data should be sent and + // SignalWriteEvent should fire. + ss_.SetSendingBlocked(false); + ss_.ProcessMessagesUntilIdle(); + EXPECT_TRUE(sink.Check(socket1.get(), SSE_WRITE)); + EXPECT_TRUE(sink.Check(socket2.get(), SSE_READ)); +} + +TEST_F(VirtualSocketServerTest, CreatesStandardDistribution) { + const uint32_t kTestMean[] = {10, 100, 333, 1000}; + const double kTestDev[] = {0.25, 0.1, 0.01}; + // TODO(deadbeef): The current code only works for 1000 data points or more. + const uint32_t kTestSamples[] = {/*10, 100,*/ 1000}; + for (size_t midx = 0; midx < arraysize(kTestMean); ++midx) { + for (size_t didx = 0; didx < arraysize(kTestDev); ++didx) { + for (size_t sidx = 0; sidx < arraysize(kTestSamples); ++sidx) { + ASSERT_LT(0u, kTestSamples[sidx]); + const uint32_t kStdDev = + static_cast<uint32_t>(kTestDev[didx] * kTestMean[midx]); + std::unique_ptr<VirtualSocketServer::Function> f = + VirtualSocketServer::CreateDistribution(kTestMean[midx], kStdDev, + kTestSamples[sidx]); + ASSERT_TRUE(nullptr != f.get()); + ASSERT_EQ(kTestSamples[sidx], f->size()); + double sum = 0; + for (uint32_t i = 0; i < f->size(); ++i) { + sum += (*f)[i].second; + } + const double mean = sum / f->size(); + double sum_sq_dev = 0; + for (uint32_t i = 0; i < f->size(); ++i) { + double dev = (*f)[i].second - mean; + sum_sq_dev += dev * dev; + } + const double stddev = sqrt(sum_sq_dev / f->size()); + EXPECT_NEAR(kTestMean[midx], mean, 0.1 * kTestMean[midx]) + << "M=" << kTestMean[midx] << " SD=" << kStdDev + << " N=" << kTestSamples[sidx]; + EXPECT_NEAR(kStdDev, stddev, 0.1 * kStdDev) + << "M=" << kTestMean[midx] << " SD=" << kStdDev + << " N=" << kTestSamples[sidx]; + } + } + } +} + +} // namespace +} // namespace rtc |