diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
commit | 43a97878ce14b72f0981164f87f2e35e14151312 (patch) | |
tree | 620249daf56c0258faa40cbdcf9cfba06de2a846 /third_party/rust/bytes-0.4.12/src/bytes.rs | |
parent | Initial commit. (diff) | |
download | firefox-43a97878ce14b72f0981164f87f2e35e14151312.tar.xz firefox-43a97878ce14b72f0981164f87f2e35e14151312.zip |
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/bytes-0.4.12/src/bytes.rs')
-rw-r--r-- | third_party/rust/bytes-0.4.12/src/bytes.rs | 2947 |
1 files changed, 2947 insertions, 0 deletions
diff --git a/third_party/rust/bytes-0.4.12/src/bytes.rs b/third_party/rust/bytes-0.4.12/src/bytes.rs new file mode 100644 index 0000000000..e1559311b0 --- /dev/null +++ b/third_party/rust/bytes-0.4.12/src/bytes.rs @@ -0,0 +1,2947 @@ +use {IntoBuf, Buf, BufMut}; +use buf::Iter; +use debug; + +use std::{cmp, fmt, mem, hash, ops, slice, ptr, usize}; +use std::borrow::{Borrow, BorrowMut}; +use std::io::Cursor; +use std::sync::atomic::{self, AtomicUsize, AtomicPtr}; +use std::sync::atomic::Ordering::{Relaxed, Acquire, Release, AcqRel}; +use std::iter::{FromIterator, Iterator}; + +/// A reference counted contiguous slice of memory. +/// +/// `Bytes` is an efficient container for storing and operating on contiguous +/// slices of memory. It is intended for use primarily in networking code, but +/// could have applications elsewhere as well. +/// +/// `Bytes` values facilitate zero-copy network programming by allowing multiple +/// `Bytes` objects to point to the same underlying memory. This is managed by +/// using a reference count to track when the memory is no longer needed and can +/// be freed. +/// +/// ``` +/// use bytes::Bytes; +/// +/// let mut mem = Bytes::from(&b"Hello world"[..]); +/// let a = mem.slice(0, 5); +/// +/// assert_eq!(&a[..], b"Hello"); +/// +/// let b = mem.split_to(6); +/// +/// assert_eq!(&mem[..], b"world"); +/// assert_eq!(&b[..], b"Hello "); +/// ``` +/// +/// # Memory layout +/// +/// The `Bytes` struct itself is fairly small, limited to a pointer to the +/// memory and 4 `usize` fields used to track information about which segment of +/// the underlying memory the `Bytes` handle has access to. +/// +/// The memory layout looks like this: +/// +/// ```text +/// +-------+ +/// | Bytes | +/// +-------+ +/// / \_____ +/// | \ +/// v v +/// +-----+------------------------------------+ +/// | Arc | | Data | | +/// +-----+------------------------------------+ +/// ``` +/// +/// `Bytes` keeps both a pointer to the shared `Arc` containing the full memory +/// slice and a pointer to the start of the region visible by the handle. +/// `Bytes` also tracks the length of its view into the memory. +/// +/// # Sharing +/// +/// The memory itself is reference counted, and multiple `Bytes` objects may +/// point to the same region. Each `Bytes` handle point to different sections within +/// the memory region, and `Bytes` handle may or may not have overlapping views +/// into the memory. +/// +/// +/// ```text +/// +/// Arc ptrs +---------+ +/// ________________________ / | Bytes 2 | +/// / +---------+ +/// / +-----------+ | | +/// |_________/ | Bytes 1 | | | +/// | +-----------+ | | +/// | | | ___/ data | tail +/// | data | tail |/ | +/// v v v v +/// +-----+---------------------------------+-----+ +/// | Arc | | | | | +/// +-----+---------------------------------+-----+ +/// ``` +/// +/// # Mutating +/// +/// While `Bytes` handles may potentially represent overlapping views of the +/// underlying memory slice and may not be mutated, `BytesMut` handles are +/// guaranteed to be the only handle able to view that slice of memory. As such, +/// `BytesMut` handles are able to mutate the underlying memory. Note that +/// holding a unique view to a region of memory does not mean that there are no +/// other `Bytes` and `BytesMut` handles with disjoint views of the underlying +/// memory. +/// +/// # Inline bytes +/// +/// As an optimization, when the slice referenced by a `Bytes` or `BytesMut` +/// handle is small enough [^1], `with_capacity` will avoid the allocation by +/// inlining the slice directly in the handle. In this case, a clone is no +/// longer "shallow" and the data will be copied. Converting from a `Vec` will +/// never use inlining. +/// +/// [^1]: Small enough: 31 bytes on 64 bit systems, 15 on 32 bit systems. +/// +pub struct Bytes { + inner: Inner, +} + +/// A unique reference to a contiguous slice of memory. +/// +/// `BytesMut` represents a unique view into a potentially shared memory region. +/// Given the uniqueness guarantee, owners of `BytesMut` handles are able to +/// mutate the memory. It is similar to a `Vec<u8>` but with less copies and +/// allocations. +/// +/// For more detail, see [Bytes](struct.Bytes.html). +/// +/// # Growth +/// +/// One key difference from `Vec<u8>` is that most operations **do not +/// implicitly grow the buffer**. This means that calling `my_bytes.put("hello +/// world");` could panic if `my_bytes` does not have enough capacity. Before +/// writing to the buffer, ensure that there is enough remaining capacity by +/// calling `my_bytes.remaining_mut()`. In general, avoiding calls to `reserve` +/// is preferable. +/// +/// The only exception is `extend` which implicitly reserves required capacity. +/// +/// # Examples +/// +/// ``` +/// use bytes::{BytesMut, BufMut}; +/// +/// let mut buf = BytesMut::with_capacity(64); +/// +/// buf.put(b'h'); +/// buf.put(b'e'); +/// buf.put("llo"); +/// +/// assert_eq!(&buf[..], b"hello"); +/// +/// // Freeze the buffer so that it can be shared +/// let a = buf.freeze(); +/// +/// // This does not allocate, instead `b` points to the same memory. +/// let b = a.clone(); +/// +/// assert_eq!(&a[..], b"hello"); +/// assert_eq!(&b[..], b"hello"); +/// ``` +pub struct BytesMut { + inner: Inner, +} + +// Both `Bytes` and `BytesMut` are backed by `Inner` and functions are delegated +// to `Inner` functions. The `Bytes` and `BytesMut` shims ensure that functions +// that mutate the underlying buffer are only performed when the data range +// being mutated is only available via a single `BytesMut` handle. +// +// # Data storage modes +// +// The goal of `bytes` is to be as efficient as possible across a wide range of +// potential usage patterns. As such, `bytes` needs to be able to handle buffers +// that are never shared, shared on a single thread, and shared across many +// threads. `bytes` also needs to handle both tiny buffers as well as very large +// buffers. For example, [Cassandra](http://cassandra.apache.org) values have +// been known to be in the hundreds of megabyte, and HTTP header values can be a +// few characters in size. +// +// To achieve high performance in these various situations, `Bytes` and +// `BytesMut` use different strategies for storing the buffer depending on the +// usage pattern. +// +// ## Delayed `Arc` allocation +// +// When a `Bytes` or `BytesMut` is first created, there is only one outstanding +// handle referencing the buffer. Since sharing is not yet required, an `Arc`* is +// not used and the buffer is backed by a `Vec<u8>` directly. Using an +// `Arc<Vec<u8>>` requires two allocations, so if the buffer ends up never being +// shared, that allocation is avoided. +// +// When sharing does become necessary (`clone`, `split_to`, `split_off`), that +// is when the buffer is promoted to being shareable. The `Vec<u8>` is moved +// into an `Arc` and both the original handle and the new handle use the same +// buffer via the `Arc`. +// +// * `Arc` is being used to signify an atomically reference counted cell. We +// don't use the `Arc` implementation provided by `std` and instead use our own. +// This ends up simplifying a number of the `unsafe` code snippets. +// +// ## Inlining small buffers +// +// The `Bytes` / `BytesMut` structs require 4 pointer sized fields. On 64 bit +// systems, this ends up being 32 bytes, which is actually a lot of storage for +// cases where `Bytes` is being used to represent small byte strings, such as +// HTTP header names and values. +// +// To avoid any allocation at all in these cases, `Bytes` will use the struct +// itself for storing the buffer, reserving 1 byte for meta data. This means +// that, on 64 bit systems, 31 byte buffers require no allocation at all. +// +// The byte used for metadata stores a 2 bits flag used to indicate that the +// buffer is stored inline as well as 6 bits for tracking the buffer length (the +// return value of `Bytes::len`). +// +// ## Static buffers +// +// `Bytes` can also represent a static buffer, which is created with +// `Bytes::from_static`. No copying or allocations are required for tracking +// static buffers. The pointer to the `&'static [u8]`, the length, and a flag +// tracking that the `Bytes` instance represents a static buffer is stored in +// the `Bytes` struct. +// +// # Struct layout +// +// Both `Bytes` and `BytesMut` are wrappers around `Inner`, which provides the +// data fields as well as all of the function implementations. +// +// The `Inner` struct is carefully laid out in order to support the +// functionality described above as well as being as small as possible. Size is +// important as growing the size of the `Bytes` struct from 32 bytes to 40 bytes +// added as much as 15% overhead in benchmarks using `Bytes` in an HTTP header +// map structure. +// +// The `Inner` struct contains the following fields: +// +// * `ptr: *mut u8` +// * `len: usize` +// * `cap: usize` +// * `arc: AtomicPtr<Shared>` +// +// ## `ptr: *mut u8` +// +// A pointer to start of the handle's buffer view. When backed by a `Vec<u8>`, +// this is always the `Vec`'s pointer. When backed by an `Arc<Vec<u8>>`, `ptr` +// may have been shifted to point somewhere inside the buffer. +// +// When in "inlined" mode, `ptr` is used as part of the inlined buffer. +// +// ## `len: usize` +// +// The length of the handle's buffer view. When backed by a `Vec<u8>`, this is +// always the `Vec`'s length. The slice represented by `ptr` and `len` should +// (ideally) always be initialized memory. +// +// When in "inlined" mode, `len` is used as part of the inlined buffer. +// +// ## `cap: usize` +// +// The capacity of the handle's buffer view. When backed by a `Vec<u8>`, this is +// always the `Vec`'s capacity. The slice represented by `ptr+len` and `cap-len` +// may or may not be initialized memory. +// +// When in "inlined" mode, `cap` is used as part of the inlined buffer. +// +// ## `arc: AtomicPtr<Shared>` +// +// When `Inner` is in allocated mode (backed by Vec<u8> or Arc<Vec<u8>>), this +// will be the pointer to the `Arc` structure tracking the ref count for the +// underlying buffer. When the pointer is null, then the `Arc` has not been +// allocated yet and `self` is the only outstanding handle for the underlying +// buffer. +// +// The lower two bits of `arc` are used to track the storage mode of `Inner`. +// `0b01` indicates inline storage, `0b10` indicates static storage, and `0b11` +// indicates vector storage, not yet promoted to Arc. Since pointers to +// allocated structures are aligned, the lower two bits of a pointer will always +// be 0. This allows disambiguating between a pointer and the two flags. +// +// When in "inlined" mode, the least significant byte of `arc` is also used to +// store the length of the buffer view (vs. the capacity, which is a constant). +// +// The rest of `arc`'s bytes are used as part of the inline buffer, which means +// that those bytes need to be located next to the `ptr`, `len`, and `cap` +// fields, which make up the rest of the inline buffer. This requires special +// casing the layout of `Inner` depending on if the target platform is big or +// little endian. +// +// On little endian platforms, the `arc` field must be the first field in the +// struct. On big endian platforms, the `arc` field must be the last field in +// the struct. Since a deterministic struct layout is required, `Inner` is +// annotated with `#[repr(C)]`. +// +// # Thread safety +// +// `Bytes::clone()` returns a new `Bytes` handle with no copying. This is done +// by bumping the buffer ref count and returning a new struct pointing to the +// same buffer. However, the `Arc` structure is lazily allocated. This means +// that if `Bytes` is stored itself in an `Arc` (`Arc<Bytes>`), the `clone` +// function can be called concurrently from multiple threads. This is why an +// `AtomicPtr` is used for the `arc` field vs. a `*const`. +// +// Care is taken to ensure that the need for synchronization is minimized. Most +// operations do not require any synchronization. +// +#[cfg(target_endian = "little")] +#[repr(C)] +struct Inner { + // WARNING: Do not access the fields directly unless you know what you are + // doing. Instead, use the fns. See implementation comment above. + arc: AtomicPtr<Shared>, + ptr: *mut u8, + len: usize, + cap: usize, +} + +#[cfg(target_endian = "big")] +#[repr(C)] +struct Inner { + // WARNING: Do not access the fields directly unless you know what you are + // doing. Instead, use the fns. See implementation comment above. + ptr: *mut u8, + len: usize, + cap: usize, + arc: AtomicPtr<Shared>, +} + +// Thread-safe reference-counted container for the shared storage. This mostly +// the same as `std::sync::Arc` but without the weak counter. The ref counting +// fns are based on the ones found in `std`. +// +// The main reason to use `Shared` instead of `std::sync::Arc` is that it ends +// up making the overall code simpler and easier to reason about. This is due to +// some of the logic around setting `Inner::arc` and other ways the `arc` field +// is used. Using `Arc` ended up requiring a number of funky transmutes and +// other shenanigans to make it work. +struct Shared { + vec: Vec<u8>, + original_capacity_repr: usize, + ref_count: AtomicUsize, +} + +// Buffer storage strategy flags. +const KIND_ARC: usize = 0b00; +const KIND_INLINE: usize = 0b01; +const KIND_STATIC: usize = 0b10; +const KIND_VEC: usize = 0b11; +const KIND_MASK: usize = 0b11; + +// The max original capacity value. Any `Bytes` allocated with a greater initial +// capacity will default to this. +const MAX_ORIGINAL_CAPACITY_WIDTH: usize = 17; +// The original capacity algorithm will not take effect unless the originally +// allocated capacity was at least 1kb in size. +const MIN_ORIGINAL_CAPACITY_WIDTH: usize = 10; +// The original capacity is stored in powers of 2 starting at 1kb to a max of +// 64kb. Representing it as such requires only 3 bits of storage. +const ORIGINAL_CAPACITY_MASK: usize = 0b11100; +const ORIGINAL_CAPACITY_OFFSET: usize = 2; + +// When the storage is in the `Vec` representation, the pointer can be advanced +// at most this value. This is due to the amount of storage available to track +// the offset is usize - number of KIND bits and number of ORIGINAL_CAPACITY +// bits. +const VEC_POS_OFFSET: usize = 5; +const MAX_VEC_POS: usize = usize::MAX >> VEC_POS_OFFSET; +const NOT_VEC_POS_MASK: usize = 0b11111; + +// Bit op constants for extracting the inline length value from the `arc` field. +const INLINE_LEN_MASK: usize = 0b11111100; +const INLINE_LEN_OFFSET: usize = 2; + +// Byte offset from the start of `Inner` to where the inline buffer data +// starts. On little endian platforms, the first byte of the struct is the +// storage flag, so the data is shifted by a byte. On big endian systems, the +// data starts at the beginning of the struct. +#[cfg(target_endian = "little")] +const INLINE_DATA_OFFSET: isize = 1; +#[cfg(target_endian = "big")] +const INLINE_DATA_OFFSET: isize = 0; + +#[cfg(target_pointer_width = "64")] +const PTR_WIDTH: usize = 64; +#[cfg(target_pointer_width = "32")] +const PTR_WIDTH: usize = 32; + +// Inline buffer capacity. This is the size of `Inner` minus 1 byte for the +// metadata. +#[cfg(target_pointer_width = "64")] +const INLINE_CAP: usize = 4 * 8 - 1; +#[cfg(target_pointer_width = "32")] +const INLINE_CAP: usize = 4 * 4 - 1; + +/* + * + * ===== Bytes ===== + * + */ + +impl Bytes { + /// Creates a new `Bytes` with the specified capacity. + /// + /// The returned `Bytes` will be able to hold at least `capacity` bytes + /// without reallocating. If `capacity` is under `4 * size_of::<usize>() - 1`, + /// then `BytesMut` will not allocate. + /// + /// It is important to note that this function does not specify the length + /// of the returned `Bytes`, but only the capacity. + /// + /// # Examples + /// + /// ``` + /// use bytes::Bytes; + /// + /// let mut bytes = Bytes::with_capacity(64); + /// + /// // `bytes` contains no data, even though there is capacity + /// assert_eq!(bytes.len(), 0); + /// + /// bytes.extend_from_slice(&b"hello world"[..]); + /// + /// assert_eq!(&bytes[..], b"hello world"); + /// ``` + #[inline] + pub fn with_capacity(capacity: usize) -> Bytes { + Bytes { + inner: Inner::with_capacity(capacity), + } + } + + /// Creates a new empty `Bytes`. + /// + /// This will not allocate and the returned `Bytes` handle will be empty. + /// + /// # Examples + /// + /// ``` + /// use bytes::Bytes; + /// + /// let b = Bytes::new(); + /// assert_eq!(&b[..], b""); + /// ``` + #[inline] + pub fn new() -> Bytes { + Bytes::with_capacity(0) + } + + /// Creates a new `Bytes` from a static slice. + /// + /// The returned `Bytes` will point directly to the static slice. There is + /// no allocating or copying. + /// + /// # Examples + /// + /// ``` + /// use bytes::Bytes; + /// + /// let b = Bytes::from_static(b"hello"); + /// assert_eq!(&b[..], b"hello"); + /// ``` + #[inline] + pub fn from_static(bytes: &'static [u8]) -> Bytes { + Bytes { + inner: Inner::from_static(bytes), + } + } + + /// Returns the number of bytes contained in this `Bytes`. + /// + /// # Examples + /// + /// ``` + /// use bytes::Bytes; + /// + /// let b = Bytes::from(&b"hello"[..]); + /// assert_eq!(b.len(), 5); + /// ``` + #[inline] + pub fn len(&self) -> usize { + self.inner.len() + } + + /// Returns true if the `Bytes` has a length of 0. + /// + /// # Examples + /// + /// ``` + /// use bytes::Bytes; + /// + /// let b = Bytes::new(); + /// assert!(b.is_empty()); + /// ``` + #[inline] + pub fn is_empty(&self) -> bool { + self.inner.is_empty() + } + + /// Returns a slice of self for the index range `[begin..end)`. + /// + /// This will increment the reference count for the underlying memory and + /// return a new `Bytes` handle set to the slice. + /// + /// This operation is `O(1)`. + /// + /// # Examples + /// + /// ``` + /// use bytes::Bytes; + /// + /// let a = Bytes::from(&b"hello world"[..]); + /// let b = a.slice(2, 5); + /// + /// assert_eq!(&b[..], b"llo"); + /// ``` + /// + /// # Panics + /// + /// Requires that `begin <= end` and `end <= self.len()`, otherwise slicing + /// will panic. + pub fn slice(&self, begin: usize, end: usize) -> Bytes { + assert!(begin <= end); + assert!(end <= self.len()); + + if end - begin <= INLINE_CAP { + return Bytes::from(&self[begin..end]); + } + + let mut ret = self.clone(); + + unsafe { + ret.inner.set_end(end); + ret.inner.set_start(begin); + } + + ret + } + + /// Returns a slice of self for the index range `[begin..self.len())`. + /// + /// This will increment the reference count for the underlying memory and + /// return a new `Bytes` handle set to the slice. + /// + /// This operation is `O(1)` and is equivalent to `self.slice(begin, + /// self.len())`. + /// + /// # Examples + /// + /// ``` + /// use bytes::Bytes; + /// + /// let a = Bytes::from(&b"hello world"[..]); + /// let b = a.slice_from(6); + /// + /// assert_eq!(&b[..], b"world"); + /// ``` + /// + /// # Panics + /// + /// Requires that `begin <= self.len()`, otherwise slicing will panic. + pub fn slice_from(&self, begin: usize) -> Bytes { + self.slice(begin, self.len()) + } + + /// Returns a slice of self for the index range `[0..end)`. + /// + /// This will increment the reference count for the underlying memory and + /// return a new `Bytes` handle set to the slice. + /// + /// This operation is `O(1)` and is equivalent to `self.slice(0, end)`. + /// + /// # Examples + /// + /// ``` + /// use bytes::Bytes; + /// + /// let a = Bytes::from(&b"hello world"[..]); + /// let b = a.slice_to(5); + /// + /// assert_eq!(&b[..], b"hello"); + /// ``` + /// + /// # Panics + /// + /// Requires that `end <= self.len()`, otherwise slicing will panic. + pub fn slice_to(&self, end: usize) -> Bytes { + self.slice(0, end) + } + + /// Returns a slice of self that is equivalent to the given `subset`. + /// + /// When processing a `Bytes` buffer with other tools, one often gets a + /// `&[u8]` which is in fact a slice of the `Bytes`, i.e. a subset of it. + /// This function turns that `&[u8]` into another `Bytes`, as if one had + /// called `self.slice()` with the offsets that correspond to `subset`. + /// + /// This operation is `O(1)`. + /// + /// # Examples + /// + /// ``` + /// use bytes::Bytes; + /// + /// let bytes = Bytes::from(&b"012345678"[..]); + /// let as_slice = bytes.as_ref(); + /// let subset = &as_slice[2..6]; + /// let subslice = bytes.slice_ref(&subset); + /// assert_eq!(&subslice[..], b"2345"); + /// ``` + /// + /// # Panics + /// + /// Requires that the given `sub` slice is in fact contained within the + /// `Bytes` buffer; otherwise this function will panic. + pub fn slice_ref(&self, subset: &[u8]) -> Bytes { + let bytes_p = self.as_ptr() as usize; + let bytes_len = self.len(); + + let sub_p = subset.as_ptr() as usize; + let sub_len = subset.len(); + + assert!(sub_p >= bytes_p); + assert!(sub_p + sub_len <= bytes_p + bytes_len); + + let sub_offset = sub_p - bytes_p; + + self.slice(sub_offset, sub_offset + sub_len) + } + + /// Splits the bytes into two at the given index. + /// + /// Afterwards `self` contains elements `[0, at)`, and the returned `Bytes` + /// contains elements `[at, len)`. + /// + /// This is an `O(1)` operation that just increases the reference count and + /// sets a few indices. + /// + /// # Examples + /// + /// ``` + /// use bytes::Bytes; + /// + /// let mut a = Bytes::from(&b"hello world"[..]); + /// let b = a.split_off(5); + /// + /// assert_eq!(&a[..], b"hello"); + /// assert_eq!(&b[..], b" world"); + /// ``` + /// + /// # Panics + /// + /// Panics if `at > len`. + pub fn split_off(&mut self, at: usize) -> Bytes { + assert!(at <= self.len()); + + if at == self.len() { + return Bytes::new(); + } + + if at == 0 { + return mem::replace(self, Bytes::new()); + } + + Bytes { + inner: self.inner.split_off(at), + } + } + + /// Splits the bytes into two at the given index. + /// + /// Afterwards `self` contains elements `[at, len)`, and the returned + /// `Bytes` contains elements `[0, at)`. + /// + /// This is an `O(1)` operation that just increases the reference count and + /// sets a few indices. + /// + /// # Examples + /// + /// ``` + /// use bytes::Bytes; + /// + /// let mut a = Bytes::from(&b"hello world"[..]); + /// let b = a.split_to(5); + /// + /// assert_eq!(&a[..], b" world"); + /// assert_eq!(&b[..], b"hello"); + /// ``` + /// + /// # Panics + /// + /// Panics if `at > len`. + pub fn split_to(&mut self, at: usize) -> Bytes { + assert!(at <= self.len()); + + if at == self.len() { + return mem::replace(self, Bytes::new()); + } + + if at == 0 { + return Bytes::new(); + } + + Bytes { + inner: self.inner.split_to(at), + } + } + + #[deprecated(since = "0.4.1", note = "use split_to instead")] + #[doc(hidden)] + pub fn drain_to(&mut self, at: usize) -> Bytes { + self.split_to(at) + } + + /// Shortens the buffer, keeping the first `len` bytes and dropping the + /// rest. + /// + /// If `len` is greater than the buffer's current length, this has no + /// effect. + /// + /// The [`split_off`] method can emulate `truncate`, but this causes the + /// excess bytes to be returned instead of dropped. + /// + /// # Examples + /// + /// ``` + /// use bytes::Bytes; + /// + /// let mut buf = Bytes::from(&b"hello world"[..]); + /// buf.truncate(5); + /// assert_eq!(buf, b"hello"[..]); + /// ``` + /// + /// [`split_off`]: #method.split_off + pub fn truncate(&mut self, len: usize) { + self.inner.truncate(len); + } + + /// Shortens the buffer, dropping the first `cnt` bytes and keeping the + /// rest. + /// + /// This is the same function as `Buf::advance`, and in the next breaking + /// release of `bytes`, this implementation will be removed in favor of + /// having `Bytes` implement `Buf`. + /// + /// # Panics + /// + /// This function panics if `cnt` is greater than `self.len()` + #[inline] + pub fn advance(&mut self, cnt: usize) { + assert!(cnt <= self.len(), "cannot advance past `remaining`"); + unsafe { self.inner.set_start(cnt); } + } + + /// Clears the buffer, removing all data. + /// + /// # Examples + /// + /// ``` + /// use bytes::Bytes; + /// + /// let mut buf = Bytes::from(&b"hello world"[..]); + /// buf.clear(); + /// assert!(buf.is_empty()); + /// ``` + pub fn clear(&mut self) { + self.truncate(0); + } + + /// Attempts to convert into a `BytesMut` handle. + /// + /// This will only succeed if there are no other outstanding references to + /// the underlying chunk of memory. `Bytes` handles that contain inlined + /// bytes will always be convertable to `BytesMut`. + /// + /// # Examples + /// + /// ``` + /// use bytes::Bytes; + /// + /// let a = Bytes::from(&b"Mary had a little lamb, little lamb, little lamb..."[..]); + /// + /// // Create a shallow clone + /// let b = a.clone(); + /// + /// // This will fail because `b` shares a reference with `a` + /// let a = a.try_mut().unwrap_err(); + /// + /// drop(b); + /// + /// // This will succeed + /// let mut a = a.try_mut().unwrap(); + /// + /// a[0] = b'b'; + /// + /// assert_eq!(&a[..4], b"bary"); + /// ``` + pub fn try_mut(mut self) -> Result<BytesMut, Bytes> { + if self.inner.is_mut_safe() { + Ok(BytesMut { inner: self.inner }) + } else { + Err(self) + } + } + + /// Appends given bytes to this object. + /// + /// If this `Bytes` object has not enough capacity, it is resized first. + /// If it is shared (`refcount > 1`), it is copied first. + /// + /// This operation can be less effective than the similar operation on + /// `BytesMut`, especially on small additions. + /// + /// # Examples + /// + /// ``` + /// use bytes::Bytes; + /// + /// let mut buf = Bytes::from("aabb"); + /// buf.extend_from_slice(b"ccdd"); + /// buf.extend_from_slice(b"eeff"); + /// + /// assert_eq!(b"aabbccddeeff", &buf[..]); + /// ``` + pub fn extend_from_slice(&mut self, extend: &[u8]) { + if extend.is_empty() { + return; + } + + let new_cap = self.len().checked_add(extend.len()).expect("capacity overflow"); + + let result = match mem::replace(self, Bytes::new()).try_mut() { + Ok(mut bytes_mut) => { + bytes_mut.extend_from_slice(extend); + bytes_mut + }, + Err(bytes) => { + let mut bytes_mut = BytesMut::with_capacity(new_cap); + bytes_mut.put_slice(&bytes); + bytes_mut.put_slice(extend); + bytes_mut + } + }; + + mem::replace(self, result.freeze()); + } +} + +impl IntoBuf for Bytes { + type Buf = Cursor<Self>; + + fn into_buf(self) -> Self::Buf { + Cursor::new(self) + } +} + +impl<'a> IntoBuf for &'a Bytes { + type Buf = Cursor<Self>; + + fn into_buf(self) -> Self::Buf { + Cursor::new(self) + } +} + +impl Clone for Bytes { + fn clone(&self) -> Bytes { + Bytes { + inner: unsafe { self.inner.shallow_clone(false) }, + } + } +} + +impl AsRef<[u8]> for Bytes { + #[inline] + fn as_ref(&self) -> &[u8] { + self.inner.as_ref() + } +} + +impl ops::Deref for Bytes { + type Target = [u8]; + + #[inline] + fn deref(&self) -> &[u8] { + self.inner.as_ref() + } +} + +impl From<BytesMut> for Bytes { + fn from(src: BytesMut) -> Bytes { + src.freeze() + } +} + +impl From<Vec<u8>> for Bytes { + fn from(src: Vec<u8>) -> Bytes { + BytesMut::from(src).freeze() + } +} + +impl From<String> for Bytes { + fn from(src: String) -> Bytes { + BytesMut::from(src).freeze() + } +} + +impl<'a> From<&'a [u8]> for Bytes { + fn from(src: &'a [u8]) -> Bytes { + BytesMut::from(src).freeze() + } +} + +impl<'a> From<&'a str> for Bytes { + fn from(src: &'a str) -> Bytes { + BytesMut::from(src).freeze() + } +} + +impl FromIterator<u8> for BytesMut { + fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self { + let iter = into_iter.into_iter(); + let (min, maybe_max) = iter.size_hint(); + + let mut out = BytesMut::with_capacity(maybe_max.unwrap_or(min)); + + for i in iter { + out.reserve(1); + out.put(i); + } + + out + } +} + +impl FromIterator<u8> for Bytes { + fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self { + BytesMut::from_iter(into_iter).freeze() + } +} + +impl<'a> FromIterator<&'a u8> for BytesMut { + fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self { + BytesMut::from_iter(into_iter.into_iter().map(|b| *b)) + } +} + +impl<'a> FromIterator<&'a u8> for Bytes { + fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self { + BytesMut::from_iter(into_iter).freeze() + } +} + +impl PartialEq for Bytes { + fn eq(&self, other: &Bytes) -> bool { + self.inner.as_ref() == other.inner.as_ref() + } +} + +impl PartialOrd for Bytes { + fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { + self.inner.as_ref().partial_cmp(other.inner.as_ref()) + } +} + +impl Ord for Bytes { + fn cmp(&self, other: &Bytes) -> cmp::Ordering { + self.inner.as_ref().cmp(other.inner.as_ref()) + } +} + +impl Eq for Bytes { +} + +impl Default for Bytes { + #[inline] + fn default() -> Bytes { + Bytes::new() + } +} + +impl fmt::Debug for Bytes { + fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { + fmt::Debug::fmt(&debug::BsDebug(&self.inner.as_ref()), fmt) + } +} + +impl hash::Hash for Bytes { + fn hash<H>(&self, state: &mut H) where H: hash::Hasher { + let s: &[u8] = self.as_ref(); + s.hash(state); + } +} + +impl Borrow<[u8]> for Bytes { + fn borrow(&self) -> &[u8] { + self.as_ref() + } +} + +impl IntoIterator for Bytes { + type Item = u8; + type IntoIter = Iter<Cursor<Bytes>>; + + fn into_iter(self) -> Self::IntoIter { + self.into_buf().iter() + } +} + +impl<'a> IntoIterator for &'a Bytes { + type Item = u8; + type IntoIter = Iter<Cursor<&'a Bytes>>; + + fn into_iter(self) -> Self::IntoIter { + self.into_buf().iter() + } +} + +impl Extend<u8> for Bytes { + fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = u8> { + let iter = iter.into_iter(); + + let (lower, upper) = iter.size_hint(); + + // Avoid possible conversion into mut if there's nothing to add + if let Some(0) = upper { + return; + } + + let mut bytes_mut = match mem::replace(self, Bytes::new()).try_mut() { + Ok(bytes_mut) => bytes_mut, + Err(bytes) => { + let mut bytes_mut = BytesMut::with_capacity(bytes.len() + lower); + bytes_mut.put_slice(&bytes); + bytes_mut + } + }; + + bytes_mut.extend(iter); + + mem::replace(self, bytes_mut.freeze()); + } +} + +impl<'a> Extend<&'a u8> for Bytes { + fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = &'a u8> { + self.extend(iter.into_iter().map(|b| *b)) + } +} + +/* + * + * ===== BytesMut ===== + * + */ + +impl BytesMut { + /// Creates a new `BytesMut` with the specified capacity. + /// + /// The returned `BytesMut` will be able to hold at least `capacity` bytes + /// without reallocating. If `capacity` is under `4 * size_of::<usize>() - 1`, + /// then `BytesMut` will not allocate. + /// + /// It is important to note that this function does not specify the length + /// of the returned `BytesMut`, but only the capacity. + /// + /// # Examples + /// + /// ``` + /// use bytes::{BytesMut, BufMut}; + /// + /// let mut bytes = BytesMut::with_capacity(64); + /// + /// // `bytes` contains no data, even though there is capacity + /// assert_eq!(bytes.len(), 0); + /// + /// bytes.put(&b"hello world"[..]); + /// + /// assert_eq!(&bytes[..], b"hello world"); + /// ``` + #[inline] + pub fn with_capacity(capacity: usize) -> BytesMut { + BytesMut { + inner: Inner::with_capacity(capacity), + } + } + + /// Creates a new `BytesMut` with default capacity. + /// + /// Resulting object has length 0 and unspecified capacity. + /// This function does not allocate. + /// + /// # Examples + /// + /// ``` + /// use bytes::{BytesMut, BufMut}; + /// + /// let mut bytes = BytesMut::new(); + /// + /// assert_eq!(0, bytes.len()); + /// + /// bytes.reserve(2); + /// bytes.put_slice(b"xy"); + /// + /// assert_eq!(&b"xy"[..], &bytes[..]); + /// ``` + #[inline] + pub fn new() -> BytesMut { + BytesMut::with_capacity(0) + } + + /// Returns the number of bytes contained in this `BytesMut`. + /// + /// # Examples + /// + /// ``` + /// use bytes::BytesMut; + /// + /// let b = BytesMut::from(&b"hello"[..]); + /// assert_eq!(b.len(), 5); + /// ``` + #[inline] + pub fn len(&self) -> usize { + self.inner.len() + } + + /// Returns true if the `BytesMut` has a length of 0. + /// + /// # Examples + /// + /// ``` + /// use bytes::BytesMut; + /// + /// let b = BytesMut::with_capacity(64); + /// assert!(b.is_empty()); + /// ``` + #[inline] + pub fn is_empty(&self) -> bool { + self.len() == 0 + } + + /// Returns the number of bytes the `BytesMut` can hold without reallocating. + /// + /// # Examples + /// + /// ``` + /// use bytes::BytesMut; + /// + /// let b = BytesMut::with_capacity(64); + /// assert_eq!(b.capacity(), 64); + /// ``` + #[inline] + pub fn capacity(&self) -> usize { + self.inner.capacity() + } + + /// Converts `self` into an immutable `Bytes`. + /// + /// The conversion is zero cost and is used to indicate that the slice + /// referenced by the handle will no longer be mutated. Once the conversion + /// is done, the handle can be cloned and shared across threads. + /// + /// # Examples + /// + /// ``` + /// use bytes::{BytesMut, BufMut}; + /// use std::thread; + /// + /// let mut b = BytesMut::with_capacity(64); + /// b.put("hello world"); + /// let b1 = b.freeze(); + /// let b2 = b1.clone(); + /// + /// let th = thread::spawn(move || { + /// assert_eq!(&b1[..], b"hello world"); + /// }); + /// + /// assert_eq!(&b2[..], b"hello world"); + /// th.join().unwrap(); + /// ``` + #[inline] + pub fn freeze(self) -> Bytes { + Bytes { inner: self.inner } + } + + /// Splits the bytes into two at the given index. + /// + /// Afterwards `self` contains elements `[0, at)`, and the returned + /// `BytesMut` contains elements `[at, capacity)`. + /// + /// This is an `O(1)` operation that just increases the reference count + /// and sets a few indices. + /// + /// # Examples + /// + /// ``` + /// use bytes::BytesMut; + /// + /// let mut a = BytesMut::from(&b"hello world"[..]); + /// let mut b = a.split_off(5); + /// + /// a[0] = b'j'; + /// b[0] = b'!'; + /// + /// assert_eq!(&a[..], b"jello"); + /// assert_eq!(&b[..], b"!world"); + /// ``` + /// + /// # Panics + /// + /// Panics if `at > capacity`. + pub fn split_off(&mut self, at: usize) -> BytesMut { + BytesMut { + inner: self.inner.split_off(at), + } + } + + /// Removes the bytes from the current view, returning them in a new + /// `BytesMut` handle. + /// + /// Afterwards, `self` will be empty, but will retain any additional + /// capacity that it had before the operation. This is identical to + /// `self.split_to(self.len())`. + /// + /// This is an `O(1)` operation that just increases the reference count and + /// sets a few indices. + /// + /// # Examples + /// + /// ``` + /// use bytes::{BytesMut, BufMut}; + /// + /// let mut buf = BytesMut::with_capacity(1024); + /// buf.put(&b"hello world"[..]); + /// + /// let other = buf.take(); + /// + /// assert!(buf.is_empty()); + /// assert_eq!(1013, buf.capacity()); + /// + /// assert_eq!(other, b"hello world"[..]); + /// ``` + pub fn take(&mut self) -> BytesMut { + let len = self.len(); + self.split_to(len) + } + + #[deprecated(since = "0.4.1", note = "use take instead")] + #[doc(hidden)] + pub fn drain(&mut self) -> BytesMut { + self.take() + } + + /// Splits the buffer into two at the given index. + /// + /// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut` + /// contains elements `[0, at)`. + /// + /// This is an `O(1)` operation that just increases the reference count and + /// sets a few indices. + /// + /// # Examples + /// + /// ``` + /// use bytes::BytesMut; + /// + /// let mut a = BytesMut::from(&b"hello world"[..]); + /// let mut b = a.split_to(5); + /// + /// a[0] = b'!'; + /// b[0] = b'j'; + /// + /// assert_eq!(&a[..], b"!world"); + /// assert_eq!(&b[..], b"jello"); + /// ``` + /// + /// # Panics + /// + /// Panics if `at > len`. + pub fn split_to(&mut self, at: usize) -> BytesMut { + BytesMut { + inner: self.inner.split_to(at), + } + } + + #[deprecated(since = "0.4.1", note = "use split_to instead")] + #[doc(hidden)] + pub fn drain_to(&mut self, at: usize) -> BytesMut { + self.split_to(at) + } + + /// Shortens the buffer, keeping the first `len` bytes and dropping the + /// rest. + /// + /// If `len` is greater than the buffer's current length, this has no + /// effect. + /// + /// The [`split_off`] method can emulate `truncate`, but this causes the + /// excess bytes to be returned instead of dropped. + /// + /// # Examples + /// + /// ``` + /// use bytes::BytesMut; + /// + /// let mut buf = BytesMut::from(&b"hello world"[..]); + /// buf.truncate(5); + /// assert_eq!(buf, b"hello"[..]); + /// ``` + /// + /// [`split_off`]: #method.split_off + pub fn truncate(&mut self, len: usize) { + self.inner.truncate(len); + } + + /// Shortens the buffer, dropping the first `cnt` bytes and keeping the + /// rest. + /// + /// This is the same function as `Buf::advance`, and in the next breaking + /// release of `bytes`, this implementation will be removed in favor of + /// having `BytesMut` implement `Buf`. + /// + /// # Panics + /// + /// This function panics if `cnt` is greater than `self.len()` + #[inline] + pub fn advance(&mut self, cnt: usize) { + assert!(cnt <= self.len(), "cannot advance past `remaining`"); + unsafe { self.inner.set_start(cnt); } + } + + /// Clears the buffer, removing all data. + /// + /// # Examples + /// + /// ``` + /// use bytes::BytesMut; + /// + /// let mut buf = BytesMut::from(&b"hello world"[..]); + /// buf.clear(); + /// assert!(buf.is_empty()); + /// ``` + pub fn clear(&mut self) { + self.truncate(0); + } + + /// Resizes the buffer so that `len` is equal to `new_len`. + /// + /// If `new_len` is greater than `len`, the buffer is extended by the + /// difference with each additional byte set to `value`. If `new_len` is + /// less than `len`, the buffer is simply truncated. + /// + /// # Examples + /// + /// ``` + /// use bytes::BytesMut; + /// + /// let mut buf = BytesMut::new(); + /// + /// buf.resize(3, 0x1); + /// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]); + /// + /// buf.resize(2, 0x2); + /// assert_eq!(&buf[..], &[0x1, 0x1]); + /// + /// buf.resize(4, 0x3); + /// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]); + /// ``` + pub fn resize(&mut self, new_len: usize, value: u8) { + self.inner.resize(new_len, value); + } + + /// Sets the length of the buffer. + /// + /// This will explicitly set the size of the buffer without actually + /// modifying the data, so it is up to the caller to ensure that the data + /// has been initialized. + /// + /// # Examples + /// + /// ``` + /// use bytes::BytesMut; + /// + /// let mut b = BytesMut::from(&b"hello world"[..]); + /// + /// unsafe { + /// b.set_len(5); + /// } + /// + /// assert_eq!(&b[..], b"hello"); + /// + /// unsafe { + /// b.set_len(11); + /// } + /// + /// assert_eq!(&b[..], b"hello world"); + /// ``` + /// + /// # Panics + /// + /// This method will panic if `len` is out of bounds for the underlying + /// slice or if it comes after the `end` of the configured window. + pub unsafe fn set_len(&mut self, len: usize) { + self.inner.set_len(len) + } + + /// Reserves capacity for at least `additional` more bytes to be inserted + /// into the given `BytesMut`. + /// + /// More than `additional` bytes may be reserved in order to avoid frequent + /// reallocations. A call to `reserve` may result in an allocation. + /// + /// Before allocating new buffer space, the function will attempt to reclaim + /// space in the existing buffer. If the current handle references a small + /// view in the original buffer and all other handles have been dropped, + /// and the requested capacity is less than or equal to the existing + /// buffer's capacity, then the current view will be copied to the front of + /// the buffer and the handle will take ownership of the full buffer. + /// + /// # Examples + /// + /// In the following example, a new buffer is allocated. + /// + /// ``` + /// use bytes::BytesMut; + /// + /// let mut buf = BytesMut::from(&b"hello"[..]); + /// buf.reserve(64); + /// assert!(buf.capacity() >= 69); + /// ``` + /// + /// In the following example, the existing buffer is reclaimed. + /// + /// ``` + /// use bytes::{BytesMut, BufMut}; + /// + /// let mut buf = BytesMut::with_capacity(128); + /// buf.put(&[0; 64][..]); + /// + /// let ptr = buf.as_ptr(); + /// let other = buf.take(); + /// + /// assert!(buf.is_empty()); + /// assert_eq!(buf.capacity(), 64); + /// + /// drop(other); + /// buf.reserve(128); + /// + /// assert_eq!(buf.capacity(), 128); + /// assert_eq!(buf.as_ptr(), ptr); + /// ``` + /// + /// # Panics + /// + /// Panics if the new capacity overflows `usize`. + pub fn reserve(&mut self, additional: usize) { + self.inner.reserve(additional) + } + + /// Appends given bytes to this object. + /// + /// If this `BytesMut` object has not enough capacity, it is resized first. + /// So unlike `put_slice` operation, `extend_from_slice` does not panic. + /// + /// # Examples + /// + /// ``` + /// use bytes::BytesMut; + /// + /// let mut buf = BytesMut::with_capacity(0); + /// buf.extend_from_slice(b"aaabbb"); + /// buf.extend_from_slice(b"cccddd"); + /// + /// assert_eq!(b"aaabbbcccddd", &buf[..]); + /// ``` + pub fn extend_from_slice(&mut self, extend: &[u8]) { + self.reserve(extend.len()); + self.put_slice(extend); + } + + /// Combine splitted BytesMut objects back as contiguous. + /// + /// If `BytesMut` objects were not contiguous originally, they will be extended. + /// + /// # Examples + /// + /// ``` + /// use bytes::BytesMut; + /// + /// let mut buf = BytesMut::with_capacity(64); + /// buf.extend_from_slice(b"aaabbbcccddd"); + /// + /// let splitted = buf.split_off(6); + /// assert_eq!(b"aaabbb", &buf[..]); + /// assert_eq!(b"cccddd", &splitted[..]); + /// + /// buf.unsplit(splitted); + /// assert_eq!(b"aaabbbcccddd", &buf[..]); + /// ``` + pub fn unsplit(&mut self, other: BytesMut) { + let ptr; + + if other.is_empty() { + return; + } + + if self.is_empty() { + *self = other; + return; + } + + unsafe { + ptr = self.inner.ptr.offset(self.inner.len as isize); + } + if ptr == other.inner.ptr && + self.inner.kind() == KIND_ARC && + other.inner.kind() == KIND_ARC + { + debug_assert_eq!(self.inner.arc.load(Acquire), + other.inner.arc.load(Acquire)); + // Contiguous blocks, just combine directly + self.inner.len += other.inner.len; + self.inner.cap += other.inner.cap; + } + else { + self.extend_from_slice(&other); + } + } +} + +impl BufMut for BytesMut { + #[inline] + fn remaining_mut(&self) -> usize { + self.capacity() - self.len() + } + + #[inline] + unsafe fn advance_mut(&mut self, cnt: usize) { + let new_len = self.len() + cnt; + + // This call will panic if `cnt` is too big + self.inner.set_len(new_len); + } + + #[inline] + unsafe fn bytes_mut(&mut self) -> &mut [u8] { + let len = self.len(); + + // This will never panic as `len` can never become invalid + &mut self.inner.as_raw()[len..] + } + + #[inline] + fn put_slice(&mut self, src: &[u8]) { + assert!(self.remaining_mut() >= src.len()); + + let len = src.len(); + + unsafe { + self.bytes_mut()[..len].copy_from_slice(src); + self.advance_mut(len); + } + } + + #[inline] + fn put_u8(&mut self, n: u8) { + self.inner.put_u8(n); + } + + #[inline] + fn put_i8(&mut self, n: i8) { + self.put_u8(n as u8); + } +} + +impl IntoBuf for BytesMut { + type Buf = Cursor<Self>; + + fn into_buf(self) -> Self::Buf { + Cursor::new(self) + } +} + +impl<'a> IntoBuf for &'a BytesMut { + type Buf = Cursor<&'a BytesMut>; + + fn into_buf(self) -> Self::Buf { + Cursor::new(self) + } +} + +impl AsRef<[u8]> for BytesMut { + #[inline] + fn as_ref(&self) -> &[u8] { + self.inner.as_ref() + } +} + +impl ops::Deref for BytesMut { + type Target = [u8]; + + #[inline] + fn deref(&self) -> &[u8] { + self.as_ref() + } +} + +impl AsMut<[u8]> for BytesMut { + fn as_mut(&mut self) -> &mut [u8] { + self.inner.as_mut() + } +} + +impl ops::DerefMut for BytesMut { + #[inline] + fn deref_mut(&mut self) -> &mut [u8] { + self.inner.as_mut() + } +} + +impl From<Vec<u8>> for BytesMut { + fn from(src: Vec<u8>) -> BytesMut { + BytesMut { + inner: Inner::from_vec(src), + } + } +} + +impl From<String> for BytesMut { + fn from(src: String) -> BytesMut { + BytesMut::from(src.into_bytes()) + } +} + +impl<'a> From<&'a [u8]> for BytesMut { + fn from(src: &'a [u8]) -> BytesMut { + let len = src.len(); + + if len == 0 { + BytesMut::new() + } else if len <= INLINE_CAP { + unsafe { + let mut inner: Inner = mem::uninitialized(); + + // Set inline mask + inner.arc = AtomicPtr::new(KIND_INLINE as *mut Shared); + inner.set_inline_len(len); + inner.as_raw()[0..len].copy_from_slice(src); + + BytesMut { + inner: inner, + } + } + } else { + BytesMut::from(src.to_vec()) + } + } +} + +impl<'a> From<&'a str> for BytesMut { + fn from(src: &'a str) -> BytesMut { + BytesMut::from(src.as_bytes()) + } +} + +impl From<Bytes> for BytesMut { + fn from(src: Bytes) -> BytesMut { + src.try_mut() + .unwrap_or_else(|src| BytesMut::from(&src[..])) + } +} + +impl PartialEq for BytesMut { + fn eq(&self, other: &BytesMut) -> bool { + self.inner.as_ref() == other.inner.as_ref() + } +} + +impl PartialOrd for BytesMut { + fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { + self.inner.as_ref().partial_cmp(other.inner.as_ref()) + } +} + +impl Ord for BytesMut { + fn cmp(&self, other: &BytesMut) -> cmp::Ordering { + self.inner.as_ref().cmp(other.inner.as_ref()) + } +} + +impl Eq for BytesMut { +} + +impl Default for BytesMut { + #[inline] + fn default() -> BytesMut { + BytesMut::new() + } +} + +impl fmt::Debug for BytesMut { + fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { + fmt::Debug::fmt(&debug::BsDebug(&self.inner.as_ref()), fmt) + } +} + +impl hash::Hash for BytesMut { + fn hash<H>(&self, state: &mut H) where H: hash::Hasher { + let s: &[u8] = self.as_ref(); + s.hash(state); + } +} + +impl Borrow<[u8]> for BytesMut { + fn borrow(&self) -> &[u8] { + self.as_ref() + } +} + +impl BorrowMut<[u8]> for BytesMut { + fn borrow_mut(&mut self) -> &mut [u8] { + self.as_mut() + } +} + +impl fmt::Write for BytesMut { + #[inline] + fn write_str(&mut self, s: &str) -> fmt::Result { + if self.remaining_mut() >= s.len() { + self.put_slice(s.as_bytes()); + Ok(()) + } else { + Err(fmt::Error) + } + } + + #[inline] + fn write_fmt(&mut self, args: fmt::Arguments) -> fmt::Result { + fmt::write(self, args) + } +} + +impl Clone for BytesMut { + fn clone(&self) -> BytesMut { + BytesMut::from(&self[..]) + } +} + +impl IntoIterator for BytesMut { + type Item = u8; + type IntoIter = Iter<Cursor<BytesMut>>; + + fn into_iter(self) -> Self::IntoIter { + self.into_buf().iter() + } +} + +impl<'a> IntoIterator for &'a BytesMut { + type Item = u8; + type IntoIter = Iter<Cursor<&'a BytesMut>>; + + fn into_iter(self) -> Self::IntoIter { + self.into_buf().iter() + } +} + +impl Extend<u8> for BytesMut { + fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = u8> { + let iter = iter.into_iter(); + + let (lower, _) = iter.size_hint(); + self.reserve(lower); + + for b in iter { + unsafe { + self.bytes_mut()[0] = b; + self.advance_mut(1); + } + } + } +} + +impl<'a> Extend<&'a u8> for BytesMut { + fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = &'a u8> { + self.extend(iter.into_iter().map(|b| *b)) + } +} + +/* + * + * ===== Inner ===== + * + */ + +impl Inner { + #[inline] + fn from_static(bytes: &'static [u8]) -> Inner { + let ptr = bytes.as_ptr() as *mut u8; + + Inner { + // `arc` won't ever store a pointer. Instead, use it to + // track the fact that the `Bytes` handle is backed by a + // static buffer. + arc: AtomicPtr::new(KIND_STATIC as *mut Shared), + ptr: ptr, + len: bytes.len(), + cap: bytes.len(), + } + } + + #[inline] + fn from_vec(mut src: Vec<u8>) -> Inner { + let len = src.len(); + let cap = src.capacity(); + let ptr = src.as_mut_ptr(); + + mem::forget(src); + + let original_capacity_repr = original_capacity_to_repr(cap); + let arc = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC; + + Inner { + arc: AtomicPtr::new(arc as *mut Shared), + ptr: ptr, + len: len, + cap: cap, + } + } + + #[inline] + fn with_capacity(capacity: usize) -> Inner { + if capacity <= INLINE_CAP { + unsafe { + // Using uninitialized memory is ~30% faster + let mut inner: Inner = mem::uninitialized(); + inner.arc = AtomicPtr::new(KIND_INLINE as *mut Shared); + inner + } + } else { + Inner::from_vec(Vec::with_capacity(capacity)) + } + } + + /// Return a slice for the handle's view into the shared buffer + #[inline] + fn as_ref(&self) -> &[u8] { + unsafe { + if self.is_inline() { + slice::from_raw_parts(self.inline_ptr(), self.inline_len()) + } else { + slice::from_raw_parts(self.ptr, self.len) + } + } + } + + /// Return a mutable slice for the handle's view into the shared buffer + #[inline] + fn as_mut(&mut self) -> &mut [u8] { + debug_assert!(!self.is_static()); + + unsafe { + if self.is_inline() { + slice::from_raw_parts_mut(self.inline_ptr(), self.inline_len()) + } else { + slice::from_raw_parts_mut(self.ptr, self.len) + } + } + } + + /// Return a mutable slice for the handle's view into the shared buffer + /// including potentially uninitialized bytes. + #[inline] + unsafe fn as_raw(&mut self) -> &mut [u8] { + debug_assert!(!self.is_static()); + + if self.is_inline() { + slice::from_raw_parts_mut(self.inline_ptr(), INLINE_CAP) + } else { + slice::from_raw_parts_mut(self.ptr, self.cap) + } + } + + /// Insert a byte into the next slot and advance the len by 1. + #[inline] + fn put_u8(&mut self, n: u8) { + if self.is_inline() { + let len = self.inline_len(); + assert!(len < INLINE_CAP); + unsafe { + *self.inline_ptr().offset(len as isize) = n; + } + self.set_inline_len(len + 1); + } else { + assert!(self.len < self.cap); + unsafe { + *self.ptr.offset(self.len as isize) = n; + } + self.len += 1; + } + } + + #[inline] + fn len(&self) -> usize { + if self.is_inline() { + self.inline_len() + } else { + self.len + } + } + + /// Pointer to the start of the inline buffer + #[inline] + unsafe fn inline_ptr(&self) -> *mut u8 { + (self as *const Inner as *mut Inner as *mut u8) + .offset(INLINE_DATA_OFFSET) + } + + #[inline] + fn inline_len(&self) -> usize { + let p: &usize = unsafe { mem::transmute(&self.arc) }; + (p & INLINE_LEN_MASK) >> INLINE_LEN_OFFSET + } + + /// Set the length of the inline buffer. This is done by writing to the + /// least significant byte of the `arc` field. + #[inline] + fn set_inline_len(&mut self, len: usize) { + debug_assert!(len <= INLINE_CAP); + let p = self.arc.get_mut(); + *p = ((*p as usize & !INLINE_LEN_MASK) | (len << INLINE_LEN_OFFSET)) as _; + } + + /// slice. + #[inline] + unsafe fn set_len(&mut self, len: usize) { + if self.is_inline() { + assert!(len <= INLINE_CAP); + self.set_inline_len(len); + } else { + assert!(len <= self.cap); + self.len = len; + } + } + + #[inline] + fn is_empty(&self) -> bool { + self.len() == 0 + } + + #[inline] + fn capacity(&self) -> usize { + if self.is_inline() { + INLINE_CAP + } else { + self.cap + } + } + + fn split_off(&mut self, at: usize) -> Inner { + let mut other = unsafe { self.shallow_clone(true) }; + + unsafe { + other.set_start(at); + self.set_end(at); + } + + return other + } + + fn split_to(&mut self, at: usize) -> Inner { + let mut other = unsafe { self.shallow_clone(true) }; + + unsafe { + other.set_end(at); + self.set_start(at); + } + + return other + } + + fn truncate(&mut self, len: usize) { + if len <= self.len() { + unsafe { self.set_len(len); } + } + } + + fn resize(&mut self, new_len: usize, value: u8) { + let len = self.len(); + if new_len > len { + let additional = new_len - len; + self.reserve(additional); + unsafe { + let dst = self.as_raw()[len..].as_mut_ptr(); + ptr::write_bytes(dst, value, additional); + self.set_len(new_len); + } + } else { + self.truncate(new_len); + } + } + + unsafe fn set_start(&mut self, start: usize) { + // Setting the start to 0 is a no-op, so return early if this is the + // case. + if start == 0 { + return; + } + + let kind = self.kind(); + + // Always check `inline` first, because if the handle is using inline + // data storage, all of the `Inner` struct fields will be gibberish. + if kind == KIND_INLINE { + assert!(start <= INLINE_CAP); + + let len = self.inline_len(); + + if len <= start { + self.set_inline_len(0); + } else { + // `set_start` is essentially shifting data off the front of the + // view. Inlined buffers only track the length of the slice. + // So, to update the start, the data at the new starting point + // is copied to the beginning of the buffer. + let new_len = len - start; + + let dst = self.inline_ptr(); + let src = (dst as *const u8).offset(start as isize); + + ptr::copy(src, dst, new_len); + + self.set_inline_len(new_len); + } + } else { + assert!(start <= self.cap); + + if kind == KIND_VEC { + // Setting the start when in vec representation is a little more + // complicated. First, we have to track how far ahead the + // "start" of the byte buffer from the beginning of the vec. We + // also have to ensure that we don't exceed the maximum shift. + let (mut pos, prev) = self.uncoordinated_get_vec_pos(); + pos += start; + + if pos <= MAX_VEC_POS { + self.uncoordinated_set_vec_pos(pos, prev); + } else { + // The repr must be upgraded to ARC. This will never happen + // on 64 bit systems and will only happen on 32 bit systems + // when shifting past 134,217,727 bytes. As such, we don't + // worry too much about performance here. + let _ = self.shallow_clone(true); + } + } + + // Updating the start of the view is setting `ptr` to point to the + // new start and updating the `len` field to reflect the new length + // of the view. + self.ptr = self.ptr.offset(start as isize); + + if self.len >= start { + self.len -= start; + } else { + self.len = 0; + } + + self.cap -= start; + } + } + + unsafe fn set_end(&mut self, end: usize) { + debug_assert!(self.is_shared()); + + // Always check `inline` first, because if the handle is using inline + // data storage, all of the `Inner` struct fields will be gibberish. + if self.is_inline() { + assert!(end <= INLINE_CAP); + let new_len = cmp::min(self.inline_len(), end); + self.set_inline_len(new_len); + } else { + assert!(end <= self.cap); + + self.cap = end; + self.len = cmp::min(self.len, end); + } + } + + /// Checks if it is safe to mutate the memory + fn is_mut_safe(&mut self) -> bool { + let kind = self.kind(); + + // Always check `inline` first, because if the handle is using inline + // data storage, all of the `Inner` struct fields will be gibberish. + if kind == KIND_INLINE { + // Inlined buffers can always be mutated as the data is never shared + // across handles. + true + } else if kind == KIND_VEC { + true + } else if kind == KIND_STATIC { + false + } else { + // Otherwise, the underlying buffer is potentially shared with other + // handles, so the ref_count needs to be checked. + unsafe { (**self.arc.get_mut()).is_unique() } + } + } + + /// Increments the ref count. This should only be done if it is known that + /// it can be done safely. As such, this fn is not public, instead other + /// fns will use this one while maintaining the guarantees. + /// Parameter `mut_self` should only be set to `true` if caller holds + /// `&mut self` reference. + /// + /// "Safely" is defined as not exposing two `BytesMut` values that point to + /// the same byte window. + /// + /// This function is thread safe. + unsafe fn shallow_clone(&self, mut_self: bool) -> Inner { + // Always check `inline` first, because if the handle is using inline + // data storage, all of the `Inner` struct fields will be gibberish. + // + // Additionally, if kind is STATIC, then Arc is *never* changed, making + // it safe and faster to check for it now before an atomic acquire. + + if self.is_inline_or_static() { + // In this case, a shallow_clone still involves copying the data. + let mut inner: Inner = mem::uninitialized(); + ptr::copy_nonoverlapping( + self, + &mut inner, + 1, + ); + inner + } else { + self.shallow_clone_sync(mut_self) + } + } + + + #[cold] + unsafe fn shallow_clone_sync(&self, mut_self: bool) -> Inner { + // The function requires `&self`, this means that `shallow_clone` + // could be called concurrently. + // + // The first step is to load the value of `arc`. This will determine + // how to proceed. The `Acquire` ordering synchronizes with the + // `compare_and_swap` that comes later in this function. The goal is + // to ensure that if `arc` is currently set to point to a `Shared`, + // that the current thread acquires the associated memory. + let arc = self.arc.load(Acquire); + let kind = arc as usize & KIND_MASK; + + if kind == KIND_ARC { + self.shallow_clone_arc(arc) + } else { + assert!(kind == KIND_VEC); + self.shallow_clone_vec(arc as usize, mut_self) + } + } + + unsafe fn shallow_clone_arc(&self, arc: *mut Shared) -> Inner { + debug_assert!(arc as usize & KIND_MASK == KIND_ARC); + + let old_size = (*arc).ref_count.fetch_add(1, Relaxed); + + if old_size == usize::MAX { + abort(); + } + + Inner { + arc: AtomicPtr::new(arc), + .. *self + } + } + + #[cold] + unsafe fn shallow_clone_vec(&self, arc: usize, mut_self: bool) -> Inner { + // If the buffer is still tracked in a `Vec<u8>`. It is time to + // promote the vec to an `Arc`. This could potentially be called + // concurrently, so some care must be taken. + + debug_assert!(arc & KIND_MASK == KIND_VEC); + + let original_capacity_repr = + (arc as usize & ORIGINAL_CAPACITY_MASK) >> ORIGINAL_CAPACITY_OFFSET; + + // The vec offset cannot be concurrently mutated, so there + // should be no danger reading it. + let off = (arc as usize) >> VEC_POS_OFFSET; + + // First, allocate a new `Shared` instance containing the + // `Vec` fields. It's important to note that `ptr`, `len`, + // and `cap` cannot be mutated without having `&mut self`. + // This means that these fields will not be concurrently + // updated and since the buffer hasn't been promoted to an + // `Arc`, those three fields still are the components of the + // vector. + let shared = Box::new(Shared { + vec: rebuild_vec(self.ptr, self.len, self.cap, off), + original_capacity_repr: original_capacity_repr, + // Initialize refcount to 2. One for this reference, and one + // for the new clone that will be returned from + // `shallow_clone`. + ref_count: AtomicUsize::new(2), + }); + + let shared = Box::into_raw(shared); + + // The pointer should be aligned, so this assert should + // always succeed. + debug_assert!(0 == (shared as usize & 0b11)); + + // If there are no references to self in other threads, + // expensive atomic operations can be avoided. + if mut_self { + self.arc.store(shared, Relaxed); + return Inner { + arc: AtomicPtr::new(shared), + .. *self + }; + } + + // Try compare & swapping the pointer into the `arc` field. + // `Release` is used synchronize with other threads that + // will load the `arc` field. + // + // If the `compare_and_swap` fails, then the thread lost the + // race to promote the buffer to shared. The `Acquire` + // ordering will synchronize with the `compare_and_swap` + // that happened in the other thread and the `Shared` + // pointed to by `actual` will be visible. + let actual = self.arc.compare_and_swap(arc as *mut Shared, shared, AcqRel); + + if actual as usize == arc { + // The upgrade was successful, the new handle can be + // returned. + return Inner { + arc: AtomicPtr::new(shared), + .. *self + }; + } + + // The upgrade failed, a concurrent clone happened. Release + // the allocation that was made in this thread, it will not + // be needed. + let shared = Box::from_raw(shared); + mem::forget(*shared); + + // Buffer already promoted to shared storage, so increment ref + // count. + self.shallow_clone_arc(actual) + } + + #[inline] + fn reserve(&mut self, additional: usize) { + let len = self.len(); + let rem = self.capacity() - len; + + if additional <= rem { + // The handle can already store at least `additional` more bytes, so + // there is no further work needed to be done. + return; + } + + let kind = self.kind(); + + // Always check `inline` first, because if the handle is using inline + // data storage, all of the `Inner` struct fields will be gibberish. + if kind == KIND_INLINE { + let new_cap = len + additional; + + // Promote to a vector + let mut v = Vec::with_capacity(new_cap); + v.extend_from_slice(self.as_ref()); + + self.ptr = v.as_mut_ptr(); + self.len = v.len(); + self.cap = v.capacity(); + + // Since the minimum capacity is `INLINE_CAP`, don't bother encoding + // the original capacity as INLINE_CAP + self.arc = AtomicPtr::new(KIND_VEC as *mut Shared); + + mem::forget(v); + return; + } + + if kind == KIND_VEC { + // If there's enough free space before the start of the buffer, then + // just copy the data backwards and reuse the already-allocated + // space. + // + // Otherwise, since backed by a vector, use `Vec::reserve` + unsafe { + let (off, prev) = self.uncoordinated_get_vec_pos(); + + // Only reuse space if we stand to gain at least capacity/2 + // bytes of space back + if off >= additional && off >= (self.cap / 2) { + // There's space - reuse it + // + // Just move the pointer back to the start after copying + // data back. + let base_ptr = self.ptr.offset(-(off as isize)); + ptr::copy(self.ptr, base_ptr, self.len); + self.ptr = base_ptr; + self.uncoordinated_set_vec_pos(0, prev); + + // Length stays constant, but since we moved backwards we + // can gain capacity back. + self.cap += off; + } else { + // No space - allocate more + let mut v = rebuild_vec(self.ptr, self.len, self.cap, off); + v.reserve(additional); + + // Update the info + self.ptr = v.as_mut_ptr().offset(off as isize); + self.len = v.len() - off; + self.cap = v.capacity() - off; + + // Drop the vec reference + mem::forget(v); + } + return; + } + } + + let arc = *self.arc.get_mut(); + + debug_assert!(kind == KIND_ARC); + + // Reserving involves abandoning the currently shared buffer and + // allocating a new vector with the requested capacity. + // + // Compute the new capacity + let mut new_cap = len + additional; + let original_capacity; + let original_capacity_repr; + + unsafe { + original_capacity_repr = (*arc).original_capacity_repr; + original_capacity = original_capacity_from_repr(original_capacity_repr); + + // First, try to reclaim the buffer. This is possible if the current + // handle is the only outstanding handle pointing to the buffer. + if (*arc).is_unique() { + // This is the only handle to the buffer. It can be reclaimed. + // However, before doing the work of copying data, check to make + // sure that the vector has enough capacity. + let v = &mut (*arc).vec; + + if v.capacity() >= new_cap { + // The capacity is sufficient, reclaim the buffer + let ptr = v.as_mut_ptr(); + + ptr::copy(self.ptr, ptr, len); + + self.ptr = ptr; + self.cap = v.capacity(); + + return; + } + + // The vector capacity is not sufficient. The reserve request is + // asking for more than the initial buffer capacity. Allocate more + // than requested if `new_cap` is not much bigger than the current + // capacity. + // + // There are some situations, using `reserve_exact` that the + // buffer capacity could be below `original_capacity`, so do a + // check. + new_cap = cmp::max( + cmp::max(v.capacity() << 1, new_cap), + original_capacity); + } else { + new_cap = cmp::max(new_cap, original_capacity); + } + } + + // Create a new vector to store the data + let mut v = Vec::with_capacity(new_cap); + + // Copy the bytes + v.extend_from_slice(self.as_ref()); + + // Release the shared handle. This must be done *after* the bytes are + // copied. + release_shared(arc); + + // Update self + self.ptr = v.as_mut_ptr(); + self.len = v.len(); + self.cap = v.capacity(); + + let arc = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC; + + self.arc = AtomicPtr::new(arc as *mut Shared); + + // Forget the vector handle + mem::forget(v); + } + + /// Returns true if the buffer is stored inline + #[inline] + fn is_inline(&self) -> bool { + self.kind() == KIND_INLINE + } + + #[inline] + fn is_inline_or_static(&self) -> bool { + // The value returned by `kind` isn't itself safe, but the value could + // inform what operations to take, and unsafely do something without + // synchronization. + // + // KIND_INLINE and KIND_STATIC will *never* change, so branches on that + // information is safe. + let kind = self.kind(); + kind == KIND_INLINE || kind == KIND_STATIC + } + + /// Used for `debug_assert` statements. &mut is used to guarantee that it is + /// safe to check VEC_KIND + #[inline] + fn is_shared(&mut self) -> bool { + match self.kind() { + KIND_VEC => false, + _ => true, + } + } + + /// Used for `debug_assert` statements + #[inline] + fn is_static(&mut self) -> bool { + match self.kind() { + KIND_STATIC => true, + _ => false, + } + } + + #[inline] + fn kind(&self) -> usize { + // This function is going to probably raise some eyebrows. The function + // returns true if the buffer is stored inline. This is done by checking + // the least significant bit in the `arc` field. + // + // Now, you may notice that `arc` is an `AtomicPtr` and this is + // accessing it as a normal field without performing an atomic load... + // + // Again, the function only cares about the least significant bit, and + // this bit is set when `Inner` is created and never changed after that. + // All platforms have atomic "word" operations and won't randomly flip + // bits, so even without any explicit atomic operations, reading the + // flag will be correct. + // + // This is undefind behavior due to a data race, but experimental + // evidence shows that it works in practice (discussion: + // https://internals.rust-lang.org/t/bit-wise-reasoning-for-atomic-accesses/8853). + // + // This function is very critical performance wise as it is called for + // every operation. Performing an atomic load would mess with the + // compiler's ability to optimize. Simple benchmarks show up to a 10% + // slowdown using a `Relaxed` atomic load on x86. + + #[cfg(target_endian = "little")] + #[inline] + fn imp(arc: &AtomicPtr<Shared>) -> usize { + unsafe { + let p: *const u8 = mem::transmute(arc); + (*p as usize) & KIND_MASK + } + } + + #[cfg(target_endian = "big")] + #[inline] + fn imp(arc: &AtomicPtr<Shared>) -> usize { + unsafe { + let p: *const usize = mem::transmute(arc); + *p & KIND_MASK + } + } + + imp(&self.arc) + } + + #[inline] + fn uncoordinated_get_vec_pos(&mut self) -> (usize, usize) { + // Similar to above, this is a pretty crazed function. This should only + // be called when in the KIND_VEC mode. This + the &mut self argument + // guarantees that there is no possibility of concurrent calls to this + // function. + let prev = unsafe { + let p: &AtomicPtr<Shared> = &self.arc; + let p: *const usize = mem::transmute(p); + *p + }; + + (prev >> VEC_POS_OFFSET, prev) + } + + #[inline] + fn uncoordinated_set_vec_pos(&mut self, pos: usize, prev: usize) { + // Once more... crazy + debug_assert!(pos <= MAX_VEC_POS); + + unsafe { + let p: &mut AtomicPtr<Shared> = &mut self.arc; + let p: &mut usize = mem::transmute(p); + *p = (pos << VEC_POS_OFFSET) | (prev & NOT_VEC_POS_MASK); + } + } +} + +fn rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8> { + unsafe { + let ptr = ptr.offset(-(off as isize)); + len += off; + cap += off; + + Vec::from_raw_parts(ptr, len, cap) + } +} + +impl Drop for Inner { + fn drop(&mut self) { + let kind = self.kind(); + + if kind == KIND_VEC { + let (off, _) = self.uncoordinated_get_vec_pos(); + + // Vector storage, free the vector + let _ = rebuild_vec(self.ptr, self.len, self.cap, off); + } else if kind == KIND_ARC { + release_shared(*self.arc.get_mut()); + } + } +} + +fn release_shared(ptr: *mut Shared) { + // `Shared` storage... follow the drop steps from Arc. + unsafe { + if (*ptr).ref_count.fetch_sub(1, Release) != 1 { + return; + } + + // This fence is needed to prevent reordering of use of the data and + // deletion of the data. Because it is marked `Release`, the decreasing + // of the reference count synchronizes with this `Acquire` fence. This + // means that use of the data happens before decreasing the reference + // count, which happens before this fence, which happens before the + // deletion of the data. + // + // As explained in the [Boost documentation][1], + // + // > It is important to enforce any possible access to the object in one + // > thread (through an existing reference) to *happen before* deleting + // > the object in a different thread. This is achieved by a "release" + // > operation after dropping a reference (any access to the object + // > through this reference must obviously happened before), and an + // > "acquire" operation before deleting the object. + // + // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html) + atomic::fence(Acquire); + + // Drop the data + Box::from_raw(ptr); + } +} + +impl Shared { + fn is_unique(&self) -> bool { + // The goal is to check if the current handle is the only handle + // that currently has access to the buffer. This is done by + // checking if the `ref_count` is currently 1. + // + // The `Acquire` ordering synchronizes with the `Release` as + // part of the `fetch_sub` in `release_shared`. The `fetch_sub` + // operation guarantees that any mutations done in other threads + // are ordered before the `ref_count` is decremented. As such, + // this `Acquire` will guarantee that those mutations are + // visible to the current thread. + self.ref_count.load(Acquire) == 1 + } +} + +fn original_capacity_to_repr(cap: usize) -> usize { + let width = PTR_WIDTH - ((cap >> MIN_ORIGINAL_CAPACITY_WIDTH).leading_zeros() as usize); + cmp::min(width, MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH) +} + +fn original_capacity_from_repr(repr: usize) -> usize { + if repr == 0 { + return 0; + } + + 1 << (repr + (MIN_ORIGINAL_CAPACITY_WIDTH - 1)) +} + +#[test] +fn test_original_capacity_to_repr() { + assert_eq!(original_capacity_to_repr(0), 0); + + let max_width = 32; + + for width in 1..(max_width + 1) { + let cap = 1 << width - 1; + + let expected = if width < MIN_ORIGINAL_CAPACITY_WIDTH { + 0 + } else if width < MAX_ORIGINAL_CAPACITY_WIDTH { + width - MIN_ORIGINAL_CAPACITY_WIDTH + } else { + MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH + }; + + assert_eq!(original_capacity_to_repr(cap), expected); + + if width > 1 { + assert_eq!(original_capacity_to_repr(cap + 1), expected); + } + + // MIN_ORIGINAL_CAPACITY_WIDTH must be bigger than 7 to pass tests below + if width == MIN_ORIGINAL_CAPACITY_WIDTH + 1 { + assert_eq!(original_capacity_to_repr(cap - 24), expected - 1); + assert_eq!(original_capacity_to_repr(cap + 76), expected); + } else if width == MIN_ORIGINAL_CAPACITY_WIDTH + 2 { + assert_eq!(original_capacity_to_repr(cap - 1), expected - 1); + assert_eq!(original_capacity_to_repr(cap - 48), expected - 1); + } + } +} + +#[test] +fn test_original_capacity_from_repr() { + assert_eq!(0, original_capacity_from_repr(0)); + + let min_cap = 1 << MIN_ORIGINAL_CAPACITY_WIDTH; + + assert_eq!(min_cap, original_capacity_from_repr(1)); + assert_eq!(min_cap * 2, original_capacity_from_repr(2)); + assert_eq!(min_cap * 4, original_capacity_from_repr(3)); + assert_eq!(min_cap * 8, original_capacity_from_repr(4)); + assert_eq!(min_cap * 16, original_capacity_from_repr(5)); + assert_eq!(min_cap * 32, original_capacity_from_repr(6)); + assert_eq!(min_cap * 64, original_capacity_from_repr(7)); +} + +unsafe impl Send for Inner {} +unsafe impl Sync for Inner {} + +/* + * + * ===== PartialEq / PartialOrd ===== + * + */ + +impl PartialEq<[u8]> for BytesMut { + fn eq(&self, other: &[u8]) -> bool { + &**self == other + } +} + +impl PartialOrd<[u8]> for BytesMut { + fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> { + (**self).partial_cmp(other) + } +} + +impl PartialEq<BytesMut> for [u8] { + fn eq(&self, other: &BytesMut) -> bool { + *other == *self + } +} + +impl PartialOrd<BytesMut> for [u8] { + fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { + other.partial_cmp(self) + } +} + +impl PartialEq<str> for BytesMut { + fn eq(&self, other: &str) -> bool { + &**self == other.as_bytes() + } +} + +impl PartialOrd<str> for BytesMut { + fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> { + (**self).partial_cmp(other.as_bytes()) + } +} + +impl PartialEq<BytesMut> for str { + fn eq(&self, other: &BytesMut) -> bool { + *other == *self + } +} + +impl PartialOrd<BytesMut> for str { + fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { + other.partial_cmp(self) + } +} + +impl PartialEq<Vec<u8>> for BytesMut { + fn eq(&self, other: &Vec<u8>) -> bool { + *self == &other[..] + } +} + +impl PartialOrd<Vec<u8>> for BytesMut { + fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> { + (**self).partial_cmp(&other[..]) + } +} + +impl PartialEq<BytesMut> for Vec<u8> { + fn eq(&self, other: &BytesMut) -> bool { + *other == *self + } +} + +impl PartialOrd<BytesMut> for Vec<u8> { + fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { + other.partial_cmp(self) + } +} + +impl PartialEq<String> for BytesMut { + fn eq(&self, other: &String) -> bool { + *self == &other[..] + } +} + +impl PartialOrd<String> for BytesMut { + fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> { + (**self).partial_cmp(other.as_bytes()) + } +} + +impl PartialEq<BytesMut> for String { + fn eq(&self, other: &BytesMut) -> bool { + *other == *self + } +} + +impl PartialOrd<BytesMut> for String { + fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { + other.partial_cmp(self) + } +} + +impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut + where BytesMut: PartialEq<T> +{ + fn eq(&self, other: &&'a T) -> bool { + *self == **other + } +} + +impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut + where BytesMut: PartialOrd<T> +{ + fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> { + self.partial_cmp(*other) + } +} + +impl<'a> PartialEq<BytesMut> for &'a [u8] { + fn eq(&self, other: &BytesMut) -> bool { + *other == *self + } +} + +impl<'a> PartialOrd<BytesMut> for &'a [u8] { + fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { + other.partial_cmp(self) + } +} + +impl<'a> PartialEq<BytesMut> for &'a str { + fn eq(&self, other: &BytesMut) -> bool { + *other == *self + } +} + +impl<'a> PartialOrd<BytesMut> for &'a str { + fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { + other.partial_cmp(self) + } +} + +impl PartialEq<[u8]> for Bytes { + fn eq(&self, other: &[u8]) -> bool { + self.inner.as_ref() == other + } +} + +impl PartialOrd<[u8]> for Bytes { + fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> { + self.inner.as_ref().partial_cmp(other) + } +} + +impl PartialEq<Bytes> for [u8] { + fn eq(&self, other: &Bytes) -> bool { + *other == *self + } +} + +impl PartialOrd<Bytes> for [u8] { + fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { + other.partial_cmp(self) + } +} + +impl PartialEq<str> for Bytes { + fn eq(&self, other: &str) -> bool { + self.inner.as_ref() == other.as_bytes() + } +} + +impl PartialOrd<str> for Bytes { + fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> { + self.inner.as_ref().partial_cmp(other.as_bytes()) + } +} + +impl PartialEq<Bytes> for str { + fn eq(&self, other: &Bytes) -> bool { + *other == *self + } +} + +impl PartialOrd<Bytes> for str { + fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { + other.partial_cmp(self) + } +} + +impl PartialEq<Vec<u8>> for Bytes { + fn eq(&self, other: &Vec<u8>) -> bool { + *self == &other[..] + } +} + +impl PartialOrd<Vec<u8>> for Bytes { + fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> { + self.inner.as_ref().partial_cmp(&other[..]) + } +} + +impl PartialEq<Bytes> for Vec<u8> { + fn eq(&self, other: &Bytes) -> bool { + *other == *self + } +} + +impl PartialOrd<Bytes> for Vec<u8> { + fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { + other.partial_cmp(self) + } +} + +impl PartialEq<String> for Bytes { + fn eq(&self, other: &String) -> bool { + *self == &other[..] + } +} + +impl PartialOrd<String> for Bytes { + fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> { + self.inner.as_ref().partial_cmp(other.as_bytes()) + } +} + +impl PartialEq<Bytes> for String { + fn eq(&self, other: &Bytes) -> bool { + *other == *self + } +} + +impl PartialOrd<Bytes> for String { + fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { + other.partial_cmp(self) + } +} + +impl<'a> PartialEq<Bytes> for &'a [u8] { + fn eq(&self, other: &Bytes) -> bool { + *other == *self + } +} + +impl<'a> PartialOrd<Bytes> for &'a [u8] { + fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { + other.partial_cmp(self) + } +} + +impl<'a> PartialEq<Bytes> for &'a str { + fn eq(&self, other: &Bytes) -> bool { + *other == *self + } +} + +impl<'a> PartialOrd<Bytes> for &'a str { + fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> { + other.partial_cmp(self) + } +} + +impl<'a, T: ?Sized> PartialEq<&'a T> for Bytes + where Bytes: PartialEq<T> +{ + fn eq(&self, other: &&'a T) -> bool { + *self == **other + } +} + +impl<'a, T: ?Sized> PartialOrd<&'a T> for Bytes + where Bytes: PartialOrd<T> +{ + fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> { + self.partial_cmp(&**other) + } +} + +impl PartialEq<BytesMut> for Bytes +{ + fn eq(&self, other: &BytesMut) -> bool { + &other[..] == &self[..] + } +} + +impl PartialEq<Bytes> for BytesMut +{ + fn eq(&self, other: &Bytes) -> bool { + &other[..] == &self[..] + } +} + +// While there is `std::process:abort`, it's only available in Rust 1.17, and +// our minimum supported version is currently 1.15. So, this acts as an abort +// by triggering a double panic, which always aborts in Rust. +struct Abort; + +impl Drop for Abort { + fn drop(&mut self) { + panic!(); + } +} + +#[inline(never)] +#[cold] +fn abort() { + let _a = Abort; + panic!(); +} |