summaryrefslogtreecommitdiffstats
path: root/third_party/rust/mapped_hyph/src/builder.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
commit43a97878ce14b72f0981164f87f2e35e14151312 (patch)
tree620249daf56c0258faa40cbdcf9cfba06de2a846 /third_party/rust/mapped_hyph/src/builder.rs
parentInitial commit. (diff)
downloadfirefox-43a97878ce14b72f0981164f87f2e35e14151312.tar.xz
firefox-43a97878ce14b72f0981164f87f2e35e14151312.zip
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/mapped_hyph/src/builder.rs')
-rw-r--r--third_party/rust/mapped_hyph/src/builder.rs509
1 files changed, 509 insertions, 0 deletions
diff --git a/third_party/rust/mapped_hyph/src/builder.rs b/third_party/rust/mapped_hyph/src/builder.rs
new file mode 100644
index 0000000000..e19a0087fd
--- /dev/null
+++ b/third_party/rust/mapped_hyph/src/builder.rs
@@ -0,0 +1,509 @@
+// Copyright 2019-2020 Mozilla Foundation. See the COPYRIGHT
+// file at the top-level directory of this distribution.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+/// Functions to compile human-readable patterns into a mapped_hyph
+/// flattened representation of the hyphenation state machine.
+
+use std::io::{Read,BufRead,BufReader,Write,Error,ErrorKind};
+use std::collections::HashMap;
+use std::convert::TryInto;
+use std::hash::{Hash,Hasher};
+
+// Wrap a HashMap so that we can implement the Hash trait.
+#[derive(PartialEq, Eq, Clone)]
+struct TransitionMap (HashMap<u8,i32>);
+
+impl TransitionMap {
+ fn new() -> TransitionMap {
+ TransitionMap(HashMap::<u8,i32>::new())
+ }
+}
+
+impl Hash for TransitionMap {
+ fn hash<H: Hasher>(&self, state: &mut H) {
+ // We only look at the values here; that's likely to be enough
+ // for a reasonable hash.
+ let mut transitions: Vec<&i32> = self.0.values().collect();
+ transitions.sort();
+ for t in transitions {
+ t.hash(state);
+ }
+ }
+}
+
+#[derive(PartialEq, Eq, Hash, Clone)]
+struct State {
+ match_string: Option<Vec<u8>>,
+ #[allow(dead_code)]
+ repl_string: Option<Vec<u8>>,
+ #[allow(dead_code)]
+ repl_index: i32,
+ #[allow(dead_code)]
+ repl_cut: i32,
+ fallback_state: i32,
+ transitions: TransitionMap,
+}
+
+impl State {
+ fn new() -> State {
+ State {
+ match_string: None,
+ repl_string: None,
+ repl_index: -1,
+ repl_cut: -1,
+ fallback_state: -1,
+ transitions: TransitionMap::new(),
+ }
+ }
+}
+
+/// Structures returned by the read_dic_file() function;
+/// array of these can then be passed to write_hyf_file()
+/// to create the flattened output.
+struct LevelBuilder {
+ states: Vec<State>,
+ str_to_state: HashMap<Vec<u8>,i32>,
+ encoding: Option<String>,
+ nohyphen: Option<String>,
+ lh_min: u8,
+ rh_min: u8,
+ clh_min: u8,
+ crh_min: u8,
+}
+
+impl LevelBuilder {
+ fn new() -> LevelBuilder {
+ let mut result = LevelBuilder {
+ states: Vec::<State>::new(),
+ str_to_state: HashMap::<Vec<u8>,i32>::new(),
+ encoding: None,
+ nohyphen: None,
+ lh_min: 0,
+ rh_min: 0,
+ clh_min: 0,
+ crh_min: 0,
+ };
+ // Initialize the builder with an empty start state.
+ result.str_to_state.insert(vec![], 0);
+ result.states.push(State::new());
+ result
+ }
+
+ fn find_state_number_for(&mut self, text: &[u8]) -> i32 {
+ let count = self.states.len() as i32;
+ let index = *self.str_to_state.entry(text.to_vec()).or_insert(count);
+ if index == count {
+ self.states.push(State::new());
+ }
+ index
+ }
+
+ fn add_pattern(&mut self, pattern: &str) {
+ let mut bytes = pattern.as_bytes();
+ let mut text = Vec::<u8>::with_capacity(bytes.len());
+ let mut digits = Vec::<u8>::with_capacity(bytes.len() + 1);
+ let mut repl_str = None;
+ let mut repl_index = 0;
+ let mut repl_cut = 0;
+
+ // Check for replacement rule (non-standard hyphenation spelling change).
+ if let Some(slash) = bytes.iter().position(|x| *x == b'/') {
+ let parts = bytes.split_at(slash);
+ bytes = parts.0;
+ let mut it = parts.1[1 ..].split(|x| *x == b',');
+ if let Some(repl) = it.next() {
+ repl_str = Some(repl.to_vec());
+ }
+ if let Some(num) = it.next() {
+ repl_index = std::str::from_utf8(num).unwrap().parse::<i32>().unwrap() - 1;
+ }
+ if let Some(num) = it.next() {
+ repl_cut = std::str::from_utf8(num).unwrap().parse::<i32>().unwrap();
+ }
+ }
+
+ // Separate the input pattern into parallel arrays of text (bytes) and digits.
+ let mut got_digit = false;
+ for byte in bytes {
+ if *byte <= b'9' && *byte >= b'0' {
+ if got_digit {
+ warn!("invalid pattern \"{}\": consecutive digits", pattern);
+ return;
+ }
+ digits.push(*byte);
+ got_digit = true;
+ } else {
+ text.push(*byte);
+ if got_digit {
+ got_digit = false;
+ } else {
+ digits.push(b'0');
+ }
+ }
+ }
+ if !got_digit {
+ digits.push(b'0');
+ }
+
+ if repl_str.is_none() {
+ // Optimize away leading zeroes from the digits array.
+ while !digits.is_empty() && digits[0] == b'0' {
+ digits.remove(0);
+ }
+ } else {
+ // Convert repl_index and repl_cut from Unicode char to byte indexing.
+ let start = if text[0] == b'.' { 1 } else { 0 };
+ if start == 1 {
+ if digits[0] != b'0' {
+ warn!("invalid pattern \"{}\": unexpected digit before start of word", pattern);
+ return;
+ }
+ digits.remove(0);
+ }
+ let word = std::str::from_utf8(&text[start..]).unwrap();
+ let mut chars: Vec<_> = word.char_indices().collect();
+ chars.push((word.len(), '.'));
+ repl_cut = chars[(repl_index + repl_cut) as usize].0 as i32 - chars[repl_index as usize].0 as i32;
+ repl_index = chars[repl_index as usize].0 as i32;
+ }
+
+ // Create the new state, or add pattern into an existing state
+ // (which should not already have a match_string).
+ let mut state_num = self.find_state_number_for(&text);
+ let mut state = &mut self.states[state_num as usize];
+ if state.match_string.is_some() {
+ warn!("duplicate pattern \"{}\" discarded", pattern);
+ return;
+ }
+ if !digits.is_empty() {
+ state.match_string = Some(digits);
+ }
+ if repl_str.is_some() {
+ state.repl_string = repl_str;
+ state.repl_index = repl_index;
+ state.repl_cut = repl_cut;
+ }
+
+ // Set up prefix transitions, inserting additional states as needed.
+ while !text.is_empty() {
+ let last_state = state_num;
+ let ch = *text.last().unwrap();
+ text.truncate(text.len() - 1);
+ state_num = self.find_state_number_for(&text);
+ if let Some(exists) = self.states[state_num as usize].transitions.0.insert(ch, last_state) {
+ assert_eq!(exists, last_state, "overwriting existing transition at pattern \"{}\"", pattern);
+ break;
+ }
+ }
+ }
+
+ fn merge_duplicate_states(&mut self) {
+ // We loop here because when we eliminate a duplicate, and update the transitons
+ // that referenced it, we may thereby create new duplicates that another pass
+ // will find and compress further.
+ loop {
+ let orig_len = self.states.len();
+ // Used to map State records to the (first) index at which they occur.
+ let mut state_to_index = HashMap::<&State,i32>::new();
+ // Mapping of old->new state indexes, and whether each old state is
+ // a duplicate that should be dropped.
+ let mut mappings = Vec::<(i32,bool)>::with_capacity(orig_len);
+ let mut next_new_index: i32 = 0;
+ for index in 0 .. self.states.len() {
+ // Find existing index for this state, or allocate the next new index to it.
+ let new_index = *state_to_index.entry(&self.states[index]).or_insert(next_new_index);
+ // Record the mapping, and whether the state was a duplicate.
+ mappings.push((new_index, new_index != next_new_index));
+ // If we used next_new_index for this state, increment it.
+ if new_index == next_new_index {
+ next_new_index += 1;
+ }
+ }
+ // If we didn't find any duplicates, next_new_index will have kept pace with
+ // index, so we know we're finished.
+ if next_new_index as usize == self.states.len() {
+ break;
+ }
+ // Iterate over all the states, either deleting them or updating indexes
+ // according to the mapping we created; then repeat the search.
+ for index in (0 .. self.states.len()).rev() {
+ if mappings[index].1 {
+ self.states.remove(index);
+ } else {
+ let state = &mut self.states[index];
+ if state.fallback_state != -1 {
+ state.fallback_state = mappings[state.fallback_state as usize].0;
+ }
+ for t in state.transitions.0.iter_mut() {
+ *t.1 = mappings[*t.1 as usize].0;
+ }
+ }
+ }
+ }
+ }
+
+ fn flatten(&self) -> Vec<u8> {
+ // Calculate total space needed for state data, and build the state_to_offset table.
+ let mut state_data_size = 0;
+ let mut state_to_offset = Vec::<usize>::with_capacity(self.states.len());
+ for state in &self.states {
+ state_to_offset.push(state_data_size);
+ state_data_size += if state.repl_string.is_some() { 12 } else { 8 };
+ state_data_size += state.transitions.0.len() * 4;
+ }
+
+ // Helper to map a state index to its offset in the final data block.
+ let get_state_offset_for = |state_index: i32| -> u32 {
+ if state_index < 0 {
+ return super::INVALID_STATE_OFFSET;
+ }
+ state_to_offset[state_index as usize] as u32
+ };
+
+ // Helper to map a byte string to its offset in the final data block, and
+ // store the bytes into string_data unless using an already-existing string.
+ let mut string_to_offset = HashMap::<Vec<u8>,usize>::new();
+ let mut string_data = Vec::<u8>::new();
+ let mut get_string_offset_for = |bytes: &Option<Vec<u8>>| -> u16 {
+ if bytes.is_none() {
+ return super::INVALID_STRING_OFFSET;
+ }
+ assert!(bytes.as_ref().unwrap().len() < 256);
+ let new_offset = string_data.len();
+ let offset = *string_to_offset.entry(bytes.as_ref().unwrap().clone()).or_insert(new_offset);
+ if offset == new_offset {
+ string_data.push(bytes.as_ref().unwrap().len() as u8);
+ string_data.extend_from_slice(bytes.as_ref().unwrap().as_ref());
+ }
+ offset.try_into().unwrap()
+ };
+
+ // Handle nohyphen string list if present, converting comma separators to NULs
+ // and trimming any surplus whitespace.
+ let mut nohyphen_string_offset: u16 = super::INVALID_STRING_OFFSET;
+ let mut nohyphen_count: u16 = 0;
+ if self.nohyphen.is_some() {
+ let nohyphen_strings: Vec<_> = self.nohyphen.as_ref().unwrap().split(',').map(|x| x.trim()).collect();
+ nohyphen_count = nohyphen_strings.len().try_into().unwrap();
+ nohyphen_string_offset = get_string_offset_for(&Some(nohyphen_strings.join("\0").as_bytes().to_vec()));
+ }
+
+ let mut state_data = Vec::<u8>::with_capacity(state_data_size);
+ for state in &self.states {
+ state_data.extend(&get_state_offset_for(state.fallback_state).to_le_bytes());
+ state_data.extend(&get_string_offset_for(&state.match_string).to_le_bytes());
+ state_data.push(state.transitions.0.len() as u8);
+ // Determine whether to use an extended state record, and if so add the
+ // replacement string and index fields.
+ if state.repl_string.is_none() {
+ state_data.push(0);
+ } else {
+ state_data.push(1);
+ state_data.extend(&get_string_offset_for(&state.repl_string).to_le_bytes());
+ state_data.push(state.repl_index as u8);
+ state_data.push(state.repl_cut as u8);
+ }
+ // Collect transitions into an array so we can sort them.
+ let mut transitions = vec![];
+ for (key, value) in state.transitions.0.iter() {
+ transitions.push((*key, get_state_offset_for(*value)))
+ }
+ transitions.sort();
+ for t in transitions {
+ // New state offset is stored as a 24-bit value, so we do this manually.
+ state_data.push((t.1 & 0xff) as u8);
+ state_data.push(((t.1 >> 8) & 0xff) as u8);
+ state_data.push(((t.1 >> 16) & 0xff) as u8);
+ state_data.push(t.0);
+ }
+ }
+ assert_eq!(state_data.len(), state_data_size);
+
+ // Pad string data to a 4-byte boundary
+ while string_data.len() & 3 != 0 {
+ string_data.push(0);
+ }
+
+ let total_size = super::LEVEL_HEADER_SIZE as usize + state_data_size + string_data.len();
+ let mut result = Vec::<u8>::with_capacity(total_size);
+
+ let state_data_base: u32 = super::LEVEL_HEADER_SIZE as u32;
+ let string_data_base: u32 = state_data_base + state_data_size as u32;
+
+ result.extend(&state_data_base.to_le_bytes());
+ result.extend(&string_data_base.to_le_bytes());
+ result.extend(&nohyphen_string_offset.to_le_bytes());
+ result.extend(&nohyphen_count.to_le_bytes());
+ result.push(self.lh_min);
+ result.push(self.rh_min);
+ result.push(self.clh_min);
+ result.push(self.crh_min);
+
+ result.extend(state_data.iter());
+ result.extend(string_data.iter());
+
+ assert_eq!(result.len(), total_size);
+
+ result
+ }
+}
+
+/// Read a libhyphen-style pattern file and create the corresponding state
+/// machine transitions, etc.
+/// The returned Vec can be passed to write_hyf_file() to generate a flattened
+/// representation of the state machine in mapped_hyph's binary format.
+fn read_dic_file<T: Read>(dic_file: T, compress: bool) -> Result<Vec<LevelBuilder>, &'static str> {
+ let reader = BufReader::new(dic_file);
+
+ let mut builders = Vec::<LevelBuilder>::new();
+ builders.push(LevelBuilder::new());
+ let mut builder = &mut builders[0];
+
+ for (index, line) in reader.lines().enumerate() {
+ let mut trimmed = line.unwrap().trim().to_string();
+ // Strip comments.
+ if let Some(i) = trimmed.find('%') {
+ trimmed = trimmed[..i].trim().to_string();
+ }
+ // Ignore empty lines.
+ if trimmed.is_empty() {
+ continue;
+ }
+ // Uppercase indicates keyword rather than pattern.
+ if trimmed.as_bytes()[0] >= b'A' && trimmed.as_bytes()[0] <= b'Z' {
+ // First line is encoding; we only support UTF-8.
+ if builder.encoding.is_none() {
+ if trimmed != "UTF-8" {
+ return Err("Only UTF-8 patterns are accepted!");
+ };
+ builder.encoding = Some(trimmed);
+ continue;
+ }
+ // Check for valid keyword-value pairs.
+ if trimmed.contains(' ') {
+ let parts: Vec<&str> = trimmed.split(' ').collect();
+ if parts.len() != 2 {
+ warn!("unrecognized keyword/values: {}", trimmed);
+ continue;
+ }
+ let keyword = parts[0];
+ let value = parts[1];
+ match keyword {
+ "LEFTHYPHENMIN" => builder.lh_min = value.parse::<u8>().unwrap(),
+ "RIGHTHYPHENMIN" => builder.rh_min = value.parse::<u8>().unwrap(),
+ "COMPOUNDLEFTHYPHENMIN" => builder.clh_min = value.parse::<u8>().unwrap(),
+ "COMPOUNDRIGHTHYPHENMIN" => builder.crh_min = value.parse::<u8>().unwrap(),
+ "NOHYPHEN" => builder.nohyphen = Some(trimmed),
+ _ => warn!("unknown keyword: {}", trimmed),
+ }
+ continue;
+ }
+ // Start a new hyphenation level?
+ if trimmed == "NEXTLEVEL" {
+ builders.push(LevelBuilder::new());
+ builder = builders.last_mut().unwrap();
+ continue;
+ }
+ warn!("unknown keyword: {}", trimmed);
+ continue;
+ }
+ // Patterns should always be provided in lowercase; complain if not, and discard
+ // the bad pattern.
+ if trimmed != trimmed.to_lowercase() {
+ warn!("pattern \"{}\" not lowercased at line {}", trimmed, index);
+ continue;
+ }
+ builder.add_pattern(&trimmed);
+ }
+
+ // Create default first (compound-word) level if only one level was provided.
+ // (Maybe this should be optional? Currently just copying libhyphen behavior.)
+ if builders.len() == 1 {
+ let (lh_min, rh_min, clh_min, crh_min) =
+ (builders[0].lh_min, builders[0].rh_min, builders[0].clh_min, builders[0].crh_min);
+ builders.insert(0, LevelBuilder::new());
+ builder = builders.first_mut().unwrap();
+ builder.add_pattern("1-1");
+ builder.add_pattern("1'1");
+ builder.add_pattern("1\u{2013}1"); // en-dash
+ builder.add_pattern("1\u{2019}1"); // curly apostrophe
+ builder.nohyphen = Some("',\u{2013},\u{2019},-".to_string());
+ builder.lh_min = lh_min;
+ builder.rh_min = rh_min;
+ builder.clh_min = if clh_min > 0 { clh_min } else if lh_min > 0 { lh_min } else { 3 };
+ builder.crh_min = if crh_min > 0 { crh_min } else if rh_min > 0 { rh_min } else { 3 };
+ }
+
+ // Put in fallback states in each builder.
+ for builder in &mut builders {
+ for (key, state_index) in builder.str_to_state.iter() {
+ if key.is_empty() {
+ continue;
+ }
+ let mut fallback_key = key.clone();
+ while !fallback_key.is_empty() {
+ fallback_key.remove(0);
+ if builder.str_to_state.contains_key(&fallback_key) {
+ break;
+ }
+ }
+ builder.states[*state_index as usize].fallback_state = builder.str_to_state[&fallback_key];
+ }
+ }
+
+ if compress {
+ // Merge duplicate states to reduce size.
+ for builder in &mut builders {
+ builder.merge_duplicate_states();
+ }
+ }
+
+ Ok(builders)
+}
+
+/// Write out the state machines representing a set of hyphenation rules
+/// to the given output stream.
+fn write_hyf_file<T: Write>(hyf_file: &mut T, levels: Vec<LevelBuilder>) -> std::io::Result<()> {
+ if levels.is_empty() {
+ return Err(Error::from(ErrorKind::InvalidData));
+ }
+ let mut flattened = vec![];
+ for level in levels {
+ flattened.push(level.flatten());
+ }
+ // Write file header: magic number, count of levels.
+ hyf_file.write_all(&[b'H', b'y', b'f', b'0'])?;
+ let level_count: u32 = flattened.len() as u32;
+ hyf_file.write_all(&level_count.to_le_bytes())?;
+ // Write array of offsets to each level. First level will begin immediately
+ // after the array of offsets.
+ let mut offset: u32 = super::FILE_HEADER_SIZE as u32 + 4 * level_count;
+ for flat in &flattened {
+ hyf_file.write_all(&offset.to_le_bytes())?;
+ offset += flat.len() as u32;
+ }
+ // Write the flattened data for each level.
+ for flat in &flattened {
+ hyf_file.write_all(&flat)?;
+ }
+ Ok(())
+}
+
+/// The public API to the compilation process: reads `dic_file` and writes compiled tables
+/// to `hyf_file`. The `compress` param determines whether extra processing to reduce the
+/// size of the output is performed.
+pub fn compile<T1: Read, T2: Write>(dic_file: T1, hyf_file: &mut T2, compress: bool) -> std::io::Result<()> {
+ match read_dic_file(dic_file, compress) {
+ Ok(dic) => write_hyf_file(hyf_file, dic),
+ Err(e) => {
+ warn!("parse error: {}", e);
+ return Err(Error::from(ErrorKind::InvalidData))
+ }
+ }
+}