diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
commit | 43a97878ce14b72f0981164f87f2e35e14151312 (patch) | |
tree | 620249daf56c0258faa40cbdcf9cfba06de2a846 /third_party/rust/minimal-lexical/src/bellerophon.rs | |
parent | Initial commit. (diff) | |
download | firefox-43a97878ce14b72f0981164f87f2e35e14151312.tar.xz firefox-43a97878ce14b72f0981164f87f2e35e14151312.zip |
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/minimal-lexical/src/bellerophon.rs')
-rw-r--r-- | third_party/rust/minimal-lexical/src/bellerophon.rs | 391 |
1 files changed, 391 insertions, 0 deletions
diff --git a/third_party/rust/minimal-lexical/src/bellerophon.rs b/third_party/rust/minimal-lexical/src/bellerophon.rs new file mode 100644 index 0000000000..86a2023d09 --- /dev/null +++ b/third_party/rust/minimal-lexical/src/bellerophon.rs @@ -0,0 +1,391 @@ +//! An implementation of Clinger's Bellerophon algorithm. +//! +//! This is a moderate path algorithm that uses an extended-precision +//! float, represented in 80 bits, by calculating the bits of slop +//! and determining if those bits could prevent unambiguous rounding. +//! +//! This algorithm requires less static storage than the Lemire algorithm, +//! and has decent performance, and is therefore used when non-decimal, +//! non-power-of-two strings need to be parsed. Clinger's algorithm +//! is described in depth in "How to Read Floating Point Numbers Accurately.", +//! available online [here](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.4152&rep=rep1&type=pdf). +//! +//! This implementation is loosely based off the Golang implementation, +//! found [here](https://github.com/golang/go/blob/b10849fbb97a2244c086991b4623ae9f32c212d0/src/strconv/extfloat.go). +//! This code is therefore subject to a 3-clause BSD license. + +#![cfg(feature = "compact")] +#![doc(hidden)] + +use crate::extended_float::ExtendedFloat; +use crate::mask::{lower_n_halfway, lower_n_mask}; +use crate::num::Float; +use crate::number::Number; +use crate::rounding::{round, round_nearest_tie_even}; +use crate::table::BASE10_POWERS; + +// ALGORITHM +// --------- + +/// Core implementation of the Bellerophon algorithm. +/// +/// Create an extended-precision float, scale it to the proper radix power, +/// calculate the bits of slop, and return the representation. The value +/// will always be guaranteed to be within 1 bit, rounded-down, of the real +/// value. If a negative exponent is returned, this represents we were +/// unable to unambiguously round the significant digits. +/// +/// This has been modified to return a biased, rather than unbiased exponent. +pub fn bellerophon<F: Float>(num: &Number) -> ExtendedFloat { + let fp_zero = ExtendedFloat { + mant: 0, + exp: 0, + }; + let fp_inf = ExtendedFloat { + mant: 0, + exp: F::INFINITE_POWER, + }; + + // Early short-circuit, in case of literal 0 or infinity. + // This allows us to avoid narrow casts causing numeric overflow, + // and is a quick check for any radix. + if num.mantissa == 0 || num.exponent <= -0x1000 { + return fp_zero; + } else if num.exponent >= 0x1000 { + return fp_inf; + } + + // Calculate our indexes for our extended-precision multiplication. + // This narrowing cast is safe, since exponent must be in a valid range. + let exponent = num.exponent as i32 + BASE10_POWERS.bias; + let small_index = exponent % BASE10_POWERS.step; + let large_index = exponent / BASE10_POWERS.step; + + if exponent < 0 { + // Guaranteed underflow (assign 0). + return fp_zero; + } + if large_index as usize >= BASE10_POWERS.large.len() { + // Overflow (assign infinity) + return fp_inf; + } + + // Within the valid exponent range, multiply by the large and small + // exponents and return the resulting value. + + // Track errors to as a factor of unit in last-precision. + let mut errors: u32 = 0; + if num.many_digits { + errors += error_halfscale(); + } + + // Multiply by the small power. + // Check if we can directly multiply by an integer, if not, + // use extended-precision multiplication. + let mut fp = ExtendedFloat { + mant: num.mantissa, + exp: 0, + }; + match fp.mant.overflowing_mul(BASE10_POWERS.get_small_int(small_index as usize)) { + // Overflow, multiplication unsuccessful, go slow path. + (_, true) => { + normalize(&mut fp); + fp = mul(&fp, &BASE10_POWERS.get_small(small_index as usize)); + errors += error_halfscale(); + }, + // No overflow, multiplication successful. + (mant, false) => { + fp.mant = mant; + normalize(&mut fp); + }, + } + + // Multiply by the large power. + fp = mul(&fp, &BASE10_POWERS.get_large(large_index as usize)); + if errors > 0 { + errors += 1; + } + errors += error_halfscale(); + + // Normalize the floating point (and the errors). + let shift = normalize(&mut fp); + errors <<= shift; + fp.exp += F::EXPONENT_BIAS; + + // Check for literal overflow, even with halfway cases. + if -fp.exp + 1 > 65 { + return fp_zero; + } + + // Too many errors accumulated, return an error. + if !error_is_accurate::<F>(errors, &fp) { + // Bias the exponent so we know it's invalid. + fp.exp += F::INVALID_FP; + return fp; + } + + // Check if we have a literal 0 or overflow here. + // If we have an exponent of -63, we can still have a valid shift, + // giving a case where we have too many errors and need to round-up. + if -fp.exp + 1 == 65 { + // Have more than 64 bits below the minimum exponent, must be 0. + return fp_zero; + } + + round::<F, _>(&mut fp, |f, s| { + round_nearest_tie_even(f, s, |is_odd, is_halfway, is_above| { + is_above || (is_odd && is_halfway) + }); + }); + fp +} + +// ERRORS +// ------ + +// Calculate if the errors in calculating the extended-precision float. +// +// Specifically, we want to know if we are close to a halfway representation, +// or halfway between `b` and `b+1`, or `b+h`. The halfway representation +// has the form: +// SEEEEEEEHMMMMMMMMMMMMMMMMMMMMMMM100... +// where: +// S = Sign Bit +// E = Exponent Bits +// H = Hidden Bit +// M = Mantissa Bits +// +// The halfway representation has a bit set 1-after the mantissa digits, +// and no bits set immediately afterward, making it impossible to +// round between `b` and `b+1` with this representation. + +/// Get the full error scale. +#[inline(always)] +const fn error_scale() -> u32 { + 8 +} + +/// Get the half error scale. +#[inline(always)] +const fn error_halfscale() -> u32 { + error_scale() / 2 +} + +/// Determine if the number of errors is tolerable for float precision. +fn error_is_accurate<F: Float>(errors: u32, fp: &ExtendedFloat) -> bool { + // Check we can't have a literal 0 denormal float. + debug_assert!(fp.exp >= -64); + + // Determine if extended-precision float is a good approximation. + // If the error has affected too many units, the float will be + // inaccurate, or if the representation is too close to halfway + // that any operations could affect this halfway representation. + // See the documentation for dtoa for more information. + + // This is always a valid u32, since `fp.exp >= -64` + // will always be positive and the significand size is {23, 52}. + let mantissa_shift = 64 - F::MANTISSA_SIZE - 1; + + // The unbiased exponent checks is `unbiased_exp <= F::MANTISSA_SIZE + // - F::EXPONENT_BIAS -64 + 1`, or `biased_exp <= F::MANTISSA_SIZE - 63`, + // or `biased_exp <= mantissa_shift`. + let extrabits = match fp.exp <= -mantissa_shift { + // Denormal, since shifting to the hidden bit still has a negative exponent. + // The unbiased check calculation for bits is `1 - F::EXPONENT_BIAS - unbiased_exp`, + // or `1 - biased_exp`. + true => 1 - fp.exp, + false => 64 - F::MANTISSA_SIZE - 1, + }; + + // Our logic is as follows: we want to determine if the actual + // mantissa and the errors during calculation differ significantly + // from the rounding point. The rounding point for round-nearest + // is the halfway point, IE, this when the truncated bits start + // with b1000..., while the rounding point for the round-toward + // is when the truncated bits are equal to 0. + // To do so, we can check whether the rounding point +/- the error + // are >/< the actual lower n bits. + // + // For whether we need to use signed or unsigned types for this + // analysis, see this example, using u8 rather than u64 to simplify + // things. + // + // # Comparisons + // cmp1 = (halfway - errors) < extra + // cmp1 = extra < (halfway + errors) + // + // # Large Extrabits, Low Errors + // + // extrabits = 8 + // halfway = 0b10000000 + // extra = 0b10000010 + // errors = 0b00000100 + // halfway - errors = 0b01111100 + // halfway + errors = 0b10000100 + // + // Unsigned: + // halfway - errors = 124 + // halfway + errors = 132 + // extra = 130 + // cmp1 = true + // cmp2 = true + // Signed: + // halfway - errors = 124 + // halfway + errors = -124 + // extra = -126 + // cmp1 = false + // cmp2 = true + // + // # Conclusion + // + // Since errors will always be small, and since we want to detect + // if the representation is accurate, we need to use an **unsigned** + // type for comparisons. + let maskbits = extrabits as u64; + let errors = errors as u64; + + // Round-to-nearest, need to use the halfway point. + if extrabits > 64 { + // Underflow, we have a shift larger than the mantissa. + // Representation is valid **only** if the value is close enough + // overflow to the next bit within errors. If it overflows, + // the representation is **not** valid. + !fp.mant.overflowing_add(errors).1 + } else { + let mask = lower_n_mask(maskbits); + let extra = fp.mant & mask; + + // Round-to-nearest, need to check if we're close to halfway. + // IE, b10100 | 100000, where `|` signifies the truncation point. + let halfway = lower_n_halfway(maskbits); + let cmp1 = halfway.wrapping_sub(errors) < extra; + let cmp2 = extra < halfway.wrapping_add(errors); + + // If both comparisons are true, we have significant rounding error, + // and the value cannot be exactly represented. Otherwise, the + // representation is valid. + !(cmp1 && cmp2) + } +} + +// MATH +// ---- + +/// Normalize float-point number. +/// +/// Shift the mantissa so the number of leading zeros is 0, or the value +/// itself is 0. +/// +/// Get the number of bytes shifted. +pub fn normalize(fp: &mut ExtendedFloat) -> i32 { + // Note: + // Using the ctlz intrinsic via leading_zeros is way faster (~10x) + // than shifting 1-bit at a time, via while loop, and also way + // faster (~2x) than an unrolled loop that checks at 32, 16, 4, + // 2, and 1 bit. + // + // Using a modulus of pow2 (which will get optimized to a bitwise + // and with 0x3F or faster) is slightly slower than an if/then, + // however, removing the if/then will likely optimize more branched + // code as it removes conditional logic. + + // Calculate the number of leading zeros, and then zero-out + // any overflowing bits, to avoid shl overflow when self.mant == 0. + if fp.mant != 0 { + let shift = fp.mant.leading_zeros() as i32; + fp.mant <<= shift; + fp.exp -= shift; + shift + } else { + 0 + } +} + +/// Multiply two normalized extended-precision floats, as if by `a*b`. +/// +/// The precision is maximal when the numbers are normalized, however, +/// decent precision will occur as long as both values have high bits +/// set. The result is not normalized. +/// +/// Algorithm: +/// 1. Non-signed multiplication of mantissas (requires 2x as many bits as input). +/// 2. Normalization of the result (not done here). +/// 3. Addition of exponents. +pub fn mul(x: &ExtendedFloat, y: &ExtendedFloat) -> ExtendedFloat { + // Logic check, values must be decently normalized prior to multiplication. + debug_assert!(x.mant >> 32 != 0); + debug_assert!(y.mant >> 32 != 0); + + // Extract high-and-low masks. + // Mask is u32::MAX for older Rustc versions. + const LOMASK: u64 = 0xffff_ffff; + let x1 = x.mant >> 32; + let x0 = x.mant & LOMASK; + let y1 = y.mant >> 32; + let y0 = y.mant & LOMASK; + + // Get our products + let x1_y0 = x1 * y0; + let x0_y1 = x0 * y1; + let x0_y0 = x0 * y0; + let x1_y1 = x1 * y1; + + let mut tmp = (x1_y0 & LOMASK) + (x0_y1 & LOMASK) + (x0_y0 >> 32); + // round up + tmp += 1 << (32 - 1); + + ExtendedFloat { + mant: x1_y1 + (x1_y0 >> 32) + (x0_y1 >> 32) + (tmp >> 32), + exp: x.exp + y.exp + 64, + } +} + +// POWERS +// ------ + +/// Precalculated powers of base N for the Bellerophon algorithm. +pub struct BellerophonPowers { + // Pre-calculated small powers. + pub small: &'static [u64], + // Pre-calculated large powers. + pub large: &'static [u64], + /// Pre-calculated small powers as 64-bit integers + pub small_int: &'static [u64], + // Step between large powers and number of small powers. + pub step: i32, + // Exponent bias for the large powers. + pub bias: i32, + /// ceil(log2(radix)) scaled as a multiplier. + pub log2: i64, + /// Bitshift for the log2 multiplier. + pub log2_shift: i32, +} + +/// Allow indexing of values without bounds checking +impl BellerophonPowers { + #[inline] + pub fn get_small(&self, index: usize) -> ExtendedFloat { + let mant = self.small[index]; + let exp = (1 - 64) + ((self.log2 * index as i64) >> self.log2_shift); + ExtendedFloat { + mant, + exp: exp as i32, + } + } + + #[inline] + pub fn get_large(&self, index: usize) -> ExtendedFloat { + let mant = self.large[index]; + let biased_e = index as i64 * self.step as i64 - self.bias as i64; + let exp = (1 - 64) + ((self.log2 * biased_e) >> self.log2_shift); + ExtendedFloat { + mant, + exp: exp as i32, + } + } + + #[inline] + pub fn get_small_int(&self, index: usize) -> u64 { + self.small_int[index] + } +} |