summaryrefslogtreecommitdiffstats
path: root/third_party/rust/naga/src/back/hlsl/writer.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
commit43a97878ce14b72f0981164f87f2e35e14151312 (patch)
tree620249daf56c0258faa40cbdcf9cfba06de2a846 /third_party/rust/naga/src/back/hlsl/writer.rs
parentInitial commit. (diff)
downloadfirefox-upstream.tar.xz
firefox-upstream.zip
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/naga/src/back/hlsl/writer.rs')
-rw-r--r--third_party/rust/naga/src/back/hlsl/writer.rs2980
1 files changed, 2980 insertions, 0 deletions
diff --git a/third_party/rust/naga/src/back/hlsl/writer.rs b/third_party/rust/naga/src/back/hlsl/writer.rs
new file mode 100644
index 0000000000..e29d2c41db
--- /dev/null
+++ b/third_party/rust/naga/src/back/hlsl/writer.rs
@@ -0,0 +1,2980 @@
+use super::{
+ help::{WrappedArrayLength, WrappedConstructor, WrappedImageQuery, WrappedStructMatrixAccess},
+ storage::StoreValue,
+ BackendResult, Error, Options,
+};
+use crate::{
+ back,
+ proc::{self, NameKey},
+ valid, Handle, Module, ScalarKind, ShaderStage, TypeInner,
+};
+use std::{fmt, mem};
+
+const LOCATION_SEMANTIC: &str = "LOC";
+const SPECIAL_CBUF_TYPE: &str = "NagaConstants";
+const SPECIAL_CBUF_VAR: &str = "_NagaConstants";
+const SPECIAL_BASE_VERTEX: &str = "base_vertex";
+const SPECIAL_BASE_INSTANCE: &str = "base_instance";
+const SPECIAL_OTHER: &str = "other";
+
+struct EpStructMember {
+ name: String,
+ ty: Handle<crate::Type>,
+ // technically, this should always be `Some`
+ binding: Option<crate::Binding>,
+ index: u32,
+}
+
+/// Structure contains information required for generating
+/// wrapped structure of all entry points arguments
+struct EntryPointBinding {
+ /// Name of the fake EP argument that contains the struct
+ /// with all the flattened input data.
+ arg_name: String,
+ /// Generated structure name
+ ty_name: String,
+ /// Members of generated structure
+ members: Vec<EpStructMember>,
+}
+
+pub(super) struct EntryPointInterface {
+ /// If `Some`, the input of an entry point is gathered in a special
+ /// struct with members sorted by binding.
+ /// The `EntryPointBinding::members` array is sorted by index,
+ /// so that we can walk it in `write_ep_arguments_initialization`.
+ input: Option<EntryPointBinding>,
+ /// If `Some`, the output of an entry point is flattened.
+ /// The `EntryPointBinding::members` array is sorted by binding,
+ /// So that we can walk it in `Statement::Return` handler.
+ output: Option<EntryPointBinding>,
+}
+
+#[derive(Clone, Eq, PartialEq, PartialOrd, Ord)]
+enum InterfaceKey {
+ Location(u32),
+ BuiltIn(crate::BuiltIn),
+ Other,
+}
+
+impl InterfaceKey {
+ const fn new(binding: Option<&crate::Binding>) -> Self {
+ match binding {
+ Some(&crate::Binding::Location { location, .. }) => Self::Location(location),
+ Some(&crate::Binding::BuiltIn(built_in)) => Self::BuiltIn(built_in),
+ None => Self::Other,
+ }
+ }
+}
+
+#[derive(Copy, Clone, PartialEq)]
+enum Io {
+ Input,
+ Output,
+}
+
+impl<'a, W: fmt::Write> super::Writer<'a, W> {
+ pub fn new(out: W, options: &'a Options) -> Self {
+ Self {
+ out,
+ names: crate::FastHashMap::default(),
+ namer: proc::Namer::default(),
+ options,
+ entry_point_io: Vec::new(),
+ named_expressions: crate::NamedExpressions::default(),
+ wrapped: super::Wrapped::default(),
+ temp_access_chain: Vec::new(),
+ }
+ }
+
+ fn reset(&mut self, module: &Module) {
+ self.names.clear();
+ self.namer
+ .reset(module, super::keywords::RESERVED, &[], &mut self.names);
+ self.entry_point_io.clear();
+ self.named_expressions.clear();
+ self.wrapped.clear();
+ }
+
+ pub fn write(
+ &mut self,
+ module: &Module,
+ module_info: &valid::ModuleInfo,
+ ) -> Result<super::ReflectionInfo, Error> {
+ self.reset(module);
+
+ // Write special constants, if needed
+ if let Some(ref bt) = self.options.special_constants_binding {
+ writeln!(self.out, "struct {} {{", SPECIAL_CBUF_TYPE)?;
+ writeln!(self.out, "{}int {};", back::INDENT, SPECIAL_BASE_VERTEX)?;
+ writeln!(self.out, "{}int {};", back::INDENT, SPECIAL_BASE_INSTANCE)?;
+ writeln!(self.out, "{}uint {};", back::INDENT, SPECIAL_OTHER)?;
+ writeln!(self.out, "}};")?;
+ write!(
+ self.out,
+ "ConstantBuffer<{}> {}: register(b{}",
+ SPECIAL_CBUF_TYPE, SPECIAL_CBUF_VAR, bt.register
+ )?;
+ if bt.space != 0 {
+ write!(self.out, ", space{}", bt.space)?;
+ }
+ writeln!(self.out, ");")?;
+ }
+
+ // Write all constants
+ // For example, input wgsl shader:
+ // ```wgsl
+ // let c_scale: f32 = 1.2;
+ // return VertexOutput(uv, vec4<f32>(c_scale * pos, 0.0, 1.0));
+ // ```
+ //
+ // Output shader:
+ // ```hlsl
+ // static const float c_scale = 1.2;
+ // const VertexOutput vertexoutput1 = { vertexinput.uv3, float4((c_scale * vertexinput.pos1), 0.0, 1.0) };
+ // ```
+ //
+ // If we remove `write_global_constant` `c_scale` will be inlined.
+ for (handle, constant) in module.constants.iter() {
+ if constant.name.is_some() {
+ self.write_global_constant(module, &constant.inner, handle)?;
+ }
+ }
+
+ // Extra newline for readability
+ writeln!(self.out)?;
+
+ // Save all entry point output types
+ let ep_results = module
+ .entry_points
+ .iter()
+ .map(|ep| (ep.stage, ep.function.result.clone()))
+ .collect::<Vec<(ShaderStage, Option<crate::FunctionResult>)>>();
+
+ self.write_all_mat_cx2_typedefs_and_functions(module)?;
+
+ // Write all structs
+ for (handle, ty) in module.types.iter() {
+ if let TypeInner::Struct { ref members, span } = ty.inner {
+ if module.types[members.last().unwrap().ty]
+ .inner
+ .is_dynamically_sized(&module.types)
+ {
+ // unsized arrays can only be in storage buffers,
+ // for which we use `ByteAddressBuffer` anyway.
+ continue;
+ }
+
+ let ep_result = ep_results.iter().find(|e| {
+ if let Some(ref result) = e.1 {
+ result.ty == handle
+ } else {
+ false
+ }
+ });
+
+ self.write_struct(
+ module,
+ handle,
+ members,
+ span,
+ ep_result.map(|r| (r.0, Io::Output)),
+ )?;
+ writeln!(self.out)?;
+ }
+ }
+
+ // Write wrapped constructor functions used in constants
+ for (_, constant) in module.constants.iter() {
+ self.write_wrapped_constructor_function_for_constant(module, constant)?;
+ }
+
+ // Write all globals
+ for (ty, _) in module.global_variables.iter() {
+ self.write_global(module, ty)?;
+ }
+
+ if !module.global_variables.is_empty() {
+ // Add extra newline for readability
+ writeln!(self.out)?;
+ }
+
+ // Write all entry points wrapped structs
+ for (index, ep) in module.entry_points.iter().enumerate() {
+ let ep_name = self.names[&NameKey::EntryPoint(index as u16)].clone();
+ let ep_io = self.write_ep_interface(module, &ep.function, ep.stage, &ep_name)?;
+ self.entry_point_io.push(ep_io);
+ }
+
+ // Write all regular functions
+ for (handle, function) in module.functions.iter() {
+ let info = &module_info[handle];
+
+ // Check if all of the globals are accessible
+ if !self.options.fake_missing_bindings {
+ if let Some((var_handle, _)) =
+ module
+ .global_variables
+ .iter()
+ .find(|&(var_handle, var)| match var.binding {
+ Some(ref binding) if !info[var_handle].is_empty() => {
+ self.options.resolve_resource_binding(binding).is_err()
+ }
+ _ => false,
+ })
+ {
+ log::info!(
+ "Skipping function {:?} (name {:?}) because global {:?} is inaccessible",
+ handle,
+ function.name,
+ var_handle
+ );
+ continue;
+ }
+ }
+
+ let ctx = back::FunctionCtx {
+ ty: back::FunctionType::Function(handle),
+ info,
+ expressions: &function.expressions,
+ named_expressions: &function.named_expressions,
+ };
+ let name = self.names[&NameKey::Function(handle)].clone();
+
+ // Write wrapped function for `Expression::ImageQuery` and `Expressions::ArrayLength`
+ // before writing all statements and expressions.
+ self.write_wrapped_functions(module, &ctx)?;
+
+ self.write_function(module, name.as_str(), function, &ctx)?;
+
+ writeln!(self.out)?;
+ }
+
+ let mut entry_point_names = Vec::with_capacity(module.entry_points.len());
+
+ // Write all entry points
+ for (index, ep) in module.entry_points.iter().enumerate() {
+ let info = module_info.get_entry_point(index);
+
+ if !self.options.fake_missing_bindings {
+ let mut ep_error = None;
+ for (var_handle, var) in module.global_variables.iter() {
+ match var.binding {
+ Some(ref binding) if !info[var_handle].is_empty() => {
+ if let Err(err) = self.options.resolve_resource_binding(binding) {
+ ep_error = Some(err);
+ break;
+ }
+ }
+ _ => {}
+ }
+ }
+ if let Some(err) = ep_error {
+ entry_point_names.push(Err(err));
+ continue;
+ }
+ }
+
+ let ctx = back::FunctionCtx {
+ ty: back::FunctionType::EntryPoint(index as u16),
+ info,
+ expressions: &ep.function.expressions,
+ named_expressions: &ep.function.named_expressions,
+ };
+
+ // Write wrapped function for `Expression::ImageQuery` and `Expressions::ArrayLength`
+ // before writing all statements and expressions.
+ self.write_wrapped_functions(module, &ctx)?;
+
+ if ep.stage == ShaderStage::Compute {
+ // HLSL is calling workgroup size "num threads"
+ let num_threads = ep.workgroup_size;
+ writeln!(
+ self.out,
+ "[numthreads({}, {}, {})]",
+ num_threads[0], num_threads[1], num_threads[2]
+ )?;
+ }
+
+ let name = self.names[&NameKey::EntryPoint(index as u16)].clone();
+ self.write_function(module, &name, &ep.function, &ctx)?;
+
+ if index < module.entry_points.len() - 1 {
+ writeln!(self.out)?;
+ }
+
+ entry_point_names.push(Ok(name));
+ }
+
+ Ok(super::ReflectionInfo { entry_point_names })
+ }
+
+ fn write_modifier(&mut self, binding: &crate::Binding) -> BackendResult {
+ match *binding {
+ crate::Binding::BuiltIn(crate::BuiltIn::Position { invariant: true }) => {
+ write!(self.out, "precise ")?;
+ }
+ crate::Binding::Location {
+ interpolation,
+ sampling,
+ ..
+ } => {
+ if let Some(interpolation) = interpolation {
+ if let Some(string) = interpolation.to_hlsl_str() {
+ write!(self.out, "{} ", string)?
+ }
+ }
+
+ if let Some(sampling) = sampling {
+ if let Some(string) = sampling.to_hlsl_str() {
+ write!(self.out, "{} ", string)?
+ }
+ }
+ }
+ _ => {}
+ }
+
+ Ok(())
+ }
+
+ //TODO: we could force fragment outputs to always go through `entry_point_io.output` path
+ // if they are struct, so that the `stage` argument here could be omitted.
+ fn write_semantic(
+ &mut self,
+ binding: &crate::Binding,
+ stage: Option<(ShaderStage, Io)>,
+ ) -> BackendResult {
+ match *binding {
+ crate::Binding::BuiltIn(builtin) => {
+ let builtin_str = builtin.to_hlsl_str()?;
+ write!(self.out, " : {}", builtin_str)?;
+ }
+ crate::Binding::Location { location, .. } => {
+ if stage == Some((crate::ShaderStage::Fragment, Io::Output)) {
+ write!(self.out, " : SV_Target{}", location)?;
+ } else {
+ write!(self.out, " : {}{}", LOCATION_SEMANTIC, location)?;
+ }
+ }
+ }
+
+ Ok(())
+ }
+
+ fn write_interface_struct(
+ &mut self,
+ module: &Module,
+ shader_stage: (ShaderStage, Io),
+ struct_name: String,
+ mut members: Vec<EpStructMember>,
+ ) -> Result<EntryPointBinding, Error> {
+ // Sort the members so that first come the user-defined varyings
+ // in ascending locations, and then built-ins. This allows VS and FS
+ // interfaces to match with regards to order.
+ members.sort_by_key(|m| InterfaceKey::new(m.binding.as_ref()));
+
+ write!(self.out, "struct {}", struct_name)?;
+ writeln!(self.out, " {{")?;
+ for m in members.iter() {
+ write!(self.out, "{}", back::INDENT)?;
+ if let Some(ref binding) = m.binding {
+ self.write_modifier(binding)?;
+ }
+ self.write_type(module, m.ty)?;
+ write!(self.out, " {}", &m.name)?;
+ if let Some(ref binding) = m.binding {
+ self.write_semantic(binding, Some(shader_stage))?;
+ }
+ writeln!(self.out, ";")?;
+ }
+ writeln!(self.out, "}};")?;
+ writeln!(self.out)?;
+
+ match shader_stage.1 {
+ Io::Input => {
+ // bring back the original order
+ members.sort_by_key(|m| m.index);
+ }
+ Io::Output => {
+ // keep it sorted by binding
+ }
+ }
+
+ Ok(EntryPointBinding {
+ arg_name: self.namer.call(struct_name.to_lowercase().as_str()),
+ ty_name: struct_name,
+ members,
+ })
+ }
+
+ /// Flatten all entry point arguments into a single struct.
+ /// This is needed since we need to re-order them: first placing user locations,
+ /// then built-ins.
+ fn write_ep_input_struct(
+ &mut self,
+ module: &Module,
+ func: &crate::Function,
+ stage: ShaderStage,
+ entry_point_name: &str,
+ ) -> Result<EntryPointBinding, Error> {
+ let struct_name = format!("{:?}Input_{}", stage, entry_point_name);
+
+ let mut fake_members = Vec::new();
+ for arg in func.arguments.iter() {
+ match module.types[arg.ty].inner {
+ TypeInner::Struct { ref members, .. } => {
+ for member in members.iter() {
+ let name = self.namer.call_or(&member.name, "member");
+ let index = fake_members.len() as u32;
+ fake_members.push(EpStructMember {
+ name,
+ ty: member.ty,
+ binding: member.binding.clone(),
+ index,
+ });
+ }
+ }
+ _ => {
+ let member_name = self.namer.call_or(&arg.name, "member");
+ let index = fake_members.len() as u32;
+ fake_members.push(EpStructMember {
+ name: member_name,
+ ty: arg.ty,
+ binding: arg.binding.clone(),
+ index,
+ });
+ }
+ }
+ }
+
+ self.write_interface_struct(module, (stage, Io::Input), struct_name, fake_members)
+ }
+
+ /// Flatten all entry point results into a single struct.
+ /// This is needed since we need to re-order them: first placing user locations,
+ /// then built-ins.
+ fn write_ep_output_struct(
+ &mut self,
+ module: &Module,
+ result: &crate::FunctionResult,
+ stage: ShaderStage,
+ entry_point_name: &str,
+ ) -> Result<EntryPointBinding, Error> {
+ let struct_name = format!("{:?}Output_{}", stage, entry_point_name);
+
+ let mut fake_members = Vec::new();
+ let empty = [];
+ let members = match module.types[result.ty].inner {
+ TypeInner::Struct { ref members, .. } => members,
+ ref other => {
+ log::error!("Unexpected {:?} output type without a binding", other);
+ &empty[..]
+ }
+ };
+
+ for member in members.iter() {
+ let member_name = self.namer.call_or(&member.name, "member");
+ let index = fake_members.len() as u32;
+ fake_members.push(EpStructMember {
+ name: member_name,
+ ty: member.ty,
+ binding: member.binding.clone(),
+ index,
+ });
+ }
+
+ self.write_interface_struct(module, (stage, Io::Output), struct_name, fake_members)
+ }
+
+ /// Writes special interface structures for an entry point. The special structures have
+ /// all the fields flattened into them and sorted by binding. They are only needed for
+ /// VS outputs and FS inputs, so that these interfaces match.
+ fn write_ep_interface(
+ &mut self,
+ module: &Module,
+ func: &crate::Function,
+ stage: ShaderStage,
+ ep_name: &str,
+ ) -> Result<EntryPointInterface, Error> {
+ Ok(EntryPointInterface {
+ input: if !func.arguments.is_empty() && stage == ShaderStage::Fragment {
+ Some(self.write_ep_input_struct(module, func, stage, ep_name)?)
+ } else {
+ None
+ },
+ output: match func.result {
+ Some(ref fr) if fr.binding.is_none() && stage == ShaderStage::Vertex => {
+ Some(self.write_ep_output_struct(module, fr, stage, ep_name)?)
+ }
+ _ => None,
+ },
+ })
+ }
+
+ /// Write an entry point preface that initializes the arguments as specified in IR.
+ fn write_ep_arguments_initialization(
+ &mut self,
+ module: &Module,
+ func: &crate::Function,
+ ep_index: u16,
+ ) -> BackendResult {
+ let ep_input = match self.entry_point_io[ep_index as usize].input.take() {
+ Some(ep_input) => ep_input,
+ None => return Ok(()),
+ };
+ let mut fake_iter = ep_input.members.iter();
+ for (arg_index, arg) in func.arguments.iter().enumerate() {
+ write!(self.out, "{}", back::INDENT)?;
+ self.write_type(module, arg.ty)?;
+ let arg_name = &self.names[&NameKey::EntryPointArgument(ep_index, arg_index as u32)];
+ write!(self.out, " {}", arg_name)?;
+ match module.types[arg.ty].inner {
+ TypeInner::Array { base, size, .. } => {
+ self.write_array_size(module, base, size)?;
+ let fake_member = fake_iter.next().unwrap();
+ writeln!(self.out, " = {}.{};", ep_input.arg_name, fake_member.name)?;
+ }
+ TypeInner::Struct { ref members, .. } => {
+ write!(self.out, " = {{ ")?;
+ for index in 0..members.len() {
+ if index != 0 {
+ write!(self.out, ", ")?;
+ }
+ let fake_member = fake_iter.next().unwrap();
+ write!(self.out, "{}.{}", ep_input.arg_name, fake_member.name)?;
+ }
+ writeln!(self.out, " }};")?;
+ }
+ _ => {
+ let fake_member = fake_iter.next().unwrap();
+ writeln!(self.out, " = {}.{};", ep_input.arg_name, fake_member.name)?;
+ }
+ }
+ }
+ assert!(fake_iter.next().is_none());
+ Ok(())
+ }
+
+ /// Helper method used to write global variables
+ /// # Notes
+ /// Always adds a newline
+ fn write_global(
+ &mut self,
+ module: &Module,
+ handle: Handle<crate::GlobalVariable>,
+ ) -> BackendResult {
+ let global = &module.global_variables[handle];
+ let inner = &module.types[global.ty].inner;
+
+ if let Some(ref binding) = global.binding {
+ if let Err(err) = self.options.resolve_resource_binding(binding) {
+ log::info!(
+ "Skipping global {:?} (name {:?}) for being inaccessible: {}",
+ handle,
+ global.name,
+ err,
+ );
+ return Ok(());
+ }
+ }
+
+ // https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-variable-register
+ let register_ty = match global.space {
+ crate::AddressSpace::Function => unreachable!("Function address space"),
+ crate::AddressSpace::Private => {
+ write!(self.out, "static ")?;
+ self.write_type(module, global.ty)?;
+ ""
+ }
+ crate::AddressSpace::WorkGroup => {
+ write!(self.out, "groupshared ")?;
+ self.write_type(module, global.ty)?;
+ ""
+ }
+ crate::AddressSpace::Uniform => {
+ // constant buffer declarations are expected to be inlined, e.g.
+ // `cbuffer foo: register(b0) { field1: type1; }`
+ write!(self.out, "cbuffer")?;
+ "b"
+ }
+ crate::AddressSpace::Storage { access } => {
+ let (prefix, register) = if access.contains(crate::StorageAccess::STORE) {
+ ("RW", "u")
+ } else {
+ ("", "t")
+ };
+ write!(self.out, "{}ByteAddressBuffer", prefix)?;
+ register
+ }
+ crate::AddressSpace::Handle => {
+ let handle_ty = match *inner {
+ TypeInner::BindingArray { ref base, .. } => &module.types[*base].inner,
+ _ => inner,
+ };
+
+ let register = match *handle_ty {
+ TypeInner::Sampler { .. } => "s",
+ // all storage textures are UAV, unconditionally
+ TypeInner::Image {
+ class: crate::ImageClass::Storage { .. },
+ ..
+ } => "u",
+ _ => "t",
+ };
+ self.write_type(module, global.ty)?;
+ register
+ }
+ crate::AddressSpace::PushConstant => {
+ // The type of the push constants will be wrapped in `ConstantBuffer`
+ write!(self.out, "ConstantBuffer<")?;
+ "b"
+ }
+ };
+
+ // If the global is a push constant write the type now because it will be a
+ // generic argument to `ConstantBuffer`
+ if global.space == crate::AddressSpace::PushConstant {
+ self.write_global_type(module, global.ty)?;
+
+ // need to write the array size if the type was emitted with `write_type`
+ if let TypeInner::Array { base, size, .. } = module.types[global.ty].inner {
+ self.write_array_size(module, base, size)?;
+ }
+
+ // Close the angled brackets for the generic argument
+ write!(self.out, ">")?;
+ }
+
+ let name = &self.names[&NameKey::GlobalVariable(handle)];
+ write!(self.out, " {}", name)?;
+
+ // Push constants need to be assigned a binding explicitly by the consumer
+ // since naga has no way to know the binding from the shader alone
+ if global.space == crate::AddressSpace::PushConstant {
+ let target = self
+ .options
+ .push_constants_target
+ .as_ref()
+ .expect("No bind target was defined for the push constants block");
+ write!(self.out, ": register(b{}", target.register)?;
+ if target.space != 0 {
+ write!(self.out, ", space{}", target.space)?;
+ }
+ write!(self.out, ")")?;
+ }
+
+ if let Some(ref binding) = global.binding {
+ // this was already resolved earlier when we started evaluating an entry point.
+ let bt = self.options.resolve_resource_binding(binding).unwrap();
+
+ // need to write the binding array size if the type was emitted with `write_type`
+ if let TypeInner::BindingArray { base, size, .. } = module.types[global.ty].inner {
+ if let Some(overridden_size) = bt.binding_array_size {
+ write!(self.out, "[{}]", overridden_size)?;
+ } else {
+ self.write_array_size(module, base, size)?;
+ }
+ }
+
+ write!(self.out, " : register({}{}", register_ty, bt.register)?;
+ if bt.space != 0 {
+ write!(self.out, ", space{}", bt.space)?;
+ }
+ write!(self.out, ")")?;
+ } else {
+ // need to write the array size if the type was emitted with `write_type`
+ if let TypeInner::Array { base, size, .. } = module.types[global.ty].inner {
+ self.write_array_size(module, base, size)?;
+ }
+ if global.space == crate::AddressSpace::Private {
+ write!(self.out, " = ")?;
+ if let Some(init) = global.init {
+ self.write_constant(module, init)?;
+ } else {
+ self.write_default_init(module, global.ty)?;
+ }
+ }
+ }
+
+ if global.space == crate::AddressSpace::Uniform {
+ write!(self.out, " {{ ")?;
+
+ self.write_global_type(module, global.ty)?;
+
+ write!(
+ self.out,
+ " {}",
+ &self.names[&NameKey::GlobalVariable(handle)]
+ )?;
+
+ // need to write the array size if the type was emitted with `write_type`
+ if let TypeInner::Array { base, size, .. } = module.types[global.ty].inner {
+ self.write_array_size(module, base, size)?;
+ }
+
+ writeln!(self.out, "; }}")?;
+ } else {
+ writeln!(self.out, ";")?;
+ }
+
+ Ok(())
+ }
+
+ /// Helper method used to write global constants
+ ///
+ /// # Notes
+ /// Ends in a newline
+ fn write_global_constant(
+ &mut self,
+ module: &Module,
+ inner: &crate::ConstantInner,
+ handle: Handle<crate::Constant>,
+ ) -> BackendResult {
+ write!(self.out, "static const ")?;
+ match *inner {
+ crate::ConstantInner::Scalar {
+ width: _,
+ ref value,
+ } => {
+ // Write type
+ let ty_str = match *value {
+ crate::ScalarValue::Sint(_) => "int",
+ crate::ScalarValue::Uint(_) => "uint",
+ crate::ScalarValue::Float(_) => "float",
+ crate::ScalarValue::Bool(_) => "bool",
+ };
+ let name = &self.names[&NameKey::Constant(handle)];
+ write!(self.out, "{} {} = ", ty_str, name)?;
+
+ // Second match required to avoid heap allocation by `format!()`
+ match *value {
+ crate::ScalarValue::Sint(value) => write!(self.out, "{}", value)?,
+ crate::ScalarValue::Uint(value) => write!(self.out, "{}", value)?,
+ crate::ScalarValue::Float(value) => {
+ // Floats are written using `Debug` instead of `Display` because it always appends the
+ // decimal part even it's zero
+ write!(self.out, "{:?}", value)?
+ }
+ crate::ScalarValue::Bool(value) => write!(self.out, "{}", value)?,
+ };
+ }
+ crate::ConstantInner::Composite { ty, ref components } => {
+ self.write_type(module, ty)?;
+ let name = &self.names[&NameKey::Constant(handle)];
+ write!(self.out, " {} = ", name)?;
+ self.write_composite_constant(module, ty, components)?;
+ }
+ }
+ writeln!(self.out, ";")?;
+ Ok(())
+ }
+
+ pub(super) fn write_array_size(
+ &mut self,
+ module: &Module,
+ base: Handle<crate::Type>,
+ size: crate::ArraySize,
+ ) -> BackendResult {
+ write!(self.out, "[")?;
+
+ // Write the array size
+ // Writes nothing if `ArraySize::Dynamic`
+ // Panics if `ArraySize::Constant` has a constant that isn't an sint or uint
+ match size {
+ crate::ArraySize::Constant(const_handle) => {
+ let size = module.constants[const_handle].to_array_length().unwrap();
+ write!(self.out, "{}", size)?;
+ }
+ crate::ArraySize::Dynamic => {}
+ }
+
+ write!(self.out, "]")?;
+
+ if let TypeInner::Array {
+ base: next_base,
+ size: next_size,
+ ..
+ } = module.types[base].inner
+ {
+ self.write_array_size(module, next_base, next_size)?;
+ }
+
+ Ok(())
+ }
+
+ /// Helper method used to write structs
+ ///
+ /// # Notes
+ /// Ends in a newline
+ fn write_struct(
+ &mut self,
+ module: &Module,
+ handle: Handle<crate::Type>,
+ members: &[crate::StructMember],
+ span: u32,
+ shader_stage: Option<(ShaderStage, Io)>,
+ ) -> BackendResult {
+ // Write struct name
+ let struct_name = &self.names[&NameKey::Type(handle)];
+ writeln!(self.out, "struct {} {{", struct_name)?;
+
+ let mut last_offset = 0;
+ for (index, member) in members.iter().enumerate() {
+ if member.binding.is_none() && member.offset > last_offset {
+ // using int as padding should work as long as the backend
+ // doesn't support a type that's less than 4 bytes in size
+ // (Error::UnsupportedScalar catches this)
+ let padding = (member.offset - last_offset) / 4;
+ for i in 0..padding {
+ writeln!(self.out, "{}int _pad{}_{};", back::INDENT, index, i)?;
+ }
+ }
+ let ty_inner = &module.types[member.ty].inner;
+ last_offset = member.offset
+ + ty_inner
+ .try_size_hlsl(&module.types, &module.constants)
+ .unwrap();
+
+ // The indentation is only for readability
+ write!(self.out, "{}", back::INDENT)?;
+
+ match module.types[member.ty].inner {
+ TypeInner::Array { base, size, .. } => {
+ // HLSL arrays are written as `type name[size]`
+
+ self.write_global_type(module, member.ty)?;
+
+ // Write `name`
+ write!(
+ self.out,
+ " {}",
+ &self.names[&NameKey::StructMember(handle, index as u32)]
+ )?;
+ // Write [size]
+ self.write_array_size(module, base, size)?;
+ }
+ // We treat matrices of the form `matCx2` as a sequence of C `vec2`s.
+ // See the module-level block comment in mod.rs for details.
+ TypeInner::Matrix {
+ rows,
+ columns,
+ width,
+ } if member.binding.is_none() && rows == crate::VectorSize::Bi => {
+ let vec_ty = crate::TypeInner::Vector {
+ size: rows,
+ kind: crate::ScalarKind::Float,
+ width,
+ };
+ let field_name_key = NameKey::StructMember(handle, index as u32);
+
+ for i in 0..columns as u8 {
+ if i != 0 {
+ write!(self.out, "; ")?;
+ }
+ self.write_value_type(module, &vec_ty)?;
+ write!(self.out, " {}_{}", &self.names[&field_name_key], i)?;
+ }
+ }
+ _ => {
+ // Write modifier before type
+ if let Some(ref binding) = member.binding {
+ self.write_modifier(binding)?;
+ }
+
+ // Even though Naga IR matrices are column-major, we must describe
+ // matrices passed from the CPU as being in row-major order.
+ // See the module-level block comment in mod.rs for details.
+ if let TypeInner::Matrix { .. } = module.types[member.ty].inner {
+ write!(self.out, "row_major ")?;
+ }
+
+ // Write the member type and name
+ self.write_type(module, member.ty)?;
+ write!(
+ self.out,
+ " {}",
+ &self.names[&NameKey::StructMember(handle, index as u32)]
+ )?;
+ }
+ }
+
+ if let Some(ref binding) = member.binding {
+ self.write_semantic(binding, shader_stage)?;
+ };
+ writeln!(self.out, ";")?;
+ }
+
+ // add padding at the end since sizes of types don't get rounded up to their alignment in HLSL
+ if members.last().unwrap().binding.is_none() && span > last_offset {
+ let padding = (span - last_offset) / 4;
+ for i in 0..padding {
+ writeln!(self.out, "{}int _end_pad_{};", back::INDENT, i)?;
+ }
+ }
+
+ writeln!(self.out, "}};")?;
+ Ok(())
+ }
+
+ /// Helper method used to write global/structs non image/sampler types
+ ///
+ /// # Notes
+ /// Adds no trailing or leading whitespace
+ pub(super) fn write_global_type(
+ &mut self,
+ module: &Module,
+ ty: Handle<crate::Type>,
+ ) -> BackendResult {
+ let matrix_data = get_inner_matrix_data(module, ty);
+
+ // We treat matrices of the form `matCx2` as a sequence of C `vec2`s.
+ // See the module-level block comment in mod.rs for details.
+ if let Some(MatrixType {
+ columns,
+ rows: crate::VectorSize::Bi,
+ width: 4,
+ }) = matrix_data
+ {
+ write!(self.out, "__mat{}x2", columns as u8)?;
+ } else {
+ // Even though Naga IR matrices are column-major, we must describe
+ // matrices passed from the CPU as being in row-major order.
+ // See the module-level block comment in mod.rs for details.
+ if matrix_data.is_some() {
+ write!(self.out, "row_major ")?;
+ }
+
+ self.write_type(module, ty)?;
+ }
+
+ Ok(())
+ }
+
+ /// Helper method used to write non image/sampler types
+ ///
+ /// # Notes
+ /// Adds no trailing or leading whitespace
+ pub(super) fn write_type(&mut self, module: &Module, ty: Handle<crate::Type>) -> BackendResult {
+ let inner = &module.types[ty].inner;
+ match *inner {
+ TypeInner::Struct { .. } => write!(self.out, "{}", self.names[&NameKey::Type(ty)])?,
+ // hlsl array has the size separated from the base type
+ TypeInner::Array { base, .. } | TypeInner::BindingArray { base, .. } => {
+ self.write_type(module, base)?
+ }
+ ref other => self.write_value_type(module, other)?,
+ }
+
+ Ok(())
+ }
+
+ /// Helper method used to write value types
+ ///
+ /// # Notes
+ /// Adds no trailing or leading whitespace
+ pub(super) fn write_value_type(&mut self, module: &Module, inner: &TypeInner) -> BackendResult {
+ match *inner {
+ TypeInner::Scalar { kind, width } | TypeInner::Atomic { kind, width } => {
+ write!(self.out, "{}", kind.to_hlsl_str(width)?)?;
+ }
+ TypeInner::Vector { size, kind, width } => {
+ write!(
+ self.out,
+ "{}{}",
+ kind.to_hlsl_str(width)?,
+ back::vector_size_str(size)
+ )?;
+ }
+ TypeInner::Matrix {
+ columns,
+ rows,
+ width,
+ } => {
+ // The IR supports only float matrix
+ // https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-matrix
+
+ // Because of the implicit transpose all matrices have in HLSL, we need to transpose the size as well.
+ write!(
+ self.out,
+ "{}{}x{}",
+ crate::ScalarKind::Float.to_hlsl_str(width)?,
+ back::vector_size_str(columns),
+ back::vector_size_str(rows),
+ )?;
+ }
+ TypeInner::Image {
+ dim,
+ arrayed,
+ class,
+ } => {
+ self.write_image_type(dim, arrayed, class)?;
+ }
+ TypeInner::Sampler { comparison } => {
+ let sampler = if comparison {
+ "SamplerComparisonState"
+ } else {
+ "SamplerState"
+ };
+ write!(self.out, "{}", sampler)?;
+ }
+ // HLSL arrays are written as `type name[size]`
+ // Current code is written arrays only as `[size]`
+ // Base `type` and `name` should be written outside
+ TypeInner::Array { base, size, .. } | TypeInner::BindingArray { base, size } => {
+ self.write_array_size(module, base, size)?;
+ }
+ _ => {
+ return Err(Error::Unimplemented(format!(
+ "write_value_type {:?}",
+ inner
+ )))
+ }
+ }
+
+ Ok(())
+ }
+
+ /// Helper method used to write functions
+ /// # Notes
+ /// Ends in a newline
+ fn write_function(
+ &mut self,
+ module: &Module,
+ name: &str,
+ func: &crate::Function,
+ func_ctx: &back::FunctionCtx<'_>,
+ ) -> BackendResult {
+ // Function Declaration Syntax - https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-function-syntax
+
+ // Write modifier
+ if let Some(crate::FunctionResult {
+ binding:
+ Some(
+ ref binding @ crate::Binding::BuiltIn(crate::BuiltIn::Position {
+ invariant: true,
+ }),
+ ),
+ ..
+ }) = func.result
+ {
+ self.write_modifier(binding)?;
+ }
+
+ // Write return type
+ if let Some(ref result) = func.result {
+ match func_ctx.ty {
+ back::FunctionType::Function(_) => {
+ self.write_type(module, result.ty)?;
+ }
+ back::FunctionType::EntryPoint(index) => {
+ if let Some(ref ep_output) = self.entry_point_io[index as usize].output {
+ write!(self.out, "{}", ep_output.ty_name)?;
+ } else {
+ self.write_type(module, result.ty)?;
+ }
+ }
+ }
+ } else {
+ write!(self.out, "void")?;
+ }
+
+ // Write function name
+ write!(self.out, " {}(", name)?;
+
+ // Write function arguments for non entry point functions
+ match func_ctx.ty {
+ back::FunctionType::Function(handle) => {
+ for (index, arg) in func.arguments.iter().enumerate() {
+ if index != 0 {
+ write!(self.out, ", ")?;
+ }
+ // Write argument type
+ let arg_ty = match module.types[arg.ty].inner {
+ // pointers in function arguments are expected and resolve to `inout`
+ TypeInner::Pointer { base, .. } => {
+ //TODO: can we narrow this down to just `in` when possible?
+ write!(self.out, "inout ")?;
+ base
+ }
+ _ => arg.ty,
+ };
+ self.write_type(module, arg_ty)?;
+
+ let argument_name =
+ &self.names[&NameKey::FunctionArgument(handle, index as u32)];
+
+ // Write argument name. Space is important.
+ write!(self.out, " {}", argument_name)?;
+ if let TypeInner::Array { base, size, .. } = module.types[arg.ty].inner {
+ self.write_array_size(module, base, size)?;
+ }
+ }
+ }
+ back::FunctionType::EntryPoint(ep_index) => {
+ if let Some(ref ep_input) = self.entry_point_io[ep_index as usize].input {
+ write!(self.out, "{} {}", ep_input.ty_name, ep_input.arg_name,)?;
+ } else {
+ let stage = module.entry_points[ep_index as usize].stage;
+ for (index, arg) in func.arguments.iter().enumerate() {
+ if index != 0 {
+ write!(self.out, ", ")?;
+ }
+ self.write_type(module, arg.ty)?;
+
+ let argument_name =
+ &self.names[&NameKey::EntryPointArgument(ep_index, index as u32)];
+
+ write!(self.out, " {}", argument_name)?;
+ if let TypeInner::Array { base, size, .. } = module.types[arg.ty].inner {
+ self.write_array_size(module, base, size)?;
+ }
+
+ if let Some(ref binding) = arg.binding {
+ self.write_semantic(binding, Some((stage, Io::Input)))?;
+ }
+ }
+ }
+ }
+ }
+ // Ends of arguments
+ write!(self.out, ")")?;
+
+ // Write semantic if it present
+ if let back::FunctionType::EntryPoint(index) = func_ctx.ty {
+ let stage = module.entry_points[index as usize].stage;
+ if let Some(crate::FunctionResult {
+ binding: Some(ref binding),
+ ..
+ }) = func.result
+ {
+ self.write_semantic(binding, Some((stage, Io::Output)))?;
+ }
+ }
+
+ // Function body start
+ writeln!(self.out)?;
+ writeln!(self.out, "{{")?;
+
+ if let back::FunctionType::EntryPoint(index) = func_ctx.ty {
+ self.write_ep_arguments_initialization(module, func, index)?;
+ }
+
+ // Write function local variables
+ for (handle, local) in func.local_variables.iter() {
+ // Write indentation (only for readability)
+ write!(self.out, "{}", back::INDENT)?;
+
+ // Write the local name
+ // The leading space is important
+ self.write_type(module, local.ty)?;
+ write!(self.out, " {}", self.names[&func_ctx.name_key(handle)])?;
+ // Write size for array type
+ if let TypeInner::Array { base, size, .. } = module.types[local.ty].inner {
+ self.write_array_size(module, base, size)?;
+ }
+
+ write!(self.out, " = ")?;
+ // Write the local initializer if needed
+ if let Some(init) = local.init {
+ // Put the equal signal only if there's a initializer
+ // The leading and trailing spaces aren't needed but help with readability
+
+ // Write the constant
+ // `write_constant` adds no trailing or leading space/newline
+ self.write_constant(module, init)?;
+ } else {
+ // Zero initialize local variables
+ self.write_default_init(module, local.ty)?;
+ }
+
+ // Finish the local with `;` and add a newline (only for readability)
+ writeln!(self.out, ";")?
+ }
+
+ if !func.local_variables.is_empty() {
+ writeln!(self.out)?;
+ }
+
+ // Write the function body (statement list)
+ for sta in func.body.iter() {
+ // The indentation should always be 1 when writing the function body
+ self.write_stmt(module, sta, func_ctx, back::Level(1))?;
+ }
+
+ writeln!(self.out, "}}")?;
+
+ self.named_expressions.clear();
+
+ Ok(())
+ }
+
+ /// Helper method used to write statements
+ ///
+ /// # Notes
+ /// Always adds a newline
+ fn write_stmt(
+ &mut self,
+ module: &Module,
+ stmt: &crate::Statement,
+ func_ctx: &back::FunctionCtx<'_>,
+ level: back::Level,
+ ) -> BackendResult {
+ use crate::Statement;
+
+ match *stmt {
+ Statement::Emit(ref range) => {
+ for handle in range.clone() {
+ let info = &func_ctx.info[handle];
+ let ptr_class = info.ty.inner_with(&module.types).pointer_space();
+ let expr_name = if ptr_class.is_some() {
+ // HLSL can't save a pointer-valued expression in a variable,
+ // but we shouldn't ever need to: they should never be named expressions,
+ // and none of the expression types flagged by bake_ref_count can be pointer-valued.
+ None
+ } else if let Some(name) = func_ctx.named_expressions.get(&handle) {
+ // Front end provides names for all variables at the start of writing.
+ // But we write them to step by step. We need to recache them
+ // Otherwise, we could accidentally write variable name instead of full expression.
+ // Also, we use sanitized names! It defense backend from generating variable with name from reserved keywords.
+ Some(self.namer.call(name))
+ } else if info.ref_count == 0 {
+ Some(self.namer.call(""))
+ } else {
+ let min_ref_count = func_ctx.expressions[handle].bake_ref_count();
+ if min_ref_count <= info.ref_count {
+ Some(format!("_expr{}", handle.index()))
+ } else {
+ None
+ }
+ };
+
+ if let Some(name) = expr_name {
+ write!(self.out, "{}", level)?;
+ self.write_named_expr(module, handle, name, func_ctx)?;
+ }
+ }
+ }
+ // TODO: copy-paste from glsl-out
+ Statement::Block(ref block) => {
+ write!(self.out, "{}", level)?;
+ writeln!(self.out, "{{")?;
+ for sta in block.iter() {
+ // Increase the indentation to help with readability
+ self.write_stmt(module, sta, func_ctx, level.next())?
+ }
+ writeln!(self.out, "{}}}", level)?
+ }
+ // TODO: copy-paste from glsl-out
+ Statement::If {
+ condition,
+ ref accept,
+ ref reject,
+ } => {
+ write!(self.out, "{}", level)?;
+ write!(self.out, "if (")?;
+ self.write_expr(module, condition, func_ctx)?;
+ writeln!(self.out, ") {{")?;
+
+ let l2 = level.next();
+ for sta in accept {
+ // Increase indentation to help with readability
+ self.write_stmt(module, sta, func_ctx, l2)?;
+ }
+
+ // If there are no statements in the reject block we skip writing it
+ // This is only for readability
+ if !reject.is_empty() {
+ writeln!(self.out, "{}}} else {{", level)?;
+
+ for sta in reject {
+ // Increase indentation to help with readability
+ self.write_stmt(module, sta, func_ctx, l2)?;
+ }
+ }
+
+ writeln!(self.out, "{}}}", level)?
+ }
+ // TODO: copy-paste from glsl-out
+ Statement::Kill => writeln!(self.out, "{}discard;", level)?,
+ Statement::Return { value: None } => {
+ writeln!(self.out, "{}return;", level)?;
+ }
+ Statement::Return { value: Some(expr) } => {
+ let base_ty_res = &func_ctx.info[expr].ty;
+ let mut resolved = base_ty_res.inner_with(&module.types);
+ if let TypeInner::Pointer { base, space: _ } = *resolved {
+ resolved = &module.types[base].inner;
+ }
+
+ if let TypeInner::Struct { .. } = *resolved {
+ // We can safely unwrap here, since we now we working with struct
+ let ty = base_ty_res.handle().unwrap();
+ let struct_name = &self.names[&NameKey::Type(ty)];
+ let variable_name = self.namer.call(&struct_name.to_lowercase());
+ write!(
+ self.out,
+ "{}const {} {} = ",
+ level, struct_name, variable_name,
+ )?;
+ self.write_expr(module, expr, func_ctx)?;
+ writeln!(self.out, ";")?;
+
+ // for entry point returns, we may need to reshuffle the outputs into a different struct
+ let ep_output = match func_ctx.ty {
+ back::FunctionType::Function(_) => None,
+ back::FunctionType::EntryPoint(index) => {
+ self.entry_point_io[index as usize].output.as_ref()
+ }
+ };
+ let final_name = match ep_output {
+ Some(ep_output) => {
+ let final_name = self.namer.call(&variable_name);
+ write!(
+ self.out,
+ "{}const {} {} = {{ ",
+ level, ep_output.ty_name, final_name,
+ )?;
+ for (index, m) in ep_output.members.iter().enumerate() {
+ if index != 0 {
+ write!(self.out, ", ")?;
+ }
+ let member_name = &self.names[&NameKey::StructMember(ty, m.index)];
+ write!(self.out, "{}.{}", variable_name, member_name)?;
+ }
+ writeln!(self.out, " }};")?;
+ final_name
+ }
+ None => variable_name,
+ };
+ writeln!(self.out, "{}return {};", level, final_name)?;
+ } else {
+ write!(self.out, "{}return ", level)?;
+ self.write_expr(module, expr, func_ctx)?;
+ writeln!(self.out, ";")?
+ }
+ }
+ Statement::Store { pointer, value } => {
+ let ty_inner = func_ctx.info[pointer].ty.inner_with(&module.types);
+ if let Some(crate::AddressSpace::Storage { .. }) = ty_inner.pointer_space() {
+ let var_handle = self.fill_access_chain(module, pointer, func_ctx)?;
+ self.write_storage_store(
+ module,
+ var_handle,
+ StoreValue::Expression(value),
+ func_ctx,
+ level,
+ )?;
+ } else {
+ // We treat matrices of the form `matCx2` as a sequence of C `vec2`s.
+ // See the module-level block comment in mod.rs for details.
+ //
+ // We handle matrix Stores here directly (including sub accesses for Vectors and Scalars).
+ // Loads are handled by `Expression::AccessIndex` (since sub accesses work fine for Loads).
+ struct MatrixAccess {
+ base: Handle<crate::Expression>,
+ index: u32,
+ }
+ enum Index {
+ Expression(Handle<crate::Expression>),
+ Static(u32),
+ }
+
+ let get_members = |expr: Handle<crate::Expression>| {
+ let base_ty_res = &func_ctx.info[expr].ty;
+ let resolved = base_ty_res.inner_with(&module.types);
+ match *resolved {
+ TypeInner::Pointer { base, .. } => match module.types[base].inner {
+ TypeInner::Struct { ref members, .. } => Some(members),
+ _ => None,
+ },
+ _ => None,
+ }
+ };
+
+ let mut matrix = None;
+ let mut vector = None;
+ let mut scalar = None;
+
+ let mut current_expr = pointer;
+ for _ in 0..3 {
+ let resolved = func_ctx.info[current_expr].ty.inner_with(&module.types);
+
+ match (resolved, &func_ctx.expressions[current_expr]) {
+ (
+ &TypeInner::Pointer { base: ty, .. },
+ &crate::Expression::AccessIndex { base, index },
+ ) if matches!(
+ module.types[ty].inner,
+ TypeInner::Matrix {
+ rows: crate::VectorSize::Bi,
+ ..
+ }
+ ) && get_members(base)
+ .map(|members| members[index as usize].binding.is_none())
+ == Some(true) =>
+ {
+ matrix = Some(MatrixAccess { base, index });
+ break;
+ }
+ (
+ &TypeInner::ValuePointer {
+ size: Some(crate::VectorSize::Bi),
+ ..
+ },
+ &crate::Expression::Access { base, index },
+ ) => {
+ vector = Some(Index::Expression(index));
+ current_expr = base;
+ }
+ (
+ &TypeInner::ValuePointer {
+ size: Some(crate::VectorSize::Bi),
+ ..
+ },
+ &crate::Expression::AccessIndex { base, index },
+ ) => {
+ vector = Some(Index::Static(index));
+ current_expr = base;
+ }
+ (
+ &TypeInner::ValuePointer { size: None, .. },
+ &crate::Expression::Access { base, index },
+ ) => {
+ scalar = Some(Index::Expression(index));
+ current_expr = base;
+ }
+ (
+ &TypeInner::ValuePointer { size: None, .. },
+ &crate::Expression::AccessIndex { base, index },
+ ) => {
+ scalar = Some(Index::Static(index));
+ current_expr = base;
+ }
+ _ => break,
+ }
+ }
+
+ write!(self.out, "{}", level)?;
+
+ if let Some(MatrixAccess { index, base }) = matrix {
+ let base_ty_res = &func_ctx.info[base].ty;
+ let resolved = base_ty_res.inner_with(&module.types);
+ let ty = match *resolved {
+ TypeInner::Pointer { base, .. } => base,
+ _ => base_ty_res.handle().unwrap(),
+ };
+
+ if let Some(Index::Static(vec_index)) = vector {
+ self.write_expr(module, base, func_ctx)?;
+ write!(
+ self.out,
+ ".{}_{}",
+ &self.names[&NameKey::StructMember(ty, index)],
+ vec_index
+ )?;
+
+ if let Some(scalar_index) = scalar {
+ write!(self.out, "[")?;
+ match scalar_index {
+ Index::Static(index) => {
+ write!(self.out, "{}", index)?;
+ }
+ Index::Expression(index) => {
+ self.write_expr(module, index, func_ctx)?;
+ }
+ }
+ write!(self.out, "]")?;
+ }
+
+ write!(self.out, " = ")?;
+ self.write_expr(module, value, func_ctx)?;
+ writeln!(self.out, ";")?;
+ } else {
+ let access = WrappedStructMatrixAccess { ty, index };
+ match (&vector, &scalar) {
+ (&Some(_), &Some(_)) => {
+ self.write_wrapped_struct_matrix_set_scalar_function_name(
+ access,
+ )?;
+ }
+ (&Some(_), &None) => {
+ self.write_wrapped_struct_matrix_set_vec_function_name(access)?;
+ }
+ (&None, _) => {
+ self.write_wrapped_struct_matrix_set_function_name(access)?;
+ }
+ }
+
+ write!(self.out, "(")?;
+ self.write_expr(module, base, func_ctx)?;
+ write!(self.out, ", ")?;
+ self.write_expr(module, value, func_ctx)?;
+
+ if let Some(Index::Expression(vec_index)) = vector {
+ write!(self.out, ", ")?;
+ self.write_expr(module, vec_index, func_ctx)?;
+
+ if let Some(scalar_index) = scalar {
+ write!(self.out, ", ")?;
+ match scalar_index {
+ Index::Static(index) => {
+ write!(self.out, "{}", index)?;
+ }
+ Index::Expression(index) => {
+ self.write_expr(module, index, func_ctx)?;
+ }
+ }
+ }
+ }
+ writeln!(self.out, ");")?;
+ }
+ } else {
+ // We handle `Store`s to __matCx2 column vectors and scalar elements via
+ // the previously injected functions __set_col_of_matCx2 / __set_el_of_matCx2.
+ struct MatrixData {
+ columns: crate::VectorSize,
+ base: Handle<crate::Expression>,
+ }
+
+ enum Index {
+ Expression(Handle<crate::Expression>),
+ Static(u32),
+ }
+
+ let mut matrix = None;
+ let mut vector = None;
+ let mut scalar = None;
+
+ let mut current_expr = pointer;
+ for _ in 0..3 {
+ let resolved = func_ctx.info[current_expr].ty.inner_with(&module.types);
+ match (resolved, &func_ctx.expressions[current_expr]) {
+ (
+ &TypeInner::ValuePointer {
+ size: Some(crate::VectorSize::Bi),
+ ..
+ },
+ &crate::Expression::Access { base, index },
+ ) => {
+ vector = Some(index);
+ current_expr = base;
+ }
+ (
+ &TypeInner::ValuePointer { size: None, .. },
+ &crate::Expression::Access { base, index },
+ ) => {
+ scalar = Some(Index::Expression(index));
+ current_expr = base;
+ }
+ (
+ &TypeInner::ValuePointer { size: None, .. },
+ &crate::Expression::AccessIndex { base, index },
+ ) => {
+ scalar = Some(Index::Static(index));
+ current_expr = base;
+ }
+ _ => {
+ if let Some(MatrixType {
+ columns,
+ rows: crate::VectorSize::Bi,
+ width: 4,
+ }) = get_inner_matrix_of_struct_array_member(
+ module,
+ current_expr,
+ func_ctx,
+ true,
+ ) {
+ matrix = Some(MatrixData {
+ columns,
+ base: current_expr,
+ });
+ }
+
+ break;
+ }
+ }
+ }
+
+ if let (Some(MatrixData { columns, base }), Some(vec_index)) =
+ (matrix, vector)
+ {
+ if scalar.is_some() {
+ write!(self.out, "__set_el_of_mat{}x2", columns as u8)?;
+ } else {
+ write!(self.out, "__set_col_of_mat{}x2", columns as u8)?;
+ }
+ write!(self.out, "(")?;
+ self.write_expr(module, base, func_ctx)?;
+ write!(self.out, ", ")?;
+ self.write_expr(module, vec_index, func_ctx)?;
+
+ if let Some(scalar_index) = scalar {
+ write!(self.out, ", ")?;
+ match scalar_index {
+ Index::Static(index) => {
+ write!(self.out, "{}", index)?;
+ }
+ Index::Expression(index) => {
+ self.write_expr(module, index, func_ctx)?;
+ }
+ }
+ }
+
+ write!(self.out, ", ")?;
+ self.write_expr(module, value, func_ctx)?;
+
+ writeln!(self.out, ");")?;
+ } else {
+ self.write_expr(module, pointer, func_ctx)?;
+ write!(self.out, " = ")?;
+
+ // We cast the RHS of this store in cases where the LHS
+ // is a struct member with type:
+ // - matCx2 or
+ // - a (possibly nested) array of matCx2's
+ if let Some(MatrixType {
+ columns,
+ rows: crate::VectorSize::Bi,
+ width: 4,
+ }) = get_inner_matrix_of_struct_array_member(
+ module, pointer, func_ctx, false,
+ ) {
+ let mut resolved =
+ func_ctx.info[pointer].ty.inner_with(&module.types);
+ if let TypeInner::Pointer { base, .. } = *resolved {
+ resolved = &module.types[base].inner;
+ }
+
+ write!(self.out, "(__mat{}x2", columns as u8)?;
+ if let TypeInner::Array { base, size, .. } = *resolved {
+ self.write_array_size(module, base, size)?;
+ }
+ write!(self.out, ")")?;
+ }
+
+ self.write_expr(module, value, func_ctx)?;
+ writeln!(self.out, ";")?
+ }
+ }
+ }
+ }
+ Statement::Loop {
+ ref body,
+ ref continuing,
+ break_if,
+ } => {
+ let l2 = level.next();
+ if !continuing.is_empty() || break_if.is_some() {
+ let gate_name = self.namer.call("loop_init");
+ writeln!(self.out, "{}bool {} = true;", level, gate_name)?;
+ writeln!(self.out, "{}while(true) {{", level)?;
+ writeln!(self.out, "{}if (!{}) {{", l2, gate_name)?;
+ let l3 = l2.next();
+ for sta in continuing.iter() {
+ self.write_stmt(module, sta, func_ctx, l3)?;
+ }
+ if let Some(condition) = break_if {
+ write!(self.out, "{}if (", l3)?;
+ self.write_expr(module, condition, func_ctx)?;
+ writeln!(self.out, ") {{")?;
+ writeln!(self.out, "{}break;", l3.next())?;
+ writeln!(self.out, "{}}}", l3)?;
+ }
+ writeln!(self.out, "{}}}", l2)?;
+ writeln!(self.out, "{}{} = false;", l2, gate_name)?;
+ } else {
+ writeln!(self.out, "{}while(true) {{", level)?;
+ }
+
+ for sta in body.iter() {
+ self.write_stmt(module, sta, func_ctx, l2)?;
+ }
+ writeln!(self.out, "{}}}", level)?
+ }
+ Statement::Break => writeln!(self.out, "{}break;", level)?,
+ Statement::Continue => writeln!(self.out, "{}continue;", level)?,
+ Statement::Barrier(barrier) => {
+ if barrier.contains(crate::Barrier::STORAGE) {
+ writeln!(self.out, "{}DeviceMemoryBarrierWithGroupSync();", level)?;
+ }
+
+ if barrier.contains(crate::Barrier::WORK_GROUP) {
+ writeln!(self.out, "{}GroupMemoryBarrierWithGroupSync();", level)?;
+ }
+ }
+ Statement::ImageStore {
+ image,
+ coordinate,
+ array_index,
+ value,
+ } => {
+ write!(self.out, "{}", level)?;
+ self.write_expr(module, image, func_ctx)?;
+
+ write!(self.out, "[")?;
+ if let Some(index) = array_index {
+ // Array index accepted only for texture_storage_2d_array, so we can safety use int3(coordinate, array_index) here
+ write!(self.out, "int3(")?;
+ self.write_expr(module, coordinate, func_ctx)?;
+ write!(self.out, ", ")?;
+ self.write_expr(module, index, func_ctx)?;
+ write!(self.out, ")")?;
+ } else {
+ self.write_expr(module, coordinate, func_ctx)?;
+ }
+ write!(self.out, "]")?;
+
+ write!(self.out, " = ")?;
+ self.write_expr(module, value, func_ctx)?;
+ writeln!(self.out, ";")?;
+ }
+ Statement::Call {
+ function,
+ ref arguments,
+ result,
+ } => {
+ write!(self.out, "{}", level)?;
+ if let Some(expr) = result {
+ write!(self.out, "const ")?;
+ let name = format!("{}{}", back::BAKE_PREFIX, expr.index());
+ let expr_ty = &func_ctx.info[expr].ty;
+ match *expr_ty {
+ proc::TypeResolution::Handle(handle) => self.write_type(module, handle)?,
+ proc::TypeResolution::Value(ref value) => {
+ self.write_value_type(module, value)?
+ }
+ };
+ write!(self.out, " {} = ", name)?;
+ self.named_expressions.insert(expr, name);
+ }
+ let func_name = &self.names[&NameKey::Function(function)];
+ write!(self.out, "{}(", func_name)?;
+ for (index, argument) in arguments.iter().enumerate() {
+ self.write_expr(module, *argument, func_ctx)?;
+ // Only write a comma if isn't the last element
+ if index != arguments.len().saturating_sub(1) {
+ // The leading space is for readability only
+ write!(self.out, ", ")?;
+ }
+ }
+ writeln!(self.out, ");")?
+ }
+ Statement::Atomic {
+ pointer,
+ ref fun,
+ value,
+ result,
+ } => {
+ write!(self.out, "{}", level)?;
+ let res_name = format!("{}{}", back::BAKE_PREFIX, result.index());
+ match func_ctx.info[result].ty {
+ proc::TypeResolution::Handle(handle) => self.write_type(module, handle)?,
+ proc::TypeResolution::Value(ref value) => {
+ self.write_value_type(module, value)?
+ }
+ };
+
+ let var_handle = self.fill_access_chain(module, pointer, func_ctx)?;
+ // working around the borrow checker in `self.write_expr`
+ let chain = mem::take(&mut self.temp_access_chain);
+ let var_name = &self.names[&NameKey::GlobalVariable(var_handle)];
+
+ let fun_str = fun.to_hlsl_suffix();
+ write!(
+ self.out,
+ " {}; {}.Interlocked{}(",
+ res_name, var_name, fun_str
+ )?;
+ self.write_storage_address(module, &chain, func_ctx)?;
+ write!(self.out, ", ")?;
+ // handle the special cases
+ match *fun {
+ crate::AtomicFunction::Subtract => {
+ // we just wrote `InterlockedAdd`, so negate the argument
+ write!(self.out, "-")?;
+ }
+ crate::AtomicFunction::Exchange { compare: Some(_) } => {
+ return Err(Error::Unimplemented("atomic CompareExchange".to_string()));
+ }
+ _ => {}
+ }
+ self.write_expr(module, value, func_ctx)?;
+ writeln!(self.out, ", {});", res_name)?;
+ self.temp_access_chain = chain;
+ self.named_expressions.insert(result, res_name);
+ }
+ Statement::Switch {
+ selector,
+ ref cases,
+ } => {
+ // Start the switch
+ write!(self.out, "{}", level)?;
+ write!(self.out, "switch(")?;
+ self.write_expr(module, selector, func_ctx)?;
+ writeln!(self.out, ") {{")?;
+ let type_postfix = match *func_ctx.info[selector].ty.inner_with(&module.types) {
+ crate::TypeInner::Scalar {
+ kind: crate::ScalarKind::Uint,
+ ..
+ } => "u",
+ _ => "",
+ };
+
+ // Write all cases
+ let indent_level_1 = level.next();
+ let indent_level_2 = indent_level_1.next();
+
+ for (i, case) in cases.iter().enumerate() {
+ match case.value {
+ crate::SwitchValue::Integer(value) => writeln!(
+ self.out,
+ "{}case {}{}: {{",
+ indent_level_1, value, type_postfix
+ )?,
+ crate::SwitchValue::Default => {
+ writeln!(self.out, "{}default: {{", indent_level_1)?
+ }
+ }
+
+ // FXC doesn't support fallthrough so we duplicate the body of the following case blocks
+ if case.fall_through {
+ let curr_len = i + 1;
+ let end_case_idx = curr_len
+ + cases
+ .iter()
+ .skip(curr_len)
+ .position(|case| !case.fall_through)
+ .unwrap();
+ let indent_level_3 = indent_level_2.next();
+ for case in &cases[i..=end_case_idx] {
+ writeln!(self.out, "{}{{", indent_level_2)?;
+ for sta in case.body.iter() {
+ self.write_stmt(module, sta, func_ctx, indent_level_3)?;
+ }
+ writeln!(self.out, "{}}}", indent_level_2)?;
+ }
+
+ let last_case = &cases[end_case_idx];
+ if last_case.body.last().map_or(true, |s| !s.is_terminator()) {
+ writeln!(self.out, "{}break;", indent_level_2)?;
+ }
+ } else {
+ for sta in case.body.iter() {
+ self.write_stmt(module, sta, func_ctx, indent_level_2)?;
+ }
+ if case.body.last().map_or(true, |s| !s.is_terminator()) {
+ writeln!(self.out, "{}break;", indent_level_2)?;
+ }
+ }
+
+ writeln!(self.out, "{}}}", indent_level_1)?;
+ }
+
+ writeln!(self.out, "{}}}", level)?
+ }
+ }
+
+ Ok(())
+ }
+
+ /// Helper method to write expressions
+ ///
+ /// # Notes
+ /// Doesn't add any newlines or leading/trailing spaces
+ pub(super) fn write_expr(
+ &mut self,
+ module: &Module,
+ expr: Handle<crate::Expression>,
+ func_ctx: &back::FunctionCtx<'_>,
+ ) -> BackendResult {
+ use crate::Expression;
+
+ // Handle the special semantics for base vertex/instance
+ let ff_input = if self.options.special_constants_binding.is_some() {
+ func_ctx.is_fixed_function_input(expr, module)
+ } else {
+ None
+ };
+ let closing_bracket = match ff_input {
+ Some(crate::BuiltIn::VertexIndex) => {
+ write!(self.out, "({}.{} + ", SPECIAL_CBUF_VAR, SPECIAL_BASE_VERTEX)?;
+ ")"
+ }
+ Some(crate::BuiltIn::InstanceIndex) => {
+ write!(
+ self.out,
+ "({}.{} + ",
+ SPECIAL_CBUF_VAR, SPECIAL_BASE_INSTANCE,
+ )?;
+ ")"
+ }
+ Some(crate::BuiltIn::NumWorkGroups) => {
+ //Note: despite their names (`BASE_VERTEX` and `BASE_INSTANCE`),
+ // in compute shaders the special constants contain the number
+ // of workgroups, which we are using here.
+ write!(
+ self.out,
+ "uint3({}.{}, {}.{}, {}.{})",
+ SPECIAL_CBUF_VAR,
+ SPECIAL_BASE_VERTEX,
+ SPECIAL_CBUF_VAR,
+ SPECIAL_BASE_INSTANCE,
+ SPECIAL_CBUF_VAR,
+ SPECIAL_OTHER,
+ )?;
+ return Ok(());
+ }
+ _ => "",
+ };
+
+ if let Some(name) = self.named_expressions.get(&expr) {
+ write!(self.out, "{}{}", name, closing_bracket)?;
+ return Ok(());
+ }
+
+ let expression = &func_ctx.expressions[expr];
+
+ match *expression {
+ Expression::Constant(constant) => self.write_constant(module, constant)?,
+ Expression::Compose { ty, ref components } => {
+ match module.types[ty].inner {
+ TypeInner::Struct { .. } | TypeInner::Array { .. } => {
+ self.write_wrapped_constructor_function_name(
+ module,
+ WrappedConstructor { ty },
+ )?;
+ }
+ _ => {
+ self.write_type(module, ty)?;
+ }
+ };
+
+ write!(self.out, "(")?;
+
+ for (index, &component) in components.iter().enumerate() {
+ if index != 0 {
+ // The leading space is for readability only
+ write!(self.out, ", ")?;
+ }
+ self.write_expr(module, component, func_ctx)?;
+ }
+
+ write!(self.out, ")")?;
+ }
+ // All of the multiplication can be expressed as `mul`,
+ // except vector * vector, which needs to use the "*" operator.
+ Expression::Binary {
+ op: crate::BinaryOperator::Multiply,
+ left,
+ right,
+ } if func_ctx.info[left].ty.inner_with(&module.types).is_matrix()
+ || func_ctx.info[right]
+ .ty
+ .inner_with(&module.types)
+ .is_matrix() =>
+ {
+ // We intentionally flip the order of multiplication as our matrices are implicitly transposed.
+ write!(self.out, "mul(")?;
+ self.write_expr(module, right, func_ctx)?;
+ write!(self.out, ", ")?;
+ self.write_expr(module, left, func_ctx)?;
+ write!(self.out, ")")?;
+ }
+
+ // TODO: handle undefined behavior of BinaryOperator::Modulo
+ //
+ // sint:
+ // if right == 0 return 0
+ // if left == min(type_of(left)) && right == -1 return 0
+ // if sign(left) != sign(right) return result as defined by WGSL
+ //
+ // uint:
+ // if right == 0 return 0
+ //
+ // float:
+ // if right == 0 return ? see https://github.com/gpuweb/gpuweb/issues/2798
+
+ // While HLSL supports float operands with the % operator it is only
+ // defined in cases where both sides are either positive or negative.
+ Expression::Binary {
+ op: crate::BinaryOperator::Modulo,
+ left,
+ right,
+ } if func_ctx.info[left]
+ .ty
+ .inner_with(&module.types)
+ .scalar_kind()
+ == Some(crate::ScalarKind::Float) =>
+ {
+ write!(self.out, "fmod(")?;
+ self.write_expr(module, left, func_ctx)?;
+ write!(self.out, ", ")?;
+ self.write_expr(module, right, func_ctx)?;
+ write!(self.out, ")")?;
+ }
+ Expression::Binary { op, left, right } => {
+ write!(self.out, "(")?;
+ self.write_expr(module, left, func_ctx)?;
+ write!(self.out, " {} ", crate::back::binary_operation_str(op))?;
+ self.write_expr(module, right, func_ctx)?;
+ write!(self.out, ")")?;
+ }
+ Expression::Access { base, index } => {
+ if let Some(crate::AddressSpace::Storage { .. }) = func_ctx.info[expr]
+ .ty
+ .inner_with(&module.types)
+ .pointer_space()
+ {
+ // do nothing, the chain is written on `Load`/`Store`
+ } else {
+ // We use the function __get_col_of_matCx2 here in cases
+ // where `base`s type resolves to a matCx2 and is part of a
+ // struct member with type of (possibly nested) array of matCx2's.
+ //
+ // Note that this only works for `Load`s and we handle
+ // `Store`s differently in `Statement::Store`.
+ if let Some(MatrixType {
+ columns,
+ rows: crate::VectorSize::Bi,
+ width: 4,
+ }) = get_inner_matrix_of_struct_array_member(module, base, func_ctx, true)
+ {
+ write!(self.out, "__get_col_of_mat{}x2(", columns as u8)?;
+ self.write_expr(module, base, func_ctx)?;
+ write!(self.out, ", ")?;
+ self.write_expr(module, index, func_ctx)?;
+ write!(self.out, ")")?;
+ return Ok(());
+ }
+
+ let base_ty_res = &func_ctx.info[base].ty;
+ let resolved = base_ty_res.inner_with(&module.types);
+
+ let non_uniform_qualifier = match *resolved {
+ TypeInner::BindingArray { .. } => {
+ let uniformity = &func_ctx.info[index].uniformity;
+
+ uniformity.non_uniform_result.is_some()
+ }
+ _ => false,
+ };
+
+ self.write_expr(module, base, func_ctx)?;
+ write!(self.out, "[")?;
+ if non_uniform_qualifier {
+ write!(self.out, "NonUniformResourceIndex(")?;
+ }
+ self.write_expr(module, index, func_ctx)?;
+ if non_uniform_qualifier {
+ write!(self.out, ")")?;
+ }
+ write!(self.out, "]")?;
+ }
+ }
+ Expression::AccessIndex { base, index } => {
+ if let Some(crate::AddressSpace::Storage { .. }) = func_ctx.info[expr]
+ .ty
+ .inner_with(&module.types)
+ .pointer_space()
+ {
+ // do nothing, the chain is written on `Load`/`Store`
+ } else {
+ fn write_access<W: fmt::Write>(
+ writer: &mut super::Writer<'_, W>,
+ resolved: &TypeInner,
+ base_ty_handle: Option<Handle<crate::Type>>,
+ index: u32,
+ ) -> BackendResult {
+ match *resolved {
+ // We specifcally lift the ValuePointer to this case. While `[0]` is valid
+ // HLSL for any vector behind a value pointer, FXC completely miscompiles
+ // it and generates completely nonsensical DXBC.
+ //
+ // See https://github.com/gfx-rs/naga/issues/2095 for more details.
+ TypeInner::Vector { .. } | TypeInner::ValuePointer { .. } => {
+ // Write vector access as a swizzle
+ write!(writer.out, ".{}", back::COMPONENTS[index as usize])?
+ }
+ TypeInner::Matrix { .. }
+ | TypeInner::Array { .. }
+ | TypeInner::BindingArray { .. } => write!(writer.out, "[{}]", index)?,
+ TypeInner::Struct { .. } => {
+ // This will never panic in case the type is a `Struct`, this is not true
+ // for other types so we can only check while inside this match arm
+ let ty = base_ty_handle.unwrap();
+
+ write!(
+ writer.out,
+ ".{}",
+ &writer.names[&NameKey::StructMember(ty, index)]
+ )?
+ }
+ ref other => {
+ return Err(Error::Custom(format!("Cannot index {:?}", other)))
+ }
+ }
+ Ok(())
+ }
+
+ // We write the matrix column access in a special way since
+ // the type of `base` is our special __matCx2 struct.
+ if let Some(MatrixType {
+ rows: crate::VectorSize::Bi,
+ width: 4,
+ ..
+ }) = get_inner_matrix_of_struct_array_member(module, base, func_ctx, true)
+ {
+ self.write_expr(module, base, func_ctx)?;
+ write!(self.out, "._{}", index)?;
+ return Ok(());
+ }
+
+ let base_ty_res = &func_ctx.info[base].ty;
+ let mut resolved = base_ty_res.inner_with(&module.types);
+ let base_ty_handle = match *resolved {
+ TypeInner::Pointer { base, .. } => {
+ resolved = &module.types[base].inner;
+ Some(base)
+ }
+ _ => base_ty_res.handle(),
+ };
+
+ // We treat matrices of the form `matCx2` as a sequence of C `vec2`s.
+ // See the module-level block comment in mod.rs for details.
+ //
+ // We handle matrix reconstruction here for Loads.
+ // Stores are handled directly by `Statement::Store`.
+ if let TypeInner::Struct { ref members, .. } = *resolved {
+ let member = &members[index as usize];
+
+ match module.types[member.ty].inner {
+ TypeInner::Matrix {
+ rows: crate::VectorSize::Bi,
+ ..
+ } if member.binding.is_none() => {
+ let ty = base_ty_handle.unwrap();
+ self.write_wrapped_struct_matrix_get_function_name(
+ WrappedStructMatrixAccess { ty, index },
+ )?;
+ write!(self.out, "(")?;
+ self.write_expr(module, base, func_ctx)?;
+ write!(self.out, ")")?;
+ return Ok(());
+ }
+ _ => {}
+ }
+ }
+
+ self.write_expr(module, base, func_ctx)?;
+ write_access(self, resolved, base_ty_handle, index)?;
+ }
+ }
+ Expression::FunctionArgument(pos) => {
+ let key = match func_ctx.ty {
+ back::FunctionType::Function(handle) => NameKey::FunctionArgument(handle, pos),
+ back::FunctionType::EntryPoint(index) => {
+ NameKey::EntryPointArgument(index, pos)
+ }
+ };
+ let name = &self.names[&key];
+ write!(self.out, "{}", name)?;
+ }
+ Expression::ImageSample {
+ image,
+ sampler,
+ gather,
+ coordinate,
+ array_index,
+ offset,
+ level,
+ depth_ref,
+ } => {
+ use crate::SampleLevel as Sl;
+ const COMPONENTS: [&str; 4] = ["", "Green", "Blue", "Alpha"];
+
+ let (base_str, component_str) = match gather {
+ Some(component) => ("Gather", COMPONENTS[component as usize]),
+ None => ("Sample", ""),
+ };
+ let cmp_str = match depth_ref {
+ Some(_) => "Cmp",
+ None => "",
+ };
+ let level_str = match level {
+ Sl::Zero if gather.is_none() => "LevelZero",
+ Sl::Auto | Sl::Zero => "",
+ Sl::Exact(_) => "Level",
+ Sl::Bias(_) => "Bias",
+ Sl::Gradient { .. } => "Grad",
+ };
+
+ self.write_expr(module, image, func_ctx)?;
+ write!(
+ self.out,
+ ".{}{}{}{}(",
+ base_str, cmp_str, component_str, level_str
+ )?;
+ self.write_expr(module, sampler, func_ctx)?;
+ write!(self.out, ", ")?;
+ self.write_texture_coordinates(
+ "float",
+ coordinate,
+ array_index,
+ None,
+ module,
+ func_ctx,
+ )?;
+
+ if let Some(depth_ref) = depth_ref {
+ write!(self.out, ", ")?;
+ self.write_expr(module, depth_ref, func_ctx)?;
+ }
+
+ match level {
+ Sl::Auto | Sl::Zero => {}
+ Sl::Exact(expr) => {
+ write!(self.out, ", ")?;
+ self.write_expr(module, expr, func_ctx)?;
+ }
+ Sl::Bias(expr) => {
+ write!(self.out, ", ")?;
+ self.write_expr(module, expr, func_ctx)?;
+ }
+ Sl::Gradient { x, y } => {
+ write!(self.out, ", ")?;
+ self.write_expr(module, x, func_ctx)?;
+ write!(self.out, ", ")?;
+ self.write_expr(module, y, func_ctx)?;
+ }
+ }
+
+ if let Some(offset) = offset {
+ write!(self.out, ", ")?;
+ self.write_constant(module, offset)?;
+ }
+
+ write!(self.out, ")")?;
+ }
+ Expression::ImageQuery { image, query } => {
+ // use wrapped image query function
+ if let TypeInner::Image {
+ dim,
+ arrayed,
+ class,
+ } = *func_ctx.info[image].ty.inner_with(&module.types)
+ {
+ let wrapped_image_query = WrappedImageQuery {
+ dim,
+ arrayed,
+ class,
+ query: query.into(),
+ };
+
+ self.write_wrapped_image_query_function_name(wrapped_image_query)?;
+ write!(self.out, "(")?;
+ // Image always first param
+ self.write_expr(module, image, func_ctx)?;
+ if let crate::ImageQuery::Size { level: Some(level) } = query {
+ write!(self.out, ", ")?;
+ self.write_expr(module, level, func_ctx)?;
+ }
+ write!(self.out, ")")?;
+ }
+ }
+ Expression::ImageLoad {
+ image,
+ coordinate,
+ array_index,
+ sample,
+ level,
+ } => {
+ // https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-to-load
+ self.write_expr(module, image, func_ctx)?;
+ write!(self.out, ".Load(")?;
+
+ self.write_texture_coordinates(
+ "int",
+ coordinate,
+ array_index,
+ level,
+ module,
+ func_ctx,
+ )?;
+
+ if let Some(sample) = sample {
+ write!(self.out, ", ")?;
+ self.write_expr(module, sample, func_ctx)?;
+ }
+
+ // close bracket for Load function
+ write!(self.out, ")")?;
+
+ // return x component if return type is scalar
+ if let TypeInner::Scalar { .. } = *func_ctx.info[expr].ty.inner_with(&module.types)
+ {
+ write!(self.out, ".x")?;
+ }
+ }
+ Expression::GlobalVariable(handle) => match module.global_variables[handle].space {
+ crate::AddressSpace::Storage { .. } => {}
+ _ => {
+ let name = &self.names[&NameKey::GlobalVariable(handle)];
+ write!(self.out, "{}", name)?;
+ }
+ },
+ Expression::LocalVariable(handle) => {
+ write!(self.out, "{}", self.names[&func_ctx.name_key(handle)])?
+ }
+ Expression::Load { pointer } => {
+ match func_ctx.info[pointer]
+ .ty
+ .inner_with(&module.types)
+ .pointer_space()
+ {
+ Some(crate::AddressSpace::Storage { .. }) => {
+ let var_handle = self.fill_access_chain(module, pointer, func_ctx)?;
+ let result_ty = func_ctx.info[expr].ty.clone();
+ self.write_storage_load(module, var_handle, result_ty, func_ctx)?;
+ }
+ _ => {
+ let mut close_paren = false;
+
+ // We cast the value loaded to a native HLSL floatCx2
+ // in cases where it is of type:
+ // - __matCx2 or
+ // - a (possibly nested) array of __matCx2's
+ if let Some(MatrixType {
+ rows: crate::VectorSize::Bi,
+ width: 4,
+ ..
+ }) = get_inner_matrix_of_struct_array_member(
+ module, pointer, func_ctx, false,
+ )
+ .or_else(|| get_inner_matrix_of_global_uniform(module, pointer, func_ctx))
+ {
+ let mut resolved = func_ctx.info[pointer].ty.inner_with(&module.types);
+ if let TypeInner::Pointer { base, .. } = *resolved {
+ resolved = &module.types[base].inner;
+ }
+
+ write!(self.out, "((")?;
+ if let TypeInner::Array { base, size, .. } = *resolved {
+ self.write_type(module, base)?;
+ self.write_array_size(module, base, size)?;
+ } else {
+ self.write_value_type(module, resolved)?;
+ }
+ write!(self.out, ")")?;
+ close_paren = true;
+ }
+
+ self.write_expr(module, pointer, func_ctx)?;
+
+ if close_paren {
+ write!(self.out, ")")?;
+ }
+ }
+ }
+ }
+ Expression::Unary { op, expr } => {
+ use crate::{ScalarKind as Sk, UnaryOperator as Uo};
+ // https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-operators#unary-operators
+ let op_str = match op {
+ Uo::Negate => "-",
+ Uo::Not => match func_ctx.info[expr]
+ .ty
+ .inner_with(&module.types)
+ .scalar_kind()
+ {
+ Some(Sk::Sint) | Some(Sk::Uint) => "~",
+ Some(Sk::Bool) => "!",
+ ref other => {
+ return Err(Error::Custom(format!(
+ "Cannot apply not to type {:?}",
+ other
+ )))
+ }
+ },
+ };
+ write!(self.out, "{}", op_str)?;
+ self.write_expr(module, expr, func_ctx)?;
+ }
+ Expression::As {
+ expr,
+ kind,
+ convert,
+ } => {
+ let inner = func_ctx.info[expr].ty.inner_with(&module.types);
+ match convert {
+ Some(dst_width) => {
+ match *inner {
+ TypeInner::Vector { size, .. } => {
+ write!(
+ self.out,
+ "{}{}(",
+ kind.to_hlsl_str(dst_width)?,
+ back::vector_size_str(size)
+ )?;
+ }
+ TypeInner::Scalar { .. } => {
+ write!(self.out, "{}(", kind.to_hlsl_str(dst_width)?,)?;
+ }
+ TypeInner::Matrix { columns, rows, .. } => {
+ write!(
+ self.out,
+ "{}{}x{}(",
+ kind.to_hlsl_str(dst_width)?,
+ back::vector_size_str(columns),
+ back::vector_size_str(rows)
+ )?;
+ }
+ _ => {
+ return Err(Error::Unimplemented(format!(
+ "write_expr expression::as {:?}",
+ inner
+ )));
+ }
+ };
+ }
+ None => {
+ write!(self.out, "{}(", kind.to_hlsl_cast(),)?;
+ }
+ }
+ self.write_expr(module, expr, func_ctx)?;
+ write!(self.out, ")")?;
+ }
+ Expression::Math {
+ fun,
+ arg,
+ arg1,
+ arg2,
+ arg3,
+ } => {
+ use crate::MathFunction as Mf;
+
+ enum Function {
+ Asincosh { is_sin: bool },
+ Atanh,
+ Unpack2x16float,
+ Regular(&'static str),
+ MissingIntOverload(&'static str),
+ }
+
+ let fun = match fun {
+ // comparison
+ Mf::Abs => Function::Regular("abs"),
+ Mf::Min => Function::Regular("min"),
+ Mf::Max => Function::Regular("max"),
+ Mf::Clamp => Function::Regular("clamp"),
+ Mf::Saturate => Function::Regular("saturate"),
+ // trigonometry
+ Mf::Cos => Function::Regular("cos"),
+ Mf::Cosh => Function::Regular("cosh"),
+ Mf::Sin => Function::Regular("sin"),
+ Mf::Sinh => Function::Regular("sinh"),
+ Mf::Tan => Function::Regular("tan"),
+ Mf::Tanh => Function::Regular("tanh"),
+ Mf::Acos => Function::Regular("acos"),
+ Mf::Asin => Function::Regular("asin"),
+ Mf::Atan => Function::Regular("atan"),
+ Mf::Atan2 => Function::Regular("atan2"),
+ Mf::Asinh => Function::Asincosh { is_sin: true },
+ Mf::Acosh => Function::Asincosh { is_sin: false },
+ Mf::Atanh => Function::Atanh,
+ Mf::Radians => Function::Regular("radians"),
+ Mf::Degrees => Function::Regular("degrees"),
+ // decomposition
+ Mf::Ceil => Function::Regular("ceil"),
+ Mf::Floor => Function::Regular("floor"),
+ Mf::Round => Function::Regular("round"),
+ Mf::Fract => Function::Regular("frac"),
+ Mf::Trunc => Function::Regular("trunc"),
+ Mf::Modf => Function::Regular("modf"),
+ Mf::Frexp => Function::Regular("frexp"),
+ Mf::Ldexp => Function::Regular("ldexp"),
+ // exponent
+ Mf::Exp => Function::Regular("exp"),
+ Mf::Exp2 => Function::Regular("exp2"),
+ Mf::Log => Function::Regular("log"),
+ Mf::Log2 => Function::Regular("log2"),
+ Mf::Pow => Function::Regular("pow"),
+ // geometry
+ Mf::Dot => Function::Regular("dot"),
+ //Mf::Outer => ,
+ Mf::Cross => Function::Regular("cross"),
+ Mf::Distance => Function::Regular("distance"),
+ Mf::Length => Function::Regular("length"),
+ Mf::Normalize => Function::Regular("normalize"),
+ Mf::FaceForward => Function::Regular("faceforward"),
+ Mf::Reflect => Function::Regular("reflect"),
+ Mf::Refract => Function::Regular("refract"),
+ // computational
+ Mf::Sign => Function::Regular("sign"),
+ Mf::Fma => Function::Regular("mad"),
+ Mf::Mix => Function::Regular("lerp"),
+ Mf::Step => Function::Regular("step"),
+ Mf::SmoothStep => Function::Regular("smoothstep"),
+ Mf::Sqrt => Function::Regular("sqrt"),
+ Mf::InverseSqrt => Function::Regular("rsqrt"),
+ //Mf::Inverse =>,
+ Mf::Transpose => Function::Regular("transpose"),
+ Mf::Determinant => Function::Regular("determinant"),
+ // bits
+ Mf::CountOneBits => Function::MissingIntOverload("countbits"),
+ Mf::ReverseBits => Function::MissingIntOverload("reversebits"),
+ Mf::FindLsb => Function::Regular("firstbitlow"),
+ Mf::FindMsb => Function::Regular("firstbithigh"),
+ Mf::Unpack2x16float => Function::Unpack2x16float,
+ _ => return Err(Error::Unimplemented(format!("write_expr_math {:?}", fun))),
+ };
+
+ match fun {
+ Function::Asincosh { is_sin } => {
+ write!(self.out, "log(")?;
+ self.write_expr(module, arg, func_ctx)?;
+ write!(self.out, " + sqrt(")?;
+ self.write_expr(module, arg, func_ctx)?;
+ write!(self.out, " * ")?;
+ self.write_expr(module, arg, func_ctx)?;
+ match is_sin {
+ true => write!(self.out, " + 1.0))")?,
+ false => write!(self.out, " - 1.0))")?,
+ }
+ }
+ Function::Atanh => {
+ write!(self.out, "0.5 * log((1.0 + ")?;
+ self.write_expr(module, arg, func_ctx)?;
+ write!(self.out, ") / (1.0 - ")?;
+ self.write_expr(module, arg, func_ctx)?;
+ write!(self.out, "))")?;
+ }
+ Function::Unpack2x16float => {
+ write!(self.out, "float2(f16tof32(")?;
+ self.write_expr(module, arg, func_ctx)?;
+ write!(self.out, "), f16tof32((")?;
+ self.write_expr(module, arg, func_ctx)?;
+ write!(self.out, ") >> 16))")?;
+ }
+ Function::Regular(fun_name) => {
+ write!(self.out, "{}(", fun_name)?;
+ self.write_expr(module, arg, func_ctx)?;
+ if let Some(arg) = arg1 {
+ write!(self.out, ", ")?;
+ self.write_expr(module, arg, func_ctx)?;
+ }
+ if let Some(arg) = arg2 {
+ write!(self.out, ", ")?;
+ self.write_expr(module, arg, func_ctx)?;
+ }
+ if let Some(arg) = arg3 {
+ write!(self.out, ", ")?;
+ self.write_expr(module, arg, func_ctx)?;
+ }
+ write!(self.out, ")")?
+ }
+ Function::MissingIntOverload(fun_name) => {
+ let scalar_kind = &func_ctx.info[arg]
+ .ty
+ .inner_with(&module.types)
+ .scalar_kind();
+ if let Some(ScalarKind::Sint) = *scalar_kind {
+ write!(self.out, "asint({}(asuint(", fun_name)?;
+ self.write_expr(module, arg, func_ctx)?;
+ write!(self.out, ")))")?;
+ } else {
+ write!(self.out, "{}(", fun_name)?;
+ self.write_expr(module, arg, func_ctx)?;
+ write!(self.out, ")")?;
+ }
+ }
+ }
+ }
+ Expression::Swizzle {
+ size,
+ vector,
+ pattern,
+ } => {
+ self.write_expr(module, vector, func_ctx)?;
+ write!(self.out, ".")?;
+ for &sc in pattern[..size as usize].iter() {
+ self.out.write_char(back::COMPONENTS[sc as usize])?;
+ }
+ }
+ Expression::ArrayLength(expr) => {
+ let var_handle = match func_ctx.expressions[expr] {
+ Expression::AccessIndex { base, index: _ } => {
+ match func_ctx.expressions[base] {
+ Expression::GlobalVariable(handle) => handle,
+ _ => unreachable!(),
+ }
+ }
+ Expression::GlobalVariable(handle) => handle,
+ _ => unreachable!(),
+ };
+
+ let var = &module.global_variables[var_handle];
+ let (offset, stride) = match module.types[var.ty].inner {
+ TypeInner::Array { stride, .. } => (0, stride),
+ TypeInner::Struct { ref members, .. } => {
+ let last = members.last().unwrap();
+ let stride = match module.types[last.ty].inner {
+ TypeInner::Array { stride, .. } => stride,
+ _ => unreachable!(),
+ };
+ (last.offset, stride)
+ }
+ _ => unreachable!(),
+ };
+
+ let storage_access = match var.space {
+ crate::AddressSpace::Storage { access } => access,
+ _ => crate::StorageAccess::default(),
+ };
+ let wrapped_array_length = WrappedArrayLength {
+ writable: storage_access.contains(crate::StorageAccess::STORE),
+ };
+
+ write!(self.out, "((")?;
+ self.write_wrapped_array_length_function_name(wrapped_array_length)?;
+ let var_name = &self.names[&NameKey::GlobalVariable(var_handle)];
+ write!(self.out, "({}) - {}) / {})", var_name, offset, stride)?
+ }
+ Expression::Derivative { axis, expr } => {
+ use crate::DerivativeAxis as Da;
+
+ let fun_str = match axis {
+ Da::X => "ddx",
+ Da::Y => "ddy",
+ Da::Width => "fwidth",
+ };
+ write!(self.out, "{}(", fun_str)?;
+ self.write_expr(module, expr, func_ctx)?;
+ write!(self.out, ")")?
+ }
+ Expression::Relational { fun, argument } => {
+ use crate::RelationalFunction as Rf;
+
+ let fun_str = match fun {
+ Rf::All => "all",
+ Rf::Any => "any",
+ Rf::IsNan => "isnan",
+ Rf::IsInf => "isinf",
+ Rf::IsFinite => "isfinite",
+ Rf::IsNormal => "isnormal",
+ };
+ write!(self.out, "{}(", fun_str)?;
+ self.write_expr(module, argument, func_ctx)?;
+ write!(self.out, ")")?
+ }
+ Expression::Splat { size, value } => {
+ // hlsl is not supported one value constructor
+ // if we write, for example, int4(0), dxc returns error:
+ // error: too few elements in vector initialization (expected 4 elements, have 1)
+ let number_of_components = match size {
+ crate::VectorSize::Bi => "xx",
+ crate::VectorSize::Tri => "xxx",
+ crate::VectorSize::Quad => "xxxx",
+ };
+ write!(self.out, "(")?;
+ self.write_expr(module, value, func_ctx)?;
+ write!(self.out, ").{}", number_of_components)?
+ }
+ Expression::Select {
+ condition,
+ accept,
+ reject,
+ } => {
+ write!(self.out, "(")?;
+ self.write_expr(module, condition, func_ctx)?;
+ write!(self.out, " ? ")?;
+ self.write_expr(module, accept, func_ctx)?;
+ write!(self.out, " : ")?;
+ self.write_expr(module, reject, func_ctx)?;
+ write!(self.out, ")")?
+ }
+ // Nothing to do here, since call expression already cached
+ Expression::CallResult(_) | Expression::AtomicResult { .. } => {}
+ }
+
+ if !closing_bracket.is_empty() {
+ write!(self.out, "{}", closing_bracket)?;
+ }
+ Ok(())
+ }
+
+ /// Helper method used to write constants
+ ///
+ /// # Notes
+ /// Doesn't add any newlines or leading/trailing spaces
+ fn write_constant(
+ &mut self,
+ module: &Module,
+ handle: Handle<crate::Constant>,
+ ) -> BackendResult {
+ let constant = &module.constants[handle];
+ match constant.inner {
+ crate::ConstantInner::Scalar {
+ width: _,
+ ref value,
+ } => {
+ if constant.name.is_some() {
+ write!(self.out, "{}", &self.names[&NameKey::Constant(handle)])?;
+ } else {
+ self.write_scalar_value(*value)?;
+ }
+ }
+ crate::ConstantInner::Composite { ty, ref components } => {
+ self.write_composite_constant(module, ty, components)?;
+ }
+ }
+
+ Ok(())
+ }
+
+ fn write_composite_constant(
+ &mut self,
+ module: &Module,
+ ty: Handle<crate::Type>,
+ components: &[Handle<crate::Constant>],
+ ) -> BackendResult {
+ match module.types[ty].inner {
+ TypeInner::Struct { .. } | TypeInner::Array { .. } => {
+ self.write_wrapped_constructor_function_name(module, WrappedConstructor { ty })?;
+ }
+ _ => {
+ self.write_type(module, ty)?;
+ }
+ };
+ write!(self.out, "(")?;
+ for (index, constant) in components.iter().enumerate() {
+ self.write_constant(module, *constant)?;
+ // Only write a comma if isn't the last element
+ if index != components.len().saturating_sub(1) {
+ // The leading space is for readability only
+ write!(self.out, ", ")?;
+ }
+ }
+ write!(self.out, ")")?;
+
+ Ok(())
+ }
+
+ /// Helper method used to write [`ScalarValue`](crate::ScalarValue)
+ ///
+ /// # Notes
+ /// Adds no trailing or leading whitespace
+ fn write_scalar_value(&mut self, value: crate::ScalarValue) -> BackendResult {
+ use crate::ScalarValue as Sv;
+
+ match value {
+ Sv::Sint(value) => write!(self.out, "{}", value)?,
+ Sv::Uint(value) => write!(self.out, "{}u", value)?,
+ // Floats are written using `Debug` instead of `Display` because it always appends the
+ // decimal part even it's zero
+ Sv::Float(value) => write!(self.out, "{:?}", value)?,
+ Sv::Bool(value) => write!(self.out, "{}", value)?,
+ }
+
+ Ok(())
+ }
+
+ fn write_named_expr(
+ &mut self,
+ module: &Module,
+ handle: Handle<crate::Expression>,
+ name: String,
+ ctx: &back::FunctionCtx,
+ ) -> BackendResult {
+ match ctx.info[handle].ty {
+ proc::TypeResolution::Handle(ty_handle) => match module.types[ty_handle].inner {
+ TypeInner::Struct { .. } => {
+ let ty_name = &self.names[&NameKey::Type(ty_handle)];
+ write!(self.out, "{}", ty_name)?;
+ }
+ _ => {
+ self.write_type(module, ty_handle)?;
+ }
+ },
+ proc::TypeResolution::Value(ref inner) => {
+ self.write_value_type(module, inner)?;
+ }
+ }
+
+ let base_ty_res = &ctx.info[handle].ty;
+ let resolved = base_ty_res.inner_with(&module.types);
+
+ write!(self.out, " {}", name)?;
+ // If rhs is a array type, we should write array size
+ if let TypeInner::Array { base, size, .. } = *resolved {
+ self.write_array_size(module, base, size)?;
+ }
+ write!(self.out, " = ")?;
+ self.write_expr(module, handle, ctx)?;
+ writeln!(self.out, ";")?;
+ self.named_expressions.insert(handle, name);
+
+ Ok(())
+ }
+
+ /// Helper function that write default zero initialization
+ fn write_default_init(&mut self, module: &Module, ty: Handle<crate::Type>) -> BackendResult {
+ match module.types[ty].inner {
+ TypeInner::Array {
+ size: crate::ArraySize::Constant(const_handle),
+ base,
+ ..
+ } => {
+ write!(self.out, "{{")?;
+ let count = module.constants[const_handle].to_array_length().unwrap();
+ for i in 0..count {
+ if i != 0 {
+ write!(self.out, ",")?;
+ }
+ self.write_default_init(module, base)?;
+ }
+ write!(self.out, "}}")?;
+ }
+ _ => {
+ write!(self.out, "(")?;
+ self.write_type(module, ty)?;
+ write!(self.out, ")0")?;
+ }
+ }
+ Ok(())
+ }
+}
+
+pub(super) struct MatrixType {
+ pub(super) columns: crate::VectorSize,
+ pub(super) rows: crate::VectorSize,
+ pub(super) width: crate::Bytes,
+}
+
+pub(super) fn get_inner_matrix_data(
+ module: &Module,
+ handle: Handle<crate::Type>,
+) -> Option<MatrixType> {
+ match module.types[handle].inner {
+ TypeInner::Matrix {
+ columns,
+ rows,
+ width,
+ } => Some(MatrixType {
+ columns,
+ rows,
+ width,
+ }),
+ TypeInner::Array { base, .. } => get_inner_matrix_data(module, base),
+ _ => None,
+ }
+}
+
+/// Returns the matrix data if the access chain starting at `base`:
+/// - starts with an expression with resolved type of [`TypeInner::Matrix`] if `direct = true`
+/// - contains one or more expressions with resolved type of [`TypeInner::Array`] of [`TypeInner::Matrix`]
+/// - ends at an expression with resolved type of [`TypeInner::Struct`]
+pub(super) fn get_inner_matrix_of_struct_array_member(
+ module: &Module,
+ base: Handle<crate::Expression>,
+ func_ctx: &back::FunctionCtx<'_>,
+ direct: bool,
+) -> Option<MatrixType> {
+ let mut mat_data = None;
+ let mut array_base = None;
+
+ let mut current_base = base;
+ loop {
+ let mut resolved = func_ctx.info[current_base].ty.inner_with(&module.types);
+ if let TypeInner::Pointer { base, .. } = *resolved {
+ resolved = &module.types[base].inner;
+ };
+
+ match *resolved {
+ TypeInner::Matrix {
+ columns,
+ rows,
+ width,
+ } => {
+ mat_data = Some(MatrixType {
+ columns,
+ rows,
+ width,
+ })
+ }
+ TypeInner::Array { base, .. } => {
+ array_base = Some(base);
+ }
+ TypeInner::Struct { .. } => {
+ if let Some(array_base) = array_base {
+ if direct {
+ return mat_data;
+ } else {
+ return get_inner_matrix_data(module, array_base);
+ }
+ }
+
+ break;
+ }
+ _ => break,
+ }
+
+ current_base = match func_ctx.expressions[current_base] {
+ crate::Expression::Access { base, .. } => base,
+ crate::Expression::AccessIndex { base, .. } => base,
+ _ => break,
+ };
+ }
+ None
+}
+
+/// Returns the matrix data if the access chain starting at `base`:
+/// - starts with an expression with resolved type of [`TypeInner::Matrix`]
+/// - contains zero or more expressions with resolved type of [`TypeInner::Array`] of [`TypeInner::Matrix`]
+/// - ends with an [`Expression::GlobalVariable`](crate::Expression::GlobalVariable) in [`AddressSpace::Uniform`](crate::AddressSpace::Uniform)
+fn get_inner_matrix_of_global_uniform(
+ module: &Module,
+ base: Handle<crate::Expression>,
+ func_ctx: &back::FunctionCtx<'_>,
+) -> Option<MatrixType> {
+ let mut mat_data = None;
+ let mut array_base = None;
+
+ let mut current_base = base;
+ loop {
+ let mut resolved = func_ctx.info[current_base].ty.inner_with(&module.types);
+ if let TypeInner::Pointer { base, .. } = *resolved {
+ resolved = &module.types[base].inner;
+ };
+
+ match *resolved {
+ TypeInner::Matrix {
+ columns,
+ rows,
+ width,
+ } => {
+ mat_data = Some(MatrixType {
+ columns,
+ rows,
+ width,
+ })
+ }
+ TypeInner::Array { base, .. } => {
+ array_base = Some(base);
+ }
+ _ => break,
+ }
+
+ current_base = match func_ctx.expressions[current_base] {
+ crate::Expression::Access { base, .. } => base,
+ crate::Expression::AccessIndex { base, .. } => base,
+ crate::Expression::GlobalVariable(handle)
+ if module.global_variables[handle].space == crate::AddressSpace::Uniform =>
+ {
+ return mat_data.or_else(|| {
+ array_base.and_then(|array_base| get_inner_matrix_data(module, array_base))
+ })
+ }
+ _ => break,
+ };
+ }
+ None
+}