summaryrefslogtreecommitdiffstats
path: root/third_party/rust/naga/src/back/spv/index.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
commit43a97878ce14b72f0981164f87f2e35e14151312 (patch)
tree620249daf56c0258faa40cbdcf9cfba06de2a846 /third_party/rust/naga/src/back/spv/index.rs
parentInitial commit. (diff)
downloadfirefox-43a97878ce14b72f0981164f87f2e35e14151312.tar.xz
firefox-43a97878ce14b72f0981164f87f2e35e14151312.zip
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/naga/src/back/spv/index.rs')
-rw-r--r--third_party/rust/naga/src/back/spv/index.rs417
1 files changed, 417 insertions, 0 deletions
diff --git a/third_party/rust/naga/src/back/spv/index.rs b/third_party/rust/naga/src/back/spv/index.rs
new file mode 100644
index 0000000000..d2cbdf4d6d
--- /dev/null
+++ b/third_party/rust/naga/src/back/spv/index.rs
@@ -0,0 +1,417 @@
+/*!
+Bounds-checking for SPIR-V output.
+*/
+
+use super::{
+ helpers::global_needs_wrapper, selection::Selection, Block, BlockContext, Error, IdGenerator,
+ Instruction, Word,
+};
+use crate::{arena::Handle, proc::BoundsCheckPolicy};
+
+/// The results of performing a bounds check.
+///
+/// On success, `write_bounds_check` returns a value of this type.
+pub(super) enum BoundsCheckResult {
+ /// The index is statically known and in bounds, with the given value.
+ KnownInBounds(u32),
+
+ /// The given instruction computes the index to be used.
+ Computed(Word),
+
+ /// The given instruction computes a boolean condition which is true
+ /// if the index is in bounds.
+ Conditional(Word),
+}
+
+/// A value that we either know at translation time, or need to compute at runtime.
+pub(super) enum MaybeKnown<T> {
+ /// The value is known at shader translation time.
+ Known(T),
+
+ /// The value is computed by the instruction with the given id.
+ Computed(Word),
+}
+
+impl<'w> BlockContext<'w> {
+ /// Emit code to compute the length of a run-time array.
+ ///
+ /// Given `array`, an expression referring a runtime-sized array, return the
+ /// instruction id for the array's length.
+ pub(super) fn write_runtime_array_length(
+ &mut self,
+ array: Handle<crate::Expression>,
+ block: &mut Block,
+ ) -> Result<Word, Error> {
+ // Naga IR permits runtime-sized arrays as global variables or as the
+ // final member of a struct that is a global variable. SPIR-V permits
+ // only the latter, so this back end wraps bare runtime-sized arrays
+ // in a made-up struct; see `helpers::global_needs_wrapper` and its uses.
+ // This code must handle both cases.
+ let (structure_id, last_member_index) = match self.ir_function.expressions[array] {
+ crate::Expression::AccessIndex { base, index } => {
+ match self.ir_function.expressions[base] {
+ crate::Expression::GlobalVariable(handle) => (
+ self.writer.global_variables[handle.index()].access_id,
+ index,
+ ),
+ _ => return Err(Error::Validation("array length expression")),
+ }
+ }
+ crate::Expression::GlobalVariable(handle) => {
+ let global = &self.ir_module.global_variables[handle];
+ if !global_needs_wrapper(self.ir_module, global) {
+ return Err(Error::Validation("array length expression"));
+ }
+
+ (self.writer.global_variables[handle.index()].var_id, 0)
+ }
+ _ => return Err(Error::Validation("array length expression")),
+ };
+
+ let length_id = self.gen_id();
+ block.body.push(Instruction::array_length(
+ self.writer.get_uint_type_id(),
+ length_id,
+ structure_id,
+ last_member_index,
+ ));
+
+ Ok(length_id)
+ }
+
+ /// Compute the length of a subscriptable value.
+ ///
+ /// Given `sequence`, an expression referring to some indexable type, return
+ /// its length. The result may either be computed by SPIR-V instructions, or
+ /// known at shader translation time.
+ ///
+ /// `sequence` may be a `Vector`, `Matrix`, or `Array`, a `Pointer` to any
+ /// of those, or a `ValuePointer`. An array may be fixed-size, dynamically
+ /// sized, or use a specializable constant as its length.
+ fn write_sequence_length(
+ &mut self,
+ sequence: Handle<crate::Expression>,
+ block: &mut Block,
+ ) -> Result<MaybeKnown<u32>, Error> {
+ let sequence_ty = self.fun_info[sequence].ty.inner_with(&self.ir_module.types);
+ match sequence_ty.indexable_length(self.ir_module) {
+ Ok(crate::proc::IndexableLength::Known(known_length)) => {
+ Ok(MaybeKnown::Known(known_length))
+ }
+ Ok(crate::proc::IndexableLength::Dynamic) => {
+ let length_id = self.write_runtime_array_length(sequence, block)?;
+ Ok(MaybeKnown::Computed(length_id))
+ }
+ Err(err) => {
+ log::error!("Sequence length for {:?} failed: {}", sequence, err);
+ Err(Error::Validation("indexable length"))
+ }
+ }
+ }
+
+ /// Compute the maximum valid index of a subscriptable value.
+ ///
+ /// Given `sequence`, an expression referring to some indexable type, return
+ /// its maximum valid index - one less than its length. The result may
+ /// either be computed, or known at shader translation time.
+ ///
+ /// `sequence` may be a `Vector`, `Matrix`, or `Array`, a `Pointer` to any
+ /// of those, or a `ValuePointer`. An array may be fixed-size, dynamically
+ /// sized, or use a specializable constant as its length.
+ fn write_sequence_max_index(
+ &mut self,
+ sequence: Handle<crate::Expression>,
+ block: &mut Block,
+ ) -> Result<MaybeKnown<u32>, Error> {
+ match self.write_sequence_length(sequence, block)? {
+ MaybeKnown::Known(known_length) => {
+ // We should have thrown out all attempts to subscript zero-length
+ // sequences during validation, so the following subtraction should never
+ // underflow.
+ assert!(known_length > 0);
+ // Compute the max index from the length now.
+ Ok(MaybeKnown::Known(known_length - 1))
+ }
+ MaybeKnown::Computed(length_id) => {
+ // Emit code to compute the max index from the length.
+ let const_one_id = self.get_index_constant(1);
+ let max_index_id = self.gen_id();
+ block.body.push(Instruction::binary(
+ spirv::Op::ISub,
+ self.writer.get_uint_type_id(),
+ max_index_id,
+ length_id,
+ const_one_id,
+ ));
+ Ok(MaybeKnown::Computed(max_index_id))
+ }
+ }
+ }
+
+ /// Restrict an index to be in range for a vector, matrix, or array.
+ ///
+ /// This is used to implement `BoundsCheckPolicy::Restrict`. An in-bounds
+ /// index is left unchanged. An out-of-bounds index is replaced with some
+ /// arbitrary in-bounds index. Note,this is not necessarily clamping; for
+ /// example, negative indices might be changed to refer to the last element
+ /// of the sequence, not the first, as clamping would do.
+ ///
+ /// Either return the restricted index value, if known, or add instructions
+ /// to `block` to compute it, and return the id of the result. See the
+ /// documentation for `BoundsCheckResult` for details.
+ ///
+ /// The `sequence` expression may be a `Vector`, `Matrix`, or `Array`, a
+ /// `Pointer` to any of those, or a `ValuePointer`. An array may be
+ /// fixed-size, dynamically sized, or use a specializable constant as its
+ /// length.
+ pub(super) fn write_restricted_index(
+ &mut self,
+ sequence: Handle<crate::Expression>,
+ index: Handle<crate::Expression>,
+ block: &mut Block,
+ ) -> Result<BoundsCheckResult, Error> {
+ let index_id = self.cached[index];
+
+ // Get the sequence's maximum valid index. Return early if we've already
+ // done the bounds check.
+ let max_index_id = match self.write_sequence_max_index(sequence, block)? {
+ MaybeKnown::Known(known_max_index) => {
+ if let crate::Expression::Constant(index_k) = self.ir_function.expressions[index] {
+ if let Some(known_index) = self.ir_module.constants[index_k].to_array_length() {
+ // Both the index and length are known at compile time.
+ //
+ // In strict WGSL compliance mode, out-of-bounds indices cannot be
+ // reported at shader translation time, and must be replaced with
+ // in-bounds indices at run time. So we cannot assume that
+ // validation ensured the index was in bounds. Restrict now.
+ let restricted = std::cmp::min(known_index, known_max_index);
+ return Ok(BoundsCheckResult::KnownInBounds(restricted));
+ }
+ }
+
+ self.get_index_constant(known_max_index)
+ }
+ MaybeKnown::Computed(max_index_id) => max_index_id,
+ };
+
+ // One or the other of the index or length is dynamic, so emit code for
+ // BoundsCheckPolicy::Restrict.
+ let restricted_index_id = self.gen_id();
+ block.body.push(Instruction::ext_inst(
+ self.writer.gl450_ext_inst_id,
+ spirv::GLOp::UMin,
+ self.writer.get_uint_type_id(),
+ restricted_index_id,
+ &[index_id, max_index_id],
+ ));
+ Ok(BoundsCheckResult::Computed(restricted_index_id))
+ }
+
+ /// Write an index bounds comparison to `block`, if needed.
+ ///
+ /// If we're able to determine statically that `index` is in bounds for
+ /// `sequence`, return `KnownInBounds(value)`, where `value` is the actual
+ /// value of the index. (In principle, one could know that the index is in
+ /// bounds without knowing its specific value, but in our simple-minded
+ /// situation, we always know it.)
+ ///
+ /// If instead we must generate code to perform the comparison at run time,
+ /// return `Conditional(comparison_id)`, where `comparison_id` is an
+ /// instruction producing a boolean value that is true if `index` is in
+ /// bounds for `sequence`.
+ ///
+ /// The `sequence` expression may be a `Vector`, `Matrix`, or `Array`, a
+ /// `Pointer` to any of those, or a `ValuePointer`. An array may be
+ /// fixed-size, dynamically sized, or use a specializable constant as its
+ /// length.
+ fn write_index_comparison(
+ &mut self,
+ sequence: Handle<crate::Expression>,
+ index: Handle<crate::Expression>,
+ block: &mut Block,
+ ) -> Result<BoundsCheckResult, Error> {
+ let index_id = self.cached[index];
+
+ // Get the sequence's length. Return early if we've already done the
+ // bounds check.
+ let length_id = match self.write_sequence_length(sequence, block)? {
+ MaybeKnown::Known(known_length) => {
+ if let crate::Expression::Constant(index_k) = self.ir_function.expressions[index] {
+ if let Some(known_index) = self.ir_module.constants[index_k].to_array_length() {
+ // Both the index and length are known at compile time.
+ //
+ // It would be nice to assume that, since we are using the
+ // `ReadZeroSkipWrite` policy, we are not in strict WGSL
+ // compliance mode, and thus we can count on the validator to have
+ // rejected any programs with known out-of-bounds indices, and
+ // thus just return `KnownInBounds` here without actually
+ // checking.
+ //
+ // But it's also reasonable to expect that bounds check policies
+ // and error reporting policies should be able to vary
+ // independently without introducing security holes. So, we should
+ // support the case where bad indices do not cause validation
+ // errors, and are handled via `ReadZeroSkipWrite`.
+ //
+ // In theory, when `known_index` is bad, we could return a new
+ // `KnownOutOfBounds` variant here. But it's simpler just to fall
+ // through and let the bounds check take place. The shader is
+ // broken anyway, so it doesn't make sense to invest in emitting
+ // the ideal code for it.
+ if known_index < known_length {
+ return Ok(BoundsCheckResult::KnownInBounds(known_index));
+ }
+ }
+ }
+
+ self.get_index_constant(known_length)
+ }
+ MaybeKnown::Computed(length_id) => length_id,
+ };
+
+ // Compare the index against the length.
+ let condition_id = self.gen_id();
+ block.body.push(Instruction::binary(
+ spirv::Op::ULessThan,
+ self.writer.get_bool_type_id(),
+ condition_id,
+ index_id,
+ length_id,
+ ));
+
+ // Indicate that we did generate the check.
+ Ok(BoundsCheckResult::Conditional(condition_id))
+ }
+
+ /// Emit a conditional load for `BoundsCheckPolicy::ReadZeroSkipWrite`.
+ ///
+ /// Generate code to load a value of `result_type` if `condition` is true,
+ /// and generate a null value of that type if it is false. Call `emit_load`
+ /// to emit the instructions to perform the load. Return the id of the
+ /// merged value of the two branches.
+ pub(super) fn write_conditional_indexed_load<F>(
+ &mut self,
+ result_type: Word,
+ condition: Word,
+ block: &mut Block,
+ emit_load: F,
+ ) -> Word
+ where
+ F: FnOnce(&mut IdGenerator, &mut Block) -> Word,
+ {
+ // For the out-of-bounds case, we produce a zero value.
+ let null_id = self.writer.write_constant_null(result_type);
+
+ let mut selection = Selection::start(block, result_type);
+
+ // As it turns out, we don't actually need a full 'if-then-else'
+ // structure for this: SPIR-V constants are declared up front, so the
+ // 'else' block would have no instructions. Instead we emit something
+ // like this:
+ //
+ // result = zero;
+ // if in_bounds {
+ // result = do the load;
+ // }
+ // use result;
+
+ // Continue only if the index was in bounds. Otherwise, branch to the
+ // merge block.
+ selection.if_true(self, condition, null_id);
+
+ // The in-bounds path. Perform the access and the load.
+ let loaded_value = emit_load(&mut self.writer.id_gen, selection.block());
+
+ selection.finish(self, loaded_value)
+ }
+
+ /// Emit code for bounds checks for an array, vector, or matrix access.
+ ///
+ /// This implements either `index_bounds_check_policy` or
+ /// `buffer_bounds_check_policy`, depending on the address space of the
+ /// pointer being accessed.
+ ///
+ /// Return a `BoundsCheckResult` indicating how the index should be
+ /// consumed. See that type's documentation for details.
+ pub(super) fn write_bounds_check(
+ &mut self,
+ base: Handle<crate::Expression>,
+ index: Handle<crate::Expression>,
+ block: &mut Block,
+ ) -> Result<BoundsCheckResult, Error> {
+ let policy = self.writer.bounds_check_policies.choose_policy(
+ base,
+ &self.ir_module.types,
+ self.fun_info,
+ );
+
+ Ok(match policy {
+ BoundsCheckPolicy::Restrict => self.write_restricted_index(base, index, block)?,
+ BoundsCheckPolicy::ReadZeroSkipWrite => {
+ self.write_index_comparison(base, index, block)?
+ }
+ BoundsCheckPolicy::Unchecked => BoundsCheckResult::Computed(self.cached[index]),
+ })
+ }
+
+ /// Emit code to subscript a vector by value with a computed index.
+ ///
+ /// Return the id of the element value.
+ pub(super) fn write_vector_access(
+ &mut self,
+ expr_handle: Handle<crate::Expression>,
+ base: Handle<crate::Expression>,
+ index: Handle<crate::Expression>,
+ block: &mut Block,
+ ) -> Result<Word, Error> {
+ let result_type_id = self.get_expression_type_id(&self.fun_info[expr_handle].ty);
+
+ let base_id = self.cached[base];
+ let index_id = self.cached[index];
+
+ let result_id = match self.write_bounds_check(base, index, block)? {
+ BoundsCheckResult::KnownInBounds(known_index) => {
+ let result_id = self.gen_id();
+ block.body.push(Instruction::composite_extract(
+ result_type_id,
+ result_id,
+ base_id,
+ &[known_index],
+ ));
+ result_id
+ }
+ BoundsCheckResult::Computed(computed_index_id) => {
+ let result_id = self.gen_id();
+ block.body.push(Instruction::vector_extract_dynamic(
+ result_type_id,
+ result_id,
+ base_id,
+ computed_index_id,
+ ));
+ result_id
+ }
+ BoundsCheckResult::Conditional(comparison_id) => {
+ // Run-time bounds checks were required. Emit
+ // conditional load.
+ self.write_conditional_indexed_load(
+ result_type_id,
+ comparison_id,
+ block,
+ |id_gen, block| {
+ // The in-bounds path. Generate the access.
+ let element_id = id_gen.next();
+ block.body.push(Instruction::vector_extract_dynamic(
+ result_type_id,
+ element_id,
+ base_id,
+ index_id,
+ ));
+ element_id
+ },
+ )
+ }
+ };
+
+ Ok(result_id)
+ }
+}