diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
commit | 43a97878ce14b72f0981164f87f2e35e14151312 (patch) | |
tree | 620249daf56c0258faa40cbdcf9cfba06de2a846 /third_party/rust/num-integer/benches/gcd.rs | |
parent | Initial commit. (diff) | |
download | firefox-43a97878ce14b72f0981164f87f2e35e14151312.tar.xz firefox-43a97878ce14b72f0981164f87f2e35e14151312.zip |
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/num-integer/benches/gcd.rs')
-rw-r--r-- | third_party/rust/num-integer/benches/gcd.rs | 176 |
1 files changed, 176 insertions, 0 deletions
diff --git a/third_party/rust/num-integer/benches/gcd.rs b/third_party/rust/num-integer/benches/gcd.rs new file mode 100644 index 0000000000..082d5ee09d --- /dev/null +++ b/third_party/rust/num-integer/benches/gcd.rs @@ -0,0 +1,176 @@ +//! Benchmark comparing the current GCD implemtation against an older one. + +#![feature(test)] + +extern crate num_integer; +extern crate num_traits; +extern crate test; + +use num_integer::Integer; +use num_traits::{AsPrimitive, Bounded, Signed}; +use test::{black_box, Bencher}; + +trait GcdOld: Integer { + fn gcd_old(&self, other: &Self) -> Self; +} + +macro_rules! impl_gcd_old_for_isize { + ($T:ty) => { + impl GcdOld for $T { + /// Calculates the Greatest Common Divisor (GCD) of the number and + /// `other`. The result is always positive. + #[inline] + fn gcd_old(&self, other: &Self) -> Self { + // Use Stein's algorithm + let mut m = *self; + let mut n = *other; + if m == 0 || n == 0 { + return (m | n).abs(); + } + + // find common factors of 2 + let shift = (m | n).trailing_zeros(); + + // The algorithm needs positive numbers, but the minimum value + // can't be represented as a positive one. + // It's also a power of two, so the gcd can be + // calculated by bitshifting in that case + + // Assuming two's complement, the number created by the shift + // is positive for all numbers except gcd = abs(min value) + // The call to .abs() causes a panic in debug mode + if m == Self::min_value() || n == Self::min_value() { + return (1 << shift).abs(); + } + + // guaranteed to be positive now, rest like unsigned algorithm + m = m.abs(); + n = n.abs(); + + // divide n and m by 2 until odd + // m inside loop + n >>= n.trailing_zeros(); + + while m != 0 { + m >>= m.trailing_zeros(); + if n > m { + std::mem::swap(&mut n, &mut m) + } + m -= n; + } + + n << shift + } + } + }; +} + +impl_gcd_old_for_isize!(i8); +impl_gcd_old_for_isize!(i16); +impl_gcd_old_for_isize!(i32); +impl_gcd_old_for_isize!(i64); +impl_gcd_old_for_isize!(isize); +impl_gcd_old_for_isize!(i128); + +macro_rules! impl_gcd_old_for_usize { + ($T:ty) => { + impl GcdOld for $T { + /// Calculates the Greatest Common Divisor (GCD) of the number and + /// `other`. The result is always positive. + #[inline] + fn gcd_old(&self, other: &Self) -> Self { + // Use Stein's algorithm + let mut m = *self; + let mut n = *other; + if m == 0 || n == 0 { + return m | n; + } + + // find common factors of 2 + let shift = (m | n).trailing_zeros(); + + // divide n and m by 2 until odd + // m inside loop + n >>= n.trailing_zeros(); + + while m != 0 { + m >>= m.trailing_zeros(); + if n > m { + std::mem::swap(&mut n, &mut m) + } + m -= n; + } + + n << shift + } + } + }; +} + +impl_gcd_old_for_usize!(u8); +impl_gcd_old_for_usize!(u16); +impl_gcd_old_for_usize!(u32); +impl_gcd_old_for_usize!(u64); +impl_gcd_old_for_usize!(usize); +impl_gcd_old_for_usize!(u128); + +/// Return an iterator that yields all Fibonacci numbers fitting into a u128. +fn fibonacci() -> impl Iterator<Item = u128> { + (0..185).scan((0, 1), |&mut (ref mut a, ref mut b), _| { + let tmp = *a; + *a = *b; + *b += tmp; + Some(*b) + }) +} + +fn run_bench<T: Integer + Bounded + Copy + 'static>(b: &mut Bencher, gcd: fn(&T, &T) -> T) +where + T: AsPrimitive<u128>, + u128: AsPrimitive<T>, +{ + let max_value: u128 = T::max_value().as_(); + let pairs: Vec<(T, T)> = fibonacci() + .collect::<Vec<_>>() + .windows(2) + .filter(|&pair| pair[0] <= max_value && pair[1] <= max_value) + .map(|pair| (pair[0].as_(), pair[1].as_())) + .collect(); + b.iter(|| { + for &(ref m, ref n) in &pairs { + black_box(gcd(m, n)); + } + }); +} + +macro_rules! bench_gcd { + ($T:ident) => { + mod $T { + use crate::{run_bench, GcdOld}; + use num_integer::Integer; + use test::Bencher; + + #[bench] + fn bench_gcd(b: &mut Bencher) { + run_bench(b, $T::gcd); + } + + #[bench] + fn bench_gcd_old(b: &mut Bencher) { + run_bench(b, $T::gcd_old); + } + } + }; +} + +bench_gcd!(u8); +bench_gcd!(u16); +bench_gcd!(u32); +bench_gcd!(u64); +bench_gcd!(u128); + +bench_gcd!(i8); +bench_gcd!(i16); +bench_gcd!(i32); +bench_gcd!(i64); +bench_gcd!(i128); |