diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
commit | 43a97878ce14b72f0981164f87f2e35e14151312 (patch) | |
tree | 620249daf56c0258faa40cbdcf9cfba06de2a846 /third_party/rust/rand/src/distributions/distribution.rs | |
parent | Initial commit. (diff) | |
download | firefox-43a97878ce14b72f0981164f87f2e35e14151312.tar.xz firefox-43a97878ce14b72f0981164f87f2e35e14151312.zip |
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/rand/src/distributions/distribution.rs')
-rw-r--r-- | third_party/rust/rand/src/distributions/distribution.rs | 272 |
1 files changed, 272 insertions, 0 deletions
diff --git a/third_party/rust/rand/src/distributions/distribution.rs b/third_party/rust/rand/src/distributions/distribution.rs new file mode 100644 index 0000000000..c5cf6a607b --- /dev/null +++ b/third_party/rust/rand/src/distributions/distribution.rs @@ -0,0 +1,272 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2013-2017 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Distribution trait and associates + +use crate::Rng; +use core::iter; +#[cfg(feature = "alloc")] +use alloc::string::String; + +/// Types (distributions) that can be used to create a random instance of `T`. +/// +/// It is possible to sample from a distribution through both the +/// `Distribution` and [`Rng`] traits, via `distr.sample(&mut rng)` and +/// `rng.sample(distr)`. They also both offer the [`sample_iter`] method, which +/// produces an iterator that samples from the distribution. +/// +/// All implementations are expected to be immutable; this has the significant +/// advantage of not needing to consider thread safety, and for most +/// distributions efficient state-less sampling algorithms are available. +/// +/// Implementations are typically expected to be portable with reproducible +/// results when used with a PRNG with fixed seed; see the +/// [portability chapter](https://rust-random.github.io/book/portability.html) +/// of The Rust Rand Book. In some cases this does not apply, e.g. the `usize` +/// type requires different sampling on 32-bit and 64-bit machines. +/// +/// [`sample_iter`]: Distribution::sample_iter +pub trait Distribution<T> { + /// Generate a random value of `T`, using `rng` as the source of randomness. + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T; + + /// Create an iterator that generates random values of `T`, using `rng` as + /// the source of randomness. + /// + /// Note that this function takes `self` by value. This works since + /// `Distribution<T>` is impl'd for `&D` where `D: Distribution<T>`, + /// however borrowing is not automatic hence `distr.sample_iter(...)` may + /// need to be replaced with `(&distr).sample_iter(...)` to borrow or + /// `(&*distr).sample_iter(...)` to reborrow an existing reference. + /// + /// # Example + /// + /// ``` + /// use rand::thread_rng; + /// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard}; + /// + /// let mut rng = thread_rng(); + /// + /// // Vec of 16 x f32: + /// let v: Vec<f32> = Standard.sample_iter(&mut rng).take(16).collect(); + /// + /// // String: + /// let s: String = Alphanumeric + /// .sample_iter(&mut rng) + /// .take(7) + /// .map(char::from) + /// .collect(); + /// + /// // Dice-rolling: + /// let die_range = Uniform::new_inclusive(1, 6); + /// let mut roll_die = die_range.sample_iter(&mut rng); + /// while roll_die.next().unwrap() != 6 { + /// println!("Not a 6; rolling again!"); + /// } + /// ``` + fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> + where + R: Rng, + Self: Sized, + { + DistIter { + distr: self, + rng, + phantom: ::core::marker::PhantomData, + } + } + + /// Create a distribution of values of 'S' by mapping the output of `Self` + /// through the closure `F` + /// + /// # Example + /// + /// ``` + /// use rand::thread_rng; + /// use rand::distributions::{Distribution, Uniform}; + /// + /// let mut rng = thread_rng(); + /// + /// let die = Uniform::new_inclusive(1, 6); + /// let even_number = die.map(|num| num % 2 == 0); + /// while !even_number.sample(&mut rng) { + /// println!("Still odd; rolling again!"); + /// } + /// ``` + fn map<F, S>(self, func: F) -> DistMap<Self, F, T, S> + where + F: Fn(T) -> S, + Self: Sized, + { + DistMap { + distr: self, + func, + phantom: ::core::marker::PhantomData, + } + } +} + +impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T { + (*self).sample(rng) + } +} + +/// An iterator that generates random values of `T` with distribution `D`, +/// using `R` as the source of randomness. +/// +/// This `struct` is created by the [`sample_iter`] method on [`Distribution`]. +/// See its documentation for more. +/// +/// [`sample_iter`]: Distribution::sample_iter +#[derive(Debug)] +pub struct DistIter<D, R, T> { + distr: D, + rng: R, + phantom: ::core::marker::PhantomData<T>, +} + +impl<D, R, T> Iterator for DistIter<D, R, T> +where + D: Distribution<T>, + R: Rng, +{ + type Item = T; + + #[inline(always)] + fn next(&mut self) -> Option<T> { + // Here, self.rng may be a reference, but we must take &mut anyway. + // Even if sample could take an R: Rng by value, we would need to do this + // since Rng is not copyable and we cannot enforce that this is "reborrowable". + Some(self.distr.sample(&mut self.rng)) + } + + fn size_hint(&self) -> (usize, Option<usize>) { + (usize::max_value(), None) + } +} + +impl<D, R, T> iter::FusedIterator for DistIter<D, R, T> +where + D: Distribution<T>, + R: Rng, +{ +} + +#[cfg(features = "nightly")] +impl<D, R, T> iter::TrustedLen for DistIter<D, R, T> +where + D: Distribution<T>, + R: Rng, +{ +} + +/// A distribution of values of type `S` derived from the distribution `D` +/// by mapping its output of type `T` through the closure `F`. +/// +/// This `struct` is created by the [`Distribution::map`] method. +/// See its documentation for more. +#[derive(Debug)] +pub struct DistMap<D, F, T, S> { + distr: D, + func: F, + phantom: ::core::marker::PhantomData<fn(T) -> S>, +} + +impl<D, F, T, S> Distribution<S> for DistMap<D, F, T, S> +where + D: Distribution<T>, + F: Fn(T) -> S, +{ + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> S { + (self.func)(self.distr.sample(rng)) + } +} + +/// `String` sampler +/// +/// Sampling a `String` of random characters is not quite the same as collecting +/// a sequence of chars. This trait contains some helpers. +#[cfg(feature = "alloc")] +pub trait DistString { + /// Append `len` random chars to `string` + fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, string: &mut String, len: usize); + + /// Generate a `String` of `len` random chars + #[inline] + fn sample_string<R: Rng + ?Sized>(&self, rng: &mut R, len: usize) -> String { + let mut s = String::new(); + self.append_string(rng, &mut s, len); + s + } +} + +#[cfg(test)] +mod tests { + use crate::distributions::{Distribution, Uniform}; + use crate::Rng; + + #[test] + fn test_distributions_iter() { + use crate::distributions::Open01; + let mut rng = crate::test::rng(210); + let distr = Open01; + let mut iter = Distribution::<f32>::sample_iter(distr, &mut rng); + let mut sum: f32 = 0.; + for _ in 0..100 { + sum += iter.next().unwrap(); + } + assert!(0. < sum && sum < 100.); + } + + #[test] + fn test_distributions_map() { + let dist = Uniform::new_inclusive(0, 5).map(|val| val + 15); + + let mut rng = crate::test::rng(212); + let val = dist.sample(&mut rng); + assert!((15..=20).contains(&val)); + } + + #[test] + fn test_make_an_iter() { + fn ten_dice_rolls_other_than_five<R: Rng>( + rng: &mut R, + ) -> impl Iterator<Item = i32> + '_ { + Uniform::new_inclusive(1, 6) + .sample_iter(rng) + .filter(|x| *x != 5) + .take(10) + } + + let mut rng = crate::test::rng(211); + let mut count = 0; + for val in ten_dice_rolls_other_than_five(&mut rng) { + assert!((1..=6).contains(&val) && val != 5); + count += 1; + } + assert_eq!(count, 10); + } + + #[test] + #[cfg(feature = "alloc")] + fn test_dist_string() { + use core::str; + use crate::distributions::{Alphanumeric, DistString, Standard}; + let mut rng = crate::test::rng(213); + + let s1 = Alphanumeric.sample_string(&mut rng, 20); + assert_eq!(s1.len(), 20); + assert_eq!(str::from_utf8(s1.as_bytes()), Ok(s1.as_str())); + + let s2 = Standard.sample_string(&mut rng, 20); + assert_eq!(s2.chars().count(), 20); + assert_eq!(str::from_utf8(s2.as_bytes()), Ok(s2.as_str())); + } +} |