diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
commit | 43a97878ce14b72f0981164f87f2e35e14151312 (patch) | |
tree | 620249daf56c0258faa40cbdcf9cfba06de2a846 /third_party/rust/ryu/tests/d2s_test.rs | |
parent | Initial commit. (diff) | |
download | firefox-upstream.tar.xz firefox-upstream.zip |
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/ryu/tests/d2s_test.rs')
-rw-r--r-- | third_party/rust/ryu/tests/d2s_test.rs | 330 |
1 files changed, 330 insertions, 0 deletions
diff --git a/third_party/rust/ryu/tests/d2s_test.rs b/third_party/rust/ryu/tests/d2s_test.rs new file mode 100644 index 0000000000..368cab6695 --- /dev/null +++ b/third_party/rust/ryu/tests/d2s_test.rs @@ -0,0 +1,330 @@ +// Translated from C to Rust. The original C code can be found at +// https://github.com/ulfjack/ryu and carries the following license: +// +// Copyright 2018 Ulf Adams +// +// The contents of this file may be used under the terms of the Apache License, +// Version 2.0. +// +// (See accompanying file LICENSE-Apache or copy at +// http://www.apache.org/licenses/LICENSE-2.0) +// +// Alternatively, the contents of this file may be used under the terms of +// the Boost Software License, Version 1.0. +// (See accompanying file LICENSE-Boost or copy at +// https://www.boost.org/LICENSE_1_0.txt) +// +// Unless required by applicable law or agreed to in writing, this software +// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +// KIND, either express or implied. + +#![allow( + clippy::approx_constant, + clippy::cast_lossless, + clippy::float_cmp, + clippy::int_plus_one, + clippy::non_ascii_literal, + clippy::unreadable_literal, + clippy::unseparated_literal_suffix +)] + +#[macro_use] +mod macros; + +use std::f64; + +fn pretty(f: f64) -> String { + ryu::Buffer::new().format(f).to_owned() +} + +fn ieee_parts_to_double(sign: bool, ieee_exponent: u32, ieee_mantissa: u64) -> f64 { + assert!(ieee_exponent <= 2047); + assert!(ieee_mantissa <= (1u64 << 53) - 1); + f64::from_bits(((sign as u64) << 63) | ((ieee_exponent as u64) << 52) | ieee_mantissa) +} + +#[test] +fn test_ryu() { + check!(0.3); + check!(1234000000000000.0); + check!(1.234e16); + check!(2.71828); + check!(1.1e128); + check!(1.1e-64); + check!(2.718281828459045); + check!(5e-324); + check!(1.7976931348623157e308); +} + +#[test] +fn test_random() { + let n = if cfg!(miri) { 100 } else { 1000000 }; + let mut buffer = ryu::Buffer::new(); + for _ in 0..n { + let f: f64 = rand::random(); + assert_eq!(f, buffer.format_finite(f).parse().unwrap()); + } +} + +#[test] +#[cfg_attr(miri, ignore)] +fn test_non_finite() { + for i in 0u64..1 << 23 { + let f = f64::from_bits((((1 << 11) - 1) << 52) + (i << 29)); + assert!(!f.is_finite(), "f={}", f); + ryu::Buffer::new().format_finite(f); + } +} + +#[test] +fn test_basic() { + check!(0.0); + check!(-0.0); + check!(1.0); + check!(-1.0); + assert_eq!(pretty(f64::NAN), "NaN"); + assert_eq!(pretty(f64::INFINITY), "inf"); + assert_eq!(pretty(f64::NEG_INFINITY), "-inf"); +} + +#[test] +fn test_switch_to_subnormal() { + check!(2.2250738585072014e-308); +} + +#[test] +fn test_min_and_max() { + assert_eq!(f64::from_bits(0x7fefffffffffffff), 1.7976931348623157e308); + check!(1.7976931348623157e308); + assert_eq!(f64::from_bits(1), 5e-324); + check!(5e-324); +} + +#[test] +fn test_lots_of_trailing_zeros() { + check!(2.9802322387695312e-8); +} + +#[test] +fn test_regression() { + check!(-2.109808898695963e16); + check!(4.940656e-318); + check!(1.18575755e-316); + check!(2.989102097996e-312); + check!(9060801153433600.0); + check!(4.708356024711512e18); + check!(9.409340012568248e18); + check!(1.2345678); +} + +#[test] +fn test_looks_like_pow5() { + // These numbers have a mantissa that is a multiple of the largest power of + // 5 that fits, and an exponent that causes the computation for q to result + // in 22, which is a corner case for Ryƫ. + assert_eq!(f64::from_bits(0x4830F0CF064DD592), 5.764607523034235e39); + check!(5.764607523034235e39); + assert_eq!(f64::from_bits(0x4840F0CF064DD592), 1.152921504606847e40); + check!(1.152921504606847e40); + assert_eq!(f64::from_bits(0x4850F0CF064DD592), 2.305843009213694e40); + check!(2.305843009213694e40); +} + +#[test] +fn test_output_length() { + check!(1.0); // already tested in Basic + check!(1.2); + check!(1.23); + check!(1.234); + check!(1.2345); + check!(1.23456); + check!(1.234567); + check!(1.2345678); // already tested in Regression + check!(1.23456789); + check!(1.234567895); // 1.234567890 would be trimmed + check!(1.2345678901); + check!(1.23456789012); + check!(1.234567890123); + check!(1.2345678901234); + check!(1.23456789012345); + check!(1.234567890123456); + check!(1.2345678901234567); + + // Test 32-bit chunking + check!(4.294967294); // 2^32 - 2 + check!(4.294967295); // 2^32 - 1 + check!(4.294967296); // 2^32 + check!(4.294967297); // 2^32 + 1 + check!(4.294967298); // 2^32 + 2 +} + +// Test min, max shift values in shiftright128 +#[test] +fn test_min_max_shift() { + let max_mantissa = (1u64 << 53) - 1; + + // 32-bit opt-size=0: 49 <= dist <= 50 + // 32-bit opt-size=1: 30 <= dist <= 50 + // 64-bit opt-size=0: 50 <= dist <= 50 + // 64-bit opt-size=1: 30 <= dist <= 50 + assert_eq!(1.7800590868057611E-307, ieee_parts_to_double(false, 4, 0)); + check!(1.7800590868057611e-307); + // 32-bit opt-size=0: 49 <= dist <= 49 + // 32-bit opt-size=1: 28 <= dist <= 49 + // 64-bit opt-size=0: 50 <= dist <= 50 + // 64-bit opt-size=1: 28 <= dist <= 50 + assert_eq!( + 2.8480945388892175E-306, + ieee_parts_to_double(false, 6, max_mantissa) + ); + check!(2.8480945388892175e-306); + // 32-bit opt-size=0: 52 <= dist <= 53 + // 32-bit opt-size=1: 2 <= dist <= 53 + // 64-bit opt-size=0: 53 <= dist <= 53 + // 64-bit opt-size=1: 2 <= dist <= 53 + assert_eq!(2.446494580089078E-296, ieee_parts_to_double(false, 41, 0)); + check!(2.446494580089078e-296); + // 32-bit opt-size=0: 52 <= dist <= 52 + // 32-bit opt-size=1: 2 <= dist <= 52 + // 64-bit opt-size=0: 53 <= dist <= 53 + // 64-bit opt-size=1: 2 <= dist <= 53 + assert_eq!( + 4.8929891601781557E-296, + ieee_parts_to_double(false, 40, max_mantissa) + ); + check!(4.8929891601781557e-296); + + // 32-bit opt-size=0: 57 <= dist <= 58 + // 32-bit opt-size=1: 57 <= dist <= 58 + // 64-bit opt-size=0: 58 <= dist <= 58 + // 64-bit opt-size=1: 58 <= dist <= 58 + assert_eq!(1.8014398509481984E16, ieee_parts_to_double(false, 1077, 0)); + check!(1.8014398509481984e16); + // 32-bit opt-size=0: 57 <= dist <= 57 + // 32-bit opt-size=1: 57 <= dist <= 57 + // 64-bit opt-size=0: 58 <= dist <= 58 + // 64-bit opt-size=1: 58 <= dist <= 58 + assert_eq!( + 3.6028797018963964E16, + ieee_parts_to_double(false, 1076, max_mantissa) + ); + check!(3.6028797018963964e16); + // 32-bit opt-size=0: 51 <= dist <= 52 + // 32-bit opt-size=1: 51 <= dist <= 59 + // 64-bit opt-size=0: 52 <= dist <= 52 + // 64-bit opt-size=1: 52 <= dist <= 59 + assert_eq!(2.900835519859558E-216, ieee_parts_to_double(false, 307, 0)); + check!(2.900835519859558e-216); + // 32-bit opt-size=0: 51 <= dist <= 51 + // 32-bit opt-size=1: 51 <= dist <= 59 + // 64-bit opt-size=0: 52 <= dist <= 52 + // 64-bit opt-size=1: 52 <= dist <= 59 + assert_eq!( + 5.801671039719115E-216, + ieee_parts_to_double(false, 306, max_mantissa) + ); + check!(5.801671039719115e-216); + + // https://github.com/ulfjack/ryu/commit/19e44d16d80236f5de25800f56d82606d1be00b9#commitcomment-30146483 + // 32-bit opt-size=0: 49 <= dist <= 49 + // 32-bit opt-size=1: 44 <= dist <= 49 + // 64-bit opt-size=0: 50 <= dist <= 50 + // 64-bit opt-size=1: 44 <= dist <= 50 + assert_eq!( + 3.196104012172126E-27, + ieee_parts_to_double(false, 934, 0x000FA7161A4D6E0C) + ); + check!(3.196104012172126e-27); +} + +#[test] +fn test_small_integers() { + check!(9007199254740991.0); // 2^53-1 + check!(9007199254740992.0); // 2^53 + + check!(1.0); + check!(12.0); + check!(123.0); + check!(1234.0); + check!(12345.0); + check!(123456.0); + check!(1234567.0); + check!(12345678.0); + check!(123456789.0); + check!(1234567890.0); + check!(1234567895.0); + check!(12345678901.0); + check!(123456789012.0); + check!(1234567890123.0); + check!(12345678901234.0); + check!(123456789012345.0); + check!(1234567890123456.0); + + // 10^i + check!(1.0); + check!(10.0); + check!(100.0); + check!(1000.0); + check!(10000.0); + check!(100000.0); + check!(1000000.0); + check!(10000000.0); + check!(100000000.0); + check!(1000000000.0); + check!(10000000000.0); + check!(100000000000.0); + check!(1000000000000.0); + check!(10000000000000.0); + check!(100000000000000.0); + check!(1000000000000000.0); + + // 10^15 + 10^i + check!(1000000000000001.0); + check!(1000000000000010.0); + check!(1000000000000100.0); + check!(1000000000001000.0); + check!(1000000000010000.0); + check!(1000000000100000.0); + check!(1000000001000000.0); + check!(1000000010000000.0); + check!(1000000100000000.0); + check!(1000001000000000.0); + check!(1000010000000000.0); + check!(1000100000000000.0); + check!(1001000000000000.0); + check!(1010000000000000.0); + check!(1100000000000000.0); + + // Largest power of 2 <= 10^(i+1) + check!(8.0); + check!(64.0); + check!(512.0); + check!(8192.0); + check!(65536.0); + check!(524288.0); + check!(8388608.0); + check!(67108864.0); + check!(536870912.0); + check!(8589934592.0); + check!(68719476736.0); + check!(549755813888.0); + check!(8796093022208.0); + check!(70368744177664.0); + check!(562949953421312.0); + check!(9007199254740992.0); + + // 1000 * (Largest power of 2 <= 10^(i+1)) + check!(8000.0); + check!(64000.0); + check!(512000.0); + check!(8192000.0); + check!(65536000.0); + check!(524288000.0); + check!(8388608000.0); + check!(67108864000.0); + check!(536870912000.0); + check!(8589934592000.0); + check!(68719476736000.0); + check!(549755813888000.0); + check!(8796093022208000.0); +} |