summaryrefslogtreecommitdiffstats
path: root/third_party/rust/tokio-timer/src
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
commit43a97878ce14b72f0981164f87f2e35e14151312 (patch)
tree620249daf56c0258faa40cbdcf9cfba06de2a846 /third_party/rust/tokio-timer/src
parentInitial commit. (diff)
downloadfirefox-43a97878ce14b72f0981164f87f2e35e14151312.tar.xz
firefox-43a97878ce14b72f0981164f87f2e35e14151312.zip
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/tokio-timer/src')
-rw-r--r--third_party/rust/tokio-timer/src/atomic.rs88
-rw-r--r--third_party/rust/tokio-timer/src/clock/clock.rs150
-rw-r--r--third_party/rust/tokio-timer/src/clock/mod.rs23
-rw-r--r--third_party/rust/tokio-timer/src/clock/now.rs15
-rw-r--r--third_party/rust/tokio-timer/src/deadline.rs174
-rw-r--r--third_party/rust/tokio-timer/src/delay.rs98
-rw-r--r--third_party/rust/tokio-timer/src/delay_queue.rs845
-rw-r--r--third_party/rust/tokio-timer/src/error.rs78
-rw-r--r--third_party/rust/tokio-timer/src/interval.rs75
-rw-r--r--third_party/rust/tokio-timer/src/lib.rs105
-rw-r--r--third_party/rust/tokio-timer/src/throttle.rs167
-rw-r--r--third_party/rust/tokio-timer/src/timeout.rs311
-rw-r--r--third_party/rust/tokio-timer/src/timer/atomic_stack.rs124
-rw-r--r--third_party/rust/tokio-timer/src/timer/entry.rs394
-rw-r--r--third_party/rust/tokio-timer/src/timer/handle.rs201
-rw-r--r--third_party/rust/tokio-timer/src/timer/mod.rs490
-rw-r--r--third_party/rust/tokio-timer/src/timer/now.rs10
-rw-r--r--third_party/rust/tokio-timer/src/timer/registration.rs67
-rw-r--r--third_party/rust/tokio-timer/src/timer/stack.rs121
-rw-r--r--third_party/rust/tokio-timer/src/wheel/level.rs255
-rw-r--r--third_party/rust/tokio-timer/src/wheel/mod.rs311
-rw-r--r--third_party/rust/tokio-timer/src/wheel/stack.rs26
22 files changed, 4128 insertions, 0 deletions
diff --git a/third_party/rust/tokio-timer/src/atomic.rs b/third_party/rust/tokio-timer/src/atomic.rs
new file mode 100644
index 0000000000..d60bd7645d
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/atomic.rs
@@ -0,0 +1,88 @@
+//! Implementation of an atomic u64 cell. On 64 bit platforms, this is a wrapper
+//! around `AtomicUsize`. On 32 bit platforms, this is implemented using a
+//! `Mutex`.
+//!
+//! This file can be removed if/when `AtomicU64` lands in `std`.
+
+pub use self::imp::AtomicU64;
+
+#[cfg(target_pointer_width = "64")]
+mod imp {
+ use std::sync::atomic::{AtomicUsize, Ordering};
+
+ #[derive(Debug)]
+ pub struct AtomicU64 {
+ inner: AtomicUsize,
+ }
+
+ impl AtomicU64 {
+ pub fn new(val: u64) -> AtomicU64 {
+ AtomicU64 {
+ inner: AtomicUsize::new(val as usize),
+ }
+ }
+
+ pub fn load(&self, ordering: Ordering) -> u64 {
+ self.inner.load(ordering) as u64
+ }
+
+ pub fn store(&self, val: u64, ordering: Ordering) {
+ self.inner.store(val as usize, ordering)
+ }
+
+ pub fn fetch_or(&self, val: u64, ordering: Ordering) -> u64 {
+ self.inner.fetch_or(val as usize, ordering) as u64
+ }
+
+ pub fn compare_and_swap(&self, old: u64, new: u64, ordering: Ordering) -> u64 {
+ self.inner
+ .compare_and_swap(old as usize, new as usize, ordering) as u64
+ }
+ }
+}
+
+#[cfg(not(target_pointer_width = "64"))]
+mod imp {
+ use std::sync::atomic::Ordering;
+ use std::sync::Mutex;
+
+ #[derive(Debug)]
+ pub struct AtomicU64 {
+ inner: Mutex<u64>,
+ }
+
+ impl AtomicU64 {
+ pub fn new(val: u64) -> AtomicU64 {
+ AtomicU64 {
+ inner: Mutex::new(val),
+ }
+ }
+
+ pub fn load(&self, _: Ordering) -> u64 {
+ *self.inner.lock().unwrap()
+ }
+
+ pub fn store(&self, val: u64, _: Ordering) {
+ *self.inner.lock().unwrap() = val;
+ }
+
+ pub fn fetch_or(&self, val: u64, _: Ordering) -> u64 {
+ let mut lock = self.inner.lock().unwrap();
+ let prev = *lock;
+ *lock = prev | val;
+ prev
+ }
+
+ pub fn compare_and_swap(&self, old: u64, new: u64, _: Ordering) -> u64 {
+ let mut lock = self.inner.lock().unwrap();
+ let prev = *lock;
+
+ if prev != old {
+ return prev;
+ }
+
+ *lock = new;
+ prev
+ }
+ }
+}
diff --git a/third_party/rust/tokio-timer/src/clock/clock.rs b/third_party/rust/tokio-timer/src/clock/clock.rs
new file mode 100644
index 0000000000..2920e2817f
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/clock/clock.rs
@@ -0,0 +1,150 @@
+use clock::Now;
+use timer;
+
+use tokio_executor::Enter;
+
+use std::cell::RefCell;
+use std::fmt;
+use std::sync::Arc;
+use std::time::Instant;
+
+/// A handle to a source of time.
+///
+/// `Clock` instances return [`Instant`] values corresponding to "now". The source
+/// of these values is configurable. The default source is [`Instant::now`].
+///
+/// [`Instant`]: https://doc.rust-lang.org/std/time/struct.Instant.html
+/// [`Instant::now`]: https://doc.rust-lang.org/std/time/struct.Instant.html#method.now
+#[derive(Default, Clone)]
+pub struct Clock {
+ now: Option<Arc<dyn Now>>,
+}
+
+/// A guard that resets the current `Clock` to `None` when dropped.
+#[derive(Debug)]
+pub struct DefaultGuard {
+ _p: (),
+}
+
+thread_local! {
+ /// Thread-local tracking the current clock
+ static CLOCK: RefCell<Option<Clock>> = RefCell::new(None)
+}
+
+/// Returns an `Instant` corresponding to "now".
+///
+/// This function delegates to the source of time configured for the current
+/// execution context. By default, this is `Instant::now()`.
+///
+/// Note that, because the source of time is configurable, it is possible to
+/// observe non-monotonic behavior when calling `now` from different
+/// executors.
+///
+/// See [module](index.html) level documentation for more details.
+///
+/// # Examples
+///
+/// ```
+/// # use tokio_timer::clock;
+/// let now = clock::now();
+/// ```
+pub fn now() -> Instant {
+ CLOCK.with(|current| match current.borrow().as_ref() {
+ Some(c) => c.now(),
+ None => Instant::now(),
+ })
+}
+
+impl Clock {
+ /// Return a new `Clock` instance that uses the current execution context's
+ /// source of time.
+ pub fn new() -> Clock {
+ CLOCK.with(|current| match current.borrow().as_ref() {
+ Some(c) => c.clone(),
+ None => Clock::system(),
+ })
+ }
+
+ /// Return a new `Clock` instance that uses `now` as the source of time.
+ pub fn new_with_now<T: Now>(now: T) -> Clock {
+ Clock {
+ now: Some(Arc::new(now)),
+ }
+ }
+
+ /// Return a new `Clock` instance that uses [`Instant::now`] as the source
+ /// of time.
+ ///
+ /// [`Instant::now`]: https://doc.rust-lang.org/std/time/struct.Instant.html#method.now
+ pub fn system() -> Clock {
+ Clock { now: None }
+ }
+
+ /// Returns an instant corresponding to "now" by using the instance's source
+ /// of time.
+ pub fn now(&self) -> Instant {
+ match self.now {
+ Some(ref now) => now.now(),
+ None => Instant::now(),
+ }
+ }
+}
+
+#[allow(deprecated)]
+impl timer::Now for Clock {
+ fn now(&mut self) -> Instant {
+ Clock::now(self)
+ }
+}
+
+impl fmt::Debug for Clock {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ fmt.debug_struct("Clock")
+ .field("now", {
+ if self.now.is_some() {
+ &"Some(Arc<Now>)"
+ } else {
+ &"None"
+ }
+ })
+ .finish()
+ }
+}
+
+/// Set the default clock for the duration of the closure.
+///
+/// # Panics
+///
+/// This function panics if there already is a default clock set.
+pub fn with_default<F, R>(clock: &Clock, enter: &mut Enter, f: F) -> R
+where
+ F: FnOnce(&mut Enter) -> R,
+{
+ let _guard = set_default(clock);
+
+ f(enter)
+}
+
+/// Sets `clock` as the default clock, returning a guard that unsets it on drop.
+///
+/// # Panics
+///
+/// This function panics if there already is a default clock set.
+pub fn set_default(clock: &Clock) -> DefaultGuard {
+ CLOCK.with(|cell| {
+ assert!(
+ cell.borrow().is_none(),
+ "default clock already set for execution context"
+ );
+
+ *cell.borrow_mut() = Some(clock.clone());
+
+ DefaultGuard { _p: () }
+ })
+}
+
+impl Drop for DefaultGuard {
+ fn drop(&mut self) {
+ let _ = CLOCK.try_with(|cell| cell.borrow_mut().take());
+ }
+}
diff --git a/third_party/rust/tokio-timer/src/clock/mod.rs b/third_party/rust/tokio-timer/src/clock/mod.rs
new file mode 100644
index 0000000000..8acb831798
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/clock/mod.rs
@@ -0,0 +1,23 @@
+//! A configurable source of time.
+//!
+//! This module provides an API to get the current instant in such a way that
+//! the source of time may be configured. This allows mocking out the source of
+//! time in tests.
+//!
+//! The [`now`][n] function returns the current [`Instant`]. By default, it delegates
+//! to [`Instant::now`].
+//!
+//! The source of time used by [`now`][n] can be configured by implementing the
+//! [`Now`] trait and passing an instance to [`with_default`].
+//!
+//! [n]: fn.now.html
+//! [`Now`]: trait.Now.html
+//! [`Instant`]: https://doc.rust-lang.org/std/time/struct.Instant.html
+//! [`Instant::now`]: https://doc.rust-lang.org/std/time/struct.Instant.html#method.now
+//! [`with_default`]: fn.with_default.html
+
+mod clock;
+mod now;
+
+pub use self::clock::{now, set_default, with_default, Clock, DefaultGuard};
+pub use self::now::Now;
diff --git a/third_party/rust/tokio-timer/src/clock/now.rs b/third_party/rust/tokio-timer/src/clock/now.rs
new file mode 100644
index 0000000000..18450c8302
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/clock/now.rs
@@ -0,0 +1,15 @@
+use std::time::Instant;
+
+/// Returns [`Instant`] values representing the current instant in time.
+///
+/// This allows customizing the source of time which is especially useful for
+/// testing.
+///
+/// Implementations must ensure that calls to `now` return monotonically
+/// increasing [`Instant`] values.
+///
+/// [`Instant`]: https://doc.rust-lang.org/std/time/struct.Instant.html
+pub trait Now: Send + Sync + 'static {
+ /// Returns an instant corresponding to "now".
+ fn now(&self) -> Instant;
+}
diff --git a/third_party/rust/tokio-timer/src/deadline.rs b/third_party/rust/tokio-timer/src/deadline.rs
new file mode 100644
index 0000000000..c4c19b8bbc
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/deadline.rs
@@ -0,0 +1,174 @@
+#![allow(deprecated)]
+
+use Delay;
+
+use futures::{Async, Future, Poll};
+
+use std::error;
+use std::fmt;
+use std::time::Instant;
+
+#[deprecated(since = "0.2.6", note = "use Timeout instead")]
+#[doc(hidden)]
+#[derive(Debug)]
+pub struct Deadline<T> {
+ future: T,
+ delay: Delay,
+}
+
+#[deprecated(since = "0.2.6", note = "use Timeout instead")]
+#[doc(hidden)]
+#[derive(Debug)]
+pub struct DeadlineError<T>(Kind<T>);
+
+/// Deadline error variants
+#[derive(Debug)]
+enum Kind<T> {
+ /// Inner future returned an error
+ Inner(T),
+
+ /// The deadline elapsed.
+ Elapsed,
+
+ /// Timer returned an error.
+ Timer(::Error),
+}
+
+impl<T> Deadline<T> {
+ /// Create a new `Deadline` that completes when `future` completes or when
+ /// `deadline` is reached.
+ pub fn new(future: T, deadline: Instant) -> Deadline<T> {
+ Deadline::new_with_delay(future, Delay::new(deadline))
+ }
+
+ pub(crate) fn new_with_delay(future: T, delay: Delay) -> Deadline<T> {
+ Deadline { future, delay }
+ }
+
+ /// Gets a reference to the underlying future in this deadline.
+ pub fn get_ref(&self) -> &T {
+ &self.future
+ }
+
+ /// Gets a mutable reference to the underlying future in this deadline.
+ pub fn get_mut(&mut self) -> &mut T {
+ &mut self.future
+ }
+
+ /// Consumes this deadline, returning the underlying future.
+ pub fn into_inner(self) -> T {
+ self.future
+ }
+}
+
+impl<T> Future for Deadline<T>
+where
+ T: Future,
+{
+ type Item = T::Item;
+ type Error = DeadlineError<T::Error>;
+
+ fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
+ // First, try polling the future
+ match self.future.poll() {
+ Ok(Async::Ready(v)) => return Ok(Async::Ready(v)),
+ Ok(Async::NotReady) => {}
+ Err(e) => return Err(DeadlineError::inner(e)),
+ }
+
+ // Now check the timer
+ match self.delay.poll() {
+ Ok(Async::NotReady) => Ok(Async::NotReady),
+ Ok(Async::Ready(_)) => Err(DeadlineError::elapsed()),
+ Err(e) => Err(DeadlineError::timer(e)),
+ }
+ }
+}
+
+// ===== impl DeadlineError =====
+
+impl<T> DeadlineError<T> {
+ /// Create a new `DeadlineError` representing the inner future completing
+ /// with `Err`.
+ pub fn inner(err: T) -> DeadlineError<T> {
+ DeadlineError(Kind::Inner(err))
+ }
+
+ /// Returns `true` if the error was caused by the inner future completing
+ /// with `Err`.
+ pub fn is_inner(&self) -> bool {
+ match self.0 {
+ Kind::Inner(_) => true,
+ _ => false,
+ }
+ }
+
+ /// Consumes `self`, returning the inner future error.
+ pub fn into_inner(self) -> Option<T> {
+ match self.0 {
+ Kind::Inner(err) => Some(err),
+ _ => None,
+ }
+ }
+
+ /// Create a new `DeadlineError` representing the inner future not
+ /// completing before the deadline is reached.
+ pub fn elapsed() -> DeadlineError<T> {
+ DeadlineError(Kind::Elapsed)
+ }
+
+ /// Returns `true` if the error was caused by the inner future not
+ /// completing before the deadline is reached.
+ pub fn is_elapsed(&self) -> bool {
+ match self.0 {
+ Kind::Elapsed => true,
+ _ => false,
+ }
+ }
+
+ /// Creates a new `DeadlineError` representing an error encountered by the
+ /// timer implementation
+ pub fn timer(err: ::Error) -> DeadlineError<T> {
+ DeadlineError(Kind::Timer(err))
+ }
+
+ /// Returns `true` if the error was caused by the timer.
+ pub fn is_timer(&self) -> bool {
+ match self.0 {
+ Kind::Timer(_) => true,
+ _ => false,
+ }
+ }
+
+ /// Consumes `self`, returning the error raised by the timer implementation.
+ pub fn into_timer(self) -> Option<::Error> {
+ match self.0 {
+ Kind::Timer(err) => Some(err),
+ _ => None,
+ }
+ }
+}
+
+impl<T: error::Error> error::Error for DeadlineError<T> {
+ fn description(&self) -> &str {
+ use self::Kind::*;
+
+ match self.0 {
+ Inner(ref e) => e.description(),
+ Elapsed => "deadline has elapsed",
+ Timer(ref e) => e.description(),
+ }
+ }
+}
+
+impl<T: fmt::Display> fmt::Display for DeadlineError<T> {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ use self::Kind::*;
+
+ match self.0 {
+ Inner(ref e) => e.fmt(fmt),
+ Elapsed => "deadline has elapsed".fmt(fmt),
+ Timer(ref e) => e.fmt(fmt),
+ }
+ }
+}
diff --git a/third_party/rust/tokio-timer/src/delay.rs b/third_party/rust/tokio-timer/src/delay.rs
new file mode 100644
index 0000000000..c48adccd57
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/delay.rs
@@ -0,0 +1,98 @@
+use timer::{HandlePriv, Registration};
+use Error;
+
+use futures::{Future, Poll};
+
+use std::time::{Duration, Instant};
+
+/// A future that completes at a specified instant in time.
+///
+/// Instances of `Delay` perform no work and complete with `()` once the
+/// specified deadline has been reached.
+///
+/// `Delay` has a resolution of one millisecond and should not be used for tasks
+/// that require high-resolution timers.
+///
+/// # Cancellation
+///
+/// Canceling a `Delay` is done by dropping the value. No additional cleanup or
+/// other work is required.
+///
+/// [`new`]: #method.new
+#[derive(Debug)]
+pub struct Delay {
+ /// The link between the `Delay` instance at the timer that drives it.
+ ///
+ /// This also stores the `deadline` value.
+ registration: Registration,
+}
+
+impl Delay {
+ /// Create a new `Delay` instance that elapses at `deadline`.
+ ///
+ /// Only millisecond level resolution is guaranteed. There is no guarantee
+ /// as to how the sub-millisecond portion of `deadline` will be handled.
+ /// `Delay` should not be used for high-resolution timer use cases.
+ pub fn new(deadline: Instant) -> Delay {
+ let registration = Registration::new(deadline, Duration::from_millis(0));
+
+ Delay { registration }
+ }
+
+ pub(crate) fn new_timeout(deadline: Instant, duration: Duration) -> Delay {
+ let registration = Registration::new(deadline, duration);
+ Delay { registration }
+ }
+
+ pub(crate) fn new_with_handle(deadline: Instant, handle: HandlePriv) -> Delay {
+ let mut registration = Registration::new(deadline, Duration::from_millis(0));
+ registration.register_with(handle);
+
+ Delay { registration }
+ }
+
+ /// Returns the instant at which the future will complete.
+ pub fn deadline(&self) -> Instant {
+ self.registration.deadline()
+ }
+
+ /// Returns true if the `Delay` has elapsed
+ ///
+ /// A `Delay` is elapsed when the requested duration has elapsed.
+ pub fn is_elapsed(&self) -> bool {
+ self.registration.is_elapsed()
+ }
+
+ /// Reset the `Delay` instance to a new deadline.
+ ///
+ /// Calling this function allows changing the instant at which the `Delay`
+ /// future completes without having to create new associated state.
+ ///
+ /// This function can be called both before and after the future has
+ /// completed.
+ pub fn reset(&mut self, deadline: Instant) {
+ self.registration.reset(deadline);
+ }
+
+ pub(crate) fn reset_timeout(&mut self) {
+ self.registration.reset_timeout();
+ }
+
+ /// Register the delay with the timer instance for the current execution
+ /// context.
+ fn register(&mut self) {
+ self.registration.register();
+ }
+}
+
+impl Future for Delay {
+ type Item = ();
+ type Error = Error;
+
+ fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
+ // Ensure the `Delay` instance is associated with a timer.
+ self.register();
+
+ self.registration.poll_elapsed()
+ }
+}
diff --git a/third_party/rust/tokio-timer/src/delay_queue.rs b/third_party/rust/tokio-timer/src/delay_queue.rs
new file mode 100644
index 0000000000..1f4b0a17af
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/delay_queue.rs
@@ -0,0 +1,845 @@
+//! A queue of delayed elements.
+//!
+//! See [`DelayQueue`] for more details.
+//!
+//! [`DelayQueue`]: struct.DelayQueue.html
+
+use clock::now;
+use timer::Handle;
+use wheel::{self, Wheel};
+use {Delay, Error};
+
+use futures::{Future, Poll, Stream};
+use slab::Slab;
+
+use std::cmp;
+use std::marker::PhantomData;
+use std::time::{Duration, Instant};
+
+/// A queue of delayed elements.
+///
+/// Once an element is inserted into the `DelayQueue`, it is yielded once the
+/// specified deadline has been reached.
+///
+/// # Usage
+///
+/// Elements are inserted into `DelayQueue` using the [`insert`] or
+/// [`insert_at`] methods. A deadline is provided with the item and a [`Key`] is
+/// returned. The key is used to remove the entry or to change the deadline at
+/// which it should be yielded back.
+///
+/// Once delays have been configured, the `DelayQueue` is used via its
+/// [`Stream`] implementation. [`poll`] is called. If an entry has reached its
+/// deadline, it is returned. If not, `Async::NotReady` indicating that the
+/// current task will be notified once the deadline has been reached.
+///
+/// # `Stream` implementation
+///
+/// Items are retrieved from the queue via [`Stream::poll`]. If no delays have
+/// expired, no items are returned. In this case, `NotReady` is returned and the
+/// current task is registered to be notified once the next item's delay has
+/// expired.
+///
+/// If no items are in the queue, i.e. `is_empty()` returns `true`, then `poll`
+/// returns `Ready(None)`. This indicates that the stream has reached an end.
+/// However, if a new item is inserted *after*, `poll` will once again start
+/// returning items or `NotReady.
+///
+/// Items are returned ordered by their expirations. Items that are configured
+/// to expire first will be returned first. There are no ordering guarantees
+/// for items configured to expire the same instant. Also note that delays are
+/// rounded to the closest millisecond.
+///
+/// # Implementation
+///
+/// The `DelayQueue` is backed by the same hashed timing wheel implementation as
+/// [`Timer`] as such, it offers the same performance benefits. See [`Timer`]
+/// for further implementation notes.
+///
+/// State associated with each entry is stored in a [`slab`]. This allows
+/// amortizing the cost of allocation. Space created for expired entries is
+/// reused when inserting new entries.
+///
+/// Capacity can be checked using [`capacity`] and allocated preemptively by using
+/// the [`reserve`] method.
+///
+/// # Usage
+///
+/// Using `DelayQueue` to manage cache entries.
+///
+/// ```rust
+/// #[macro_use]
+/// extern crate futures;
+/// extern crate tokio;
+/// # type CacheKey = String;
+/// # type Value = String;
+/// use tokio::timer::{delay_queue, DelayQueue, Error};
+/// use futures::{Async, Poll, Stream};
+/// use std::collections::HashMap;
+/// use std::time::Duration;
+///
+/// struct Cache {
+/// entries: HashMap<CacheKey, (Value, delay_queue::Key)>,
+/// expirations: DelayQueue<CacheKey>,
+/// }
+///
+/// const TTL_SECS: u64 = 30;
+///
+/// impl Cache {
+/// fn insert(&mut self, key: CacheKey, value: Value) {
+/// let delay = self.expirations
+/// .insert(key.clone(), Duration::from_secs(TTL_SECS));
+///
+/// self.entries.insert(key, (value, delay));
+/// }
+///
+/// fn get(&self, key: &CacheKey) -> Option<&Value> {
+/// self.entries.get(key)
+/// .map(|&(ref v, _)| v)
+/// }
+///
+/// fn remove(&mut self, key: &CacheKey) {
+/// if let Some((_, cache_key)) = self.entries.remove(key) {
+/// self.expirations.remove(&cache_key);
+/// }
+/// }
+///
+/// fn poll_purge(&mut self) -> Poll<(), Error> {
+/// while let Some(entry) = try_ready!(self.expirations.poll()) {
+/// self.entries.remove(entry.get_ref());
+/// }
+///
+/// Ok(Async::Ready(()))
+/// }
+/// }
+/// # fn main() {}
+/// ```
+///
+/// [`insert`]: #method.insert
+/// [`insert_at`]: #method.insert_at
+/// [`Key`]: struct.Key.html
+/// [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
+/// [`poll`]: #method.poll
+/// [`Stream::poll`]: #method.poll
+/// [`Timer`]: ../struct.Timer.html
+/// [`slab`]: https://docs.rs/slab
+/// [`capacity`]: #method.capacity
+/// [`reserve`]: #method.reserve
+#[derive(Debug)]
+pub struct DelayQueue<T> {
+ /// Handle to the timer driving the `DelayQueue`
+ handle: Handle,
+
+ /// Stores data associated with entries
+ slab: Slab<Data<T>>,
+
+ /// Lookup structure tracking all delays in the queue
+ wheel: Wheel<Stack<T>>,
+
+ /// Delays that were inserted when already expired. These cannot be stored
+ /// in the wheel
+ expired: Stack<T>,
+
+ /// Delay expiring when the *first* item in the queue expires
+ delay: Option<Delay>,
+
+ /// Wheel polling state
+ poll: wheel::Poll,
+
+ /// Instant at which the timer starts
+ start: Instant,
+}
+
+/// An entry in `DelayQueue` that has expired and removed.
+///
+/// Values are returned by [`DelayQueue::poll`].
+///
+/// [`DelayQueue::poll`]: struct.DelayQueue.html#method.poll
+#[derive(Debug)]
+pub struct Expired<T> {
+ /// The data stored in the queue
+ data: T,
+
+ /// The expiration time
+ deadline: Instant,
+
+ /// The key associated with the entry
+ key: Key,
+}
+
+/// Token to a value stored in a `DelayQueue`.
+///
+/// Instances of `Key` are returned by [`DelayQueue::insert`]. See [`DelayQueue`]
+/// documentation for more details.
+///
+/// [`DelayQueue`]: struct.DelayQueue.html
+/// [`DelayQueue::insert`]: struct.DelayQueue.html#method.insert
+#[derive(Debug, Clone)]
+pub struct Key {
+ index: usize,
+}
+
+#[derive(Debug)]
+struct Stack<T> {
+ /// Head of the stack
+ head: Option<usize>,
+ _p: PhantomData<T>,
+}
+
+#[derive(Debug)]
+struct Data<T> {
+ /// The data being stored in the queue and will be returned at the requested
+ /// instant.
+ inner: T,
+
+ /// The instant at which the item is returned.
+ when: u64,
+
+ /// Set to true when stored in the `expired` queue
+ expired: bool,
+
+ /// Next entry in the stack
+ next: Option<usize>,
+
+ /// Previous entry in the stack
+ prev: Option<usize>,
+}
+
+/// Maximum number of entries the queue can handle
+const MAX_ENTRIES: usize = (1 << 30) - 1;
+
+impl<T> DelayQueue<T> {
+ /// Create a new, empty, `DelayQueue`
+ ///
+ /// The queue will not allocate storage until items are inserted into it.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// # use tokio_timer::DelayQueue;
+ /// let delay_queue: DelayQueue<u32> = DelayQueue::new();
+ /// ```
+ pub fn new() -> DelayQueue<T> {
+ DelayQueue::with_capacity(0)
+ }
+
+ /// Create a new, empty, `DelayQueue` backed by the specified timer.
+ ///
+ /// The queue will not allocate storage until items are inserted into it.
+ ///
+ /// # Examples
+ ///
+ /// ```rust,no_run
+ /// # use tokio_timer::DelayQueue;
+ /// use tokio_timer::timer::Handle;
+ ///
+ /// let handle = Handle::default();
+ /// let delay_queue: DelayQueue<u32> = DelayQueue::with_capacity_and_handle(0, &handle);
+ /// ```
+ pub fn with_capacity_and_handle(capacity: usize, handle: &Handle) -> DelayQueue<T> {
+ DelayQueue {
+ handle: handle.clone(),
+ wheel: Wheel::new(),
+ slab: Slab::with_capacity(capacity),
+ expired: Stack::default(),
+ delay: None,
+ poll: wheel::Poll::new(0),
+ start: now(),
+ }
+ }
+
+ /// Create a new, empty, `DelayQueue` with the specified capacity.
+ ///
+ /// The queue will be able to hold at least `capacity` elements without
+ /// reallocating. If `capacity` is 0, the queue will not allocate for
+ /// storage.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// # use tokio_timer::DelayQueue;
+ /// # use std::time::Duration;
+ /// let mut delay_queue = DelayQueue::with_capacity(10);
+ ///
+ /// // These insertions are done without further allocation
+ /// for i in 0..10 {
+ /// delay_queue.insert(i, Duration::from_secs(i));
+ /// }
+ ///
+ /// // This will make the queue allocate additional storage
+ /// delay_queue.insert(11, Duration::from_secs(11));
+ /// ```
+ pub fn with_capacity(capacity: usize) -> DelayQueue<T> {
+ DelayQueue::with_capacity_and_handle(capacity, &Handle::default())
+ }
+
+ /// Insert `value` into the queue set to expire at a specific instant in
+ /// time.
+ ///
+ /// This function is identical to `insert`, but takes an `Instant` instead
+ /// of a `Duration`.
+ ///
+ /// `value` is stored in the queue until `when` is reached. At which point,
+ /// `value` will be returned from [`poll`]. If `when` has already been
+ /// reached, then `value` is immediately made available to poll.
+ ///
+ /// The return value represents the insertion and is used at an argument to
+ /// [`remove`] and [`reset`]. Note that [`Key`] is token and is reused once
+ /// `value` is removed from the queue either by calling [`poll`] after
+ /// `when` is reached or by calling [`remove`]. At this point, the caller
+ /// must take care to not use the returned [`Key`] again as it may reference
+ /// a different item in the queue.
+ ///
+ /// See [type] level documentation for more details.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if `when` is too far in the future.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage
+ ///
+ /// ```rust
+ /// # extern crate tokio;
+ /// use tokio::timer::DelayQueue;
+ /// use std::time::{Instant, Duration};
+ ///
+ /// # fn main() {
+ /// let mut delay_queue = DelayQueue::new();
+ /// let key = delay_queue.insert_at(
+ /// "foo", Instant::now() + Duration::from_secs(5));
+ ///
+ /// // Remove the entry
+ /// let item = delay_queue.remove(&key);
+ /// assert_eq!(*item.get_ref(), "foo");
+ /// # }
+ /// ```
+ ///
+ /// [`poll`]: #method.poll
+ /// [`remove`]: #method.remove
+ /// [`reset`]: #method.reset
+ /// [`Key`]: struct.Key.html
+ /// [type]: #
+ pub fn insert_at(&mut self, value: T, when: Instant) -> Key {
+ assert!(self.slab.len() < MAX_ENTRIES, "max entries exceeded");
+
+ // Normalize the deadline. Values cannot be set to expire in the past.
+ let when = self.normalize_deadline(when);
+
+ // Insert the value in the store
+ let key = self.slab.insert(Data {
+ inner: value,
+ when,
+ expired: false,
+ next: None,
+ prev: None,
+ });
+
+ self.insert_idx(when, key);
+
+ // Set a new delay if the current's deadline is later than the one of the new item
+ let should_set_delay = if let Some(ref delay) = self.delay {
+ let current_exp = self.normalize_deadline(delay.deadline());
+ current_exp > when
+ } else {
+ true
+ };
+
+ if should_set_delay {
+ self.delay = Some(self.handle.delay(self.start + Duration::from_millis(when)));
+ }
+
+ Key::new(key)
+ }
+
+ /// Insert `value` into the queue set to expire after the requested duration
+ /// elapses.
+ ///
+ /// This function is identical to `insert_at`, but takes a `Duration`
+ /// instead of an `Instant`.
+ ///
+ /// `value` is stored in the queue until `when` is reached. At which point,
+ /// `value` will be returned from [`poll`]. If `when` has already been
+ /// reached, then `value` is immediately made available to poll.
+ ///
+ /// The return value represents the insertion and is used at an argument to
+ /// [`remove`] and [`reset`]. Note that [`Key`] is token and is reused once
+ /// `value` is removed from the queue either by calling [`poll`] after
+ /// `when` is reached or by calling [`remove`]. At this point, the caller
+ /// must take care to not use the returned [`Key`] again as it may reference
+ /// a different item in the queue.
+ ///
+ /// See [type] level documentation for more details.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if `timeout` is greater than the maximum supported
+ /// duration.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage
+ ///
+ /// ```rust
+ /// # extern crate tokio;
+ /// use tokio::timer::DelayQueue;
+ /// use std::time::Duration;
+ ///
+ /// # fn main() {
+ /// let mut delay_queue = DelayQueue::new();
+ /// let key = delay_queue.insert("foo", Duration::from_secs(5));
+ ///
+ /// // Remove the entry
+ /// let item = delay_queue.remove(&key);
+ /// assert_eq!(*item.get_ref(), "foo");
+ /// # }
+ /// ```
+ ///
+ /// [`poll`]: #method.poll
+ /// [`remove`]: #method.remove
+ /// [`reset`]: #method.reset
+ /// [`Key`]: struct.Key.html
+ /// [type]: #
+ pub fn insert(&mut self, value: T, timeout: Duration) -> Key {
+ self.insert_at(value, now() + timeout)
+ }
+
+ fn insert_idx(&mut self, when: u64, key: usize) {
+ use self::wheel::{InsertError, Stack};
+
+ // Register the deadline with the timer wheel
+ match self.wheel.insert(when, key, &mut self.slab) {
+ Ok(_) => {}
+ Err((_, InsertError::Elapsed)) => {
+ self.slab[key].expired = true;
+ // The delay is already expired, store it in the expired queue
+ self.expired.push(key, &mut self.slab);
+ }
+ Err((_, err)) => panic!("invalid deadline; err={:?}", err),
+ }
+ }
+
+ /// Remove the item associated with `key` from the queue.
+ ///
+ /// There must be an item associated with `key`. The function returns the
+ /// removed item as well as the `Instant` at which it will the delay will
+ /// have expired.
+ ///
+ /// # Panics
+ ///
+ /// The function panics if `key` is not contained by the queue.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage
+ ///
+ /// ```rust
+ /// # extern crate tokio;
+ /// use tokio::timer::DelayQueue;
+ /// use std::time::Duration;
+ ///
+ /// # fn main() {
+ /// let mut delay_queue = DelayQueue::new();
+ /// let key = delay_queue.insert("foo", Duration::from_secs(5));
+ ///
+ /// // Remove the entry
+ /// let item = delay_queue.remove(&key);
+ /// assert_eq!(*item.get_ref(), "foo");
+ /// # }
+ /// ```
+ pub fn remove(&mut self, key: &Key) -> Expired<T> {
+ use wheel::Stack;
+
+ // Special case the `expired` queue
+ if self.slab[key.index].expired {
+ self.expired.remove(&key.index, &mut self.slab);
+ } else {
+ self.wheel.remove(&key.index, &mut self.slab);
+ }
+
+ let data = self.slab.remove(key.index);
+
+ Expired {
+ key: Key::new(key.index),
+ data: data.inner,
+ deadline: self.start + Duration::from_millis(data.when),
+ }
+ }
+
+ /// Sets the delay of the item associated with `key` to expire at `when`.
+ ///
+ /// This function is identical to `reset` but takes an `Instant` instead of
+ /// a `Duration`.
+ ///
+ /// The item remains in the queue but the delay is set to expire at `when`.
+ /// If `when` is in the past, then the item is immediately made available to
+ /// the caller.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if `when` is too far in the future or if `key` is
+ /// not contained by the queue.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage
+ ///
+ /// ```rust
+ /// # extern crate tokio;
+ /// use tokio::timer::DelayQueue;
+ /// use std::time::{Duration, Instant};
+ ///
+ /// # fn main() {
+ /// let mut delay_queue = DelayQueue::new();
+ /// let key = delay_queue.insert("foo", Duration::from_secs(5));
+ ///
+ /// // "foo" is scheduled to be returned in 5 seconds
+ ///
+ /// delay_queue.reset_at(&key, Instant::now() + Duration::from_secs(10));
+ ///
+ /// // "foo"is now scheduled to be returned in 10 seconds
+ /// # }
+ /// ```
+ pub fn reset_at(&mut self, key: &Key, when: Instant) {
+ self.wheel.remove(&key.index, &mut self.slab);
+
+ // Normalize the deadline. Values cannot be set to expire in the past.
+ let when = self.normalize_deadline(when);
+
+ self.slab[key.index].when = when;
+ self.insert_idx(when, key.index);
+
+ let next_deadline = self.next_deadline();
+ if let (Some(ref mut delay), Some(deadline)) = (&mut self.delay, next_deadline) {
+ delay.reset(deadline);
+ }
+ }
+
+ /// Returns the next time poll as determined by the wheel
+ fn next_deadline(&mut self) -> Option<Instant> {
+ self.wheel
+ .poll_at()
+ .map(|poll_at| self.start + Duration::from_millis(poll_at))
+ }
+
+ /// Sets the delay of the item associated with `key` to expire after
+ /// `timeout`.
+ ///
+ /// This function is identical to `reset_at` but takes a `Duration` instead
+ /// of an `Instant`.
+ ///
+ /// The item remains in the queue but the delay is set to expire after
+ /// `timeout`. If `timeout` is zero, then the item is immediately made
+ /// available to the caller.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if `timeout` is greater than the maximum supported
+ /// duration or if `key` is not contained by the queue.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage
+ ///
+ /// ```rust
+ /// # extern crate tokio;
+ /// use tokio::timer::DelayQueue;
+ /// use std::time::Duration;
+ ///
+ /// # fn main() {
+ /// let mut delay_queue = DelayQueue::new();
+ /// let key = delay_queue.insert("foo", Duration::from_secs(5));
+ ///
+ /// // "foo" is scheduled to be returned in 5 seconds
+ ///
+ /// delay_queue.reset(&key, Duration::from_secs(10));
+ ///
+ /// // "foo"is now scheduled to be returned in 10 seconds
+ /// # }
+ /// ```
+ pub fn reset(&mut self, key: &Key, timeout: Duration) {
+ self.reset_at(key, now() + timeout);
+ }
+
+ /// Clears the queue, removing all items.
+ ///
+ /// After calling `clear`, [`poll`] will return `Ok(Ready(None))`.
+ ///
+ /// Note that this method has no effect on the allocated capacity.
+ ///
+ /// [`poll`]: #method.poll
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// # extern crate tokio;
+ /// use tokio::timer::DelayQueue;
+ /// use std::time::Duration;
+ ///
+ /// # fn main() {
+ /// let mut delay_queue = DelayQueue::new();
+ ///
+ /// delay_queue.insert("foo", Duration::from_secs(5));
+ ///
+ /// assert!(!delay_queue.is_empty());
+ ///
+ /// delay_queue.clear();
+ ///
+ /// assert!(delay_queue.is_empty());
+ /// # }
+ /// ```
+ pub fn clear(&mut self) {
+ self.slab.clear();
+ self.expired = Stack::default();
+ self.wheel = Wheel::new();
+ self.delay = None;
+ }
+
+ /// Returns the number of elements the queue can hold without reallocating.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// # use tokio_timer::DelayQueue;
+ /// let delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
+ /// assert_eq!(delay_queue.capacity(), 10);
+ /// ```
+ pub fn capacity(&self) -> usize {
+ self.slab.capacity()
+ }
+
+ /// Reserve capacity for at least `additional` more items to be queued
+ /// without allocating.
+ ///
+ /// `reserve` does nothing if the queue already has sufficient capacity for
+ /// `additional` more values. If more capacity is required, a new segment of
+ /// memory will be allocated and all existing values will be copied into it.
+ /// As such, if the queue is already very large, a call to `reserve` can end
+ /// up being expensive.
+ ///
+ /// The queue may reserve more than `additional` extra space in order to
+ /// avoid frequent reallocations.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity exceeds the maximum number of entries the
+ /// queue can contain.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use tokio_timer::DelayQueue;
+ /// # use std::time::Duration;
+ /// let mut delay_queue = DelayQueue::new();
+ /// delay_queue.insert("hello", Duration::from_secs(10));
+ /// delay_queue.reserve(10);
+ /// assert!(delay_queue.capacity() >= 11);
+ /// ```
+ pub fn reserve(&mut self, additional: usize) {
+ self.slab.reserve(additional);
+ }
+
+ /// Returns `true` if there are no items in the queue.
+ ///
+ /// Note that this function returns `false` even if all items have not yet
+ /// expired and a call to `poll` will return `NotReady`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use tokio_timer::DelayQueue;
+ /// use std::time::Duration;
+ /// let mut delay_queue = DelayQueue::new();
+ /// assert!(delay_queue.is_empty());
+ ///
+ /// delay_queue.insert("hello", Duration::from_secs(5));
+ /// assert!(!delay_queue.is_empty());
+ /// ```
+ pub fn is_empty(&self) -> bool {
+ self.slab.is_empty()
+ }
+
+ /// Polls the queue, returning the index of the next slot in the slab that
+ /// should be returned.
+ ///
+ /// A slot should be returned when the associated deadline has been reached.
+ fn poll_idx(&mut self) -> Poll<Option<usize>, Error> {
+ use self::wheel::Stack;
+
+ let expired = self.expired.pop(&mut self.slab);
+
+ if expired.is_some() {
+ return Ok(expired.into());
+ }
+
+ loop {
+ if let Some(ref mut delay) = self.delay {
+ if !delay.is_elapsed() {
+ try_ready!(delay.poll());
+ }
+
+ let now = ::ms(delay.deadline() - self.start, ::Round::Down);
+
+ self.poll = wheel::Poll::new(now);
+ }
+
+ self.delay = None;
+
+ if let Some(idx) = self.wheel.poll(&mut self.poll, &mut self.slab) {
+ return Ok(Some(idx).into());
+ }
+
+ if let Some(deadline) = self.next_deadline() {
+ self.delay = Some(self.handle.delay(deadline));
+ } else {
+ return Ok(None.into());
+ }
+ }
+ }
+
+ fn normalize_deadline(&self, when: Instant) -> u64 {
+ let when = if when < self.start {
+ 0
+ } else {
+ ::ms(when - self.start, ::Round::Up)
+ };
+
+ cmp::max(when, self.wheel.elapsed())
+ }
+}
+
+impl<T> Stream for DelayQueue<T> {
+ type Item = Expired<T>;
+ type Error = Error;
+
+ fn poll(&mut self) -> Poll<Option<Self::Item>, Error> {
+ let item = try_ready!(self.poll_idx()).map(|idx| {
+ let data = self.slab.remove(idx);
+ debug_assert!(data.next.is_none());
+ debug_assert!(data.prev.is_none());
+
+ Expired {
+ key: Key::new(idx),
+ data: data.inner,
+ deadline: self.start + Duration::from_millis(data.when),
+ }
+ });
+
+ Ok(item.into())
+ }
+}
+
+impl<T> wheel::Stack for Stack<T> {
+ type Owned = usize;
+ type Borrowed = usize;
+ type Store = Slab<Data<T>>;
+
+ fn is_empty(&self) -> bool {
+ self.head.is_none()
+ }
+
+ fn push(&mut self, item: Self::Owned, store: &mut Self::Store) {
+ // Ensure the entry is not already in a stack.
+ debug_assert!(store[item].next.is_none());
+ debug_assert!(store[item].prev.is_none());
+
+ // Remove the old head entry
+ let old = self.head.take();
+
+ if let Some(idx) = old {
+ store[idx].prev = Some(item);
+ }
+
+ store[item].next = old;
+ self.head = Some(item)
+ }
+
+ fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned> {
+ if let Some(idx) = self.head {
+ self.head = store[idx].next;
+
+ if let Some(idx) = self.head {
+ store[idx].prev = None;
+ }
+
+ store[idx].next = None;
+ debug_assert!(store[idx].prev.is_none());
+
+ Some(idx)
+ } else {
+ None
+ }
+ }
+
+ fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store) {
+ assert!(store.contains(*item));
+
+ // Ensure that the entry is in fact contained by the stack
+ debug_assert!({
+ // This walks the full linked list even if an entry is found.
+ let mut next = self.head;
+ let mut contains = false;
+
+ while let Some(idx) = next {
+ if idx == *item {
+ debug_assert!(!contains);
+ contains = true;
+ }
+
+ next = store[idx].next;
+ }
+
+ contains
+ });
+
+ if let Some(next) = store[*item].next {
+ store[next].prev = store[*item].prev;
+ }
+
+ if let Some(prev) = store[*item].prev {
+ store[prev].next = store[*item].next;
+ } else {
+ self.head = store[*item].next;
+ }
+
+ store[*item].next = None;
+ store[*item].prev = None;
+ }
+
+ fn when(item: &Self::Borrowed, store: &Self::Store) -> u64 {
+ store[*item].when
+ }
+}
+
+impl<T> Default for Stack<T> {
+ fn default() -> Stack<T> {
+ Stack {
+ head: None,
+ _p: PhantomData,
+ }
+ }
+}
+
+impl Key {
+ pub(crate) fn new(index: usize) -> Key {
+ Key { index }
+ }
+}
+
+impl<T> Expired<T> {
+ /// Returns a reference to the inner value.
+ pub fn get_ref(&self) -> &T {
+ &self.data
+ }
+
+ /// Returns a mutable reference to the inner value.
+ pub fn get_mut(&mut self) -> &mut T {
+ &mut self.data
+ }
+
+ /// Consumes `self` and returns the inner value.
+ pub fn into_inner(self) -> T {
+ self.data
+ }
+}
diff --git a/third_party/rust/tokio-timer/src/error.rs b/third_party/rust/tokio-timer/src/error.rs
new file mode 100644
index 0000000000..a6136d8b55
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/error.rs
@@ -0,0 +1,78 @@
+use self::Kind::*;
+
+use std::error;
+use std::fmt;
+
+/// Errors encountered by the timer implementation.
+///
+/// Currently, there are two different errors that can occur:
+///
+/// * `shutdown` occurs when a timer operation is attempted, but the timer
+/// instance has been dropped. In this case, the operation will never be able
+/// to complete and the `shutdown` error is returned. This is a permanent
+/// error, i.e., once this error is observed, timer operations will never
+/// succeed in the future.
+///
+/// * `at_capacity` occurs when a timer operation is attempted, but the timer
+/// instance is currently handling its maximum number of outstanding delays.
+/// In this case, the operation is not able to be performed at the current
+/// moment, and `at_capacity` is returned. This is a transient error, i.e., at
+/// some point in the future, if the operation is attempted again, it might
+/// succeed. Callers that observe this error should attempt to [shed load]. One
+/// way to do this would be dropping the future that issued the timer operation.
+///
+/// [shed load]: https://en.wikipedia.org/wiki/Load_Shedding
+#[derive(Debug)]
+pub struct Error(Kind);
+
+#[derive(Debug)]
+enum Kind {
+ Shutdown,
+ AtCapacity,
+}
+
+impl Error {
+ /// Create an error representing a shutdown timer.
+ pub fn shutdown() -> Error {
+ Error(Shutdown)
+ }
+
+ /// Returns `true` if the error was caused by the timer being shutdown.
+ pub fn is_shutdown(&self) -> bool {
+ match self.0 {
+ Kind::Shutdown => true,
+ _ => false,
+ }
+ }
+
+ /// Create an error representing a timer at capacity.
+ pub fn at_capacity() -> Error {
+ Error(AtCapacity)
+ }
+
+ /// Returns `true` if the error was caused by the timer being at capacity.
+ pub fn is_at_capacity(&self) -> bool {
+ match self.0 {
+ Kind::AtCapacity => true,
+ _ => false,
+ }
+ }
+}
+
+impl error::Error for Error {
+ fn description(&self) -> &str {
+ use self::Kind::*;
+
+ match self.0 {
+ Shutdown => "timer is shutdown",
+ AtCapacity => "timer is at capacity and cannot create a new entry",
+ }
+ }
+}
+
+impl fmt::Display for Error {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ use std::error::Error;
+ self.description().fmt(fmt)
+ }
+}
diff --git a/third_party/rust/tokio-timer/src/interval.rs b/third_party/rust/tokio-timer/src/interval.rs
new file mode 100644
index 0000000000..019efe6a2d
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/interval.rs
@@ -0,0 +1,75 @@
+use Delay;
+
+use clock;
+
+use futures::{Future, Poll, Stream};
+
+use std::time::{Duration, Instant};
+
+/// A stream representing notifications at fixed interval
+#[derive(Debug)]
+pub struct Interval {
+ /// Future that completes the next time the `Interval` yields a value.
+ delay: Delay,
+
+ /// The duration between values yielded by `Interval`.
+ duration: Duration,
+}
+
+impl Interval {
+ /// Create a new `Interval` that starts at `at` and yields every `duration`
+ /// interval after that.
+ ///
+ /// Note that when it starts, it produces item too.
+ ///
+ /// The `duration` argument must be a non-zero duration.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if `duration` is zero.
+ pub fn new(at: Instant, duration: Duration) -> Interval {
+ assert!(
+ duration > Duration::new(0, 0),
+ "`duration` must be non-zero."
+ );
+
+ Interval::new_with_delay(Delay::new(at), duration)
+ }
+
+ /// Creates new `Interval` that yields with interval of `duration`.
+ ///
+ /// The function is shortcut for `Interval::new(Instant::now() + duration, duration)`.
+ ///
+ /// The `duration` argument must be a non-zero duration.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if `duration` is zero.
+ pub fn new_interval(duration: Duration) -> Interval {
+ Interval::new(clock::now() + duration, duration)
+ }
+
+ pub(crate) fn new_with_delay(delay: Delay, duration: Duration) -> Interval {
+ Interval { delay, duration }
+ }
+}
+
+impl Stream for Interval {
+ type Item = Instant;
+ type Error = ::Error;
+
+ fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
+ // Wait for the delay to be done
+ let _ = try_ready!(self.delay.poll());
+
+ // Get the `now` by looking at the `delay` deadline
+ let now = self.delay.deadline();
+
+ // The next interval value is `duration` after the one that just
+ // yielded.
+ self.delay.reset(now + self.duration);
+
+ // Return the current instant
+ Ok(Some(now).into())
+ }
+}
diff --git a/third_party/rust/tokio-timer/src/lib.rs b/third_party/rust/tokio-timer/src/lib.rs
new file mode 100644
index 0000000000..a141dd2796
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/lib.rs
@@ -0,0 +1,105 @@
+#![doc(html_root_url = "https://docs.rs/tokio-timer/0.2.13")]
+#![deny(missing_docs, missing_debug_implementations)]
+
+//! Utilities for tracking time.
+//!
+//! > **Note:** This crate is **deprecated in tokio 0.2.x** and has been moved
+//! > into [`tokio::time`] behind the `time` [feature flag].
+//!
+//! [`tokio::time`]: https://docs.rs/tokio/latest/tokio/time/index.html
+//! [feature flag]: https://docs.rs/tokio/latest/tokio/index.html#feature-flags
+//!
+//! This crate provides a number of utilities for working with periods of time:
+//!
+//! * [`Delay`]: A future that completes at a specified instant in time.
+//!
+//! * [`Interval`] A stream that yields at fixed time intervals.
+//!
+//! * [`Throttle`]: Throttle down a stream by enforcing a fixed delay between items.
+//!
+//! * [`Timeout`]: Wraps a future or stream, setting an upper bound to the
+//! amount of time it is allowed to execute. If the future or stream does not
+//! complete in time, then it is canceled and an error is returned.
+//!
+//! * [`DelayQueue`]: A queue where items are returned once the requested delay
+//! has expired.
+//!
+//! These three types are backed by a [`Timer`] instance. In order for
+//! [`Delay`], [`Interval`], and [`Timeout`] to function, the associated
+//! [`Timer`] instance must be running on some thread.
+//!
+//! [`Delay`]: struct.Delay.html
+//! [`DelayQueue`]: struct.DelayQueue.html
+//! [`Throttle`]: throttle/struct.Throttle.html
+//! [`Timeout`]: struct.Timeout.html
+//! [`Interval`]: struct.Interval.html
+//! [`Timer`]: timer/struct.Timer.html
+
+extern crate tokio_executor;
+
+extern crate crossbeam_utils;
+#[macro_use]
+extern crate futures;
+extern crate slab;
+
+pub mod clock;
+pub mod delay_queue;
+pub mod throttle;
+pub mod timeout;
+pub mod timer;
+
+mod atomic;
+mod deadline;
+mod delay;
+mod error;
+mod interval;
+mod wheel;
+
+#[deprecated(since = "0.2.6", note = "use Timeout instead")]
+#[doc(hidden)]
+#[allow(deprecated)]
+pub use self::deadline::{Deadline, DeadlineError};
+pub use self::delay::Delay;
+#[doc(inline)]
+pub use self::delay_queue::DelayQueue;
+pub use self::error::Error;
+pub use self::interval::Interval;
+#[doc(inline)]
+pub use self::timeout::Timeout;
+pub use self::timer::{with_default, Timer};
+
+use std::time::{Duration, Instant};
+
+/// Create a Future that completes in `duration` from now.
+pub fn sleep(duration: Duration) -> Delay {
+ Delay::new(Instant::now() + duration)
+}
+
+// ===== Internal utils =====
+
+enum Round {
+ Up,
+ Down,
+}
+
+/// Convert a `Duration` to milliseconds, rounding up and saturating at
+/// `u64::MAX`.
+///
+/// The saturating is fine because `u64::MAX` milliseconds are still many
+/// million years.
+#[inline]
+fn ms(duration: Duration, round: Round) -> u64 {
+ const NANOS_PER_MILLI: u32 = 1_000_000;
+ const MILLIS_PER_SEC: u64 = 1_000;
+
+ // Round up.
+ let millis = match round {
+ Round::Up => (duration.subsec_nanos() + NANOS_PER_MILLI - 1) / NANOS_PER_MILLI,
+ Round::Down => duration.subsec_nanos() / NANOS_PER_MILLI,
+ };
+
+ duration
+ .as_secs()
+ .saturating_mul(MILLIS_PER_SEC)
+ .saturating_add(millis as u64)
+}
diff --git a/third_party/rust/tokio-timer/src/throttle.rs b/third_party/rust/tokio-timer/src/throttle.rs
new file mode 100644
index 0000000000..97d313313e
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/throttle.rs
@@ -0,0 +1,167 @@
+//! Slow down a stream by enforcing a delay between items.
+
+use {clock, Delay, Error};
+
+use futures::future::Either;
+use futures::{Async, Future, Poll, Stream};
+
+use std::{
+ error::Error as StdError,
+ fmt::{Display, Formatter, Result as FmtResult},
+ time::Duration,
+};
+
+/// Slow down a stream by enforcing a delay between items.
+#[derive(Debug)]
+#[must_use = "streams do nothing unless polled"]
+pub struct Throttle<T> {
+ delay: Option<Delay>,
+ duration: Duration,
+ stream: T,
+}
+
+/// Either the error of the underlying stream, or an error within
+/// tokio's timing machinery.
+#[derive(Debug)]
+pub struct ThrottleError<T>(Either<T, Error>);
+
+impl<T> Throttle<T> {
+ /// Slow down a stream by enforcing a delay between items.
+ pub fn new(stream: T, duration: Duration) -> Self {
+ Self {
+ delay: None,
+ duration: duration,
+ stream: stream,
+ }
+ }
+
+ /// Acquires a reference to the underlying stream that this combinator is
+ /// pulling from.
+ pub fn get_ref(&self) -> &T {
+ &self.stream
+ }
+
+ /// Acquires a mutable reference to the underlying stream that this combinator
+ /// is pulling from.
+ ///
+ /// Note that care must be taken to avoid tampering with the state of the stream
+ /// which may otherwise confuse this combinator.
+ pub fn get_mut(&mut self) -> &mut T {
+ &mut self.stream
+ }
+
+ /// Consumes this combinator, returning the underlying stream.
+ ///
+ /// Note that this may discard intermediate state of this combinator, so care
+ /// should be taken to avoid losing resources when this is called.
+ pub fn into_inner(self) -> T {
+ self.stream
+ }
+}
+
+impl<T: Stream> Stream for Throttle<T> {
+ type Item = T::Item;
+ type Error = ThrottleError<T::Error>;
+
+ fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
+ if let Some(ref mut delay) = self.delay {
+ try_ready!({ delay.poll().map_err(ThrottleError::from_timer_err) });
+ }
+
+ self.delay = None;
+ let value = try_ready!({ self.stream.poll().map_err(ThrottleError::from_stream_err) });
+
+ if value.is_some() {
+ self.delay = Some(Delay::new(clock::now() + self.duration));
+ }
+
+ Ok(Async::Ready(value))
+ }
+}
+
+impl<T> ThrottleError<T> {
+ /// Creates a new `ThrottleError` from the given stream error.
+ pub fn from_stream_err(err: T) -> Self {
+ ThrottleError(Either::A(err))
+ }
+
+ /// Creates a new `ThrottleError` from the given tokio timer error.
+ pub fn from_timer_err(err: Error) -> Self {
+ ThrottleError(Either::B(err))
+ }
+
+ /// Attempts to get the underlying stream error, if it is present.
+ pub fn get_stream_error(&self) -> Option<&T> {
+ match self.0 {
+ Either::A(ref x) => Some(x),
+ _ => None,
+ }
+ }
+
+ /// Attempts to get the underlying timer error, if it is present.
+ pub fn get_timer_error(&self) -> Option<&Error> {
+ match self.0 {
+ Either::B(ref x) => Some(x),
+ _ => None,
+ }
+ }
+
+ /// Attempts to extract the underlying stream error, if it is present.
+ pub fn into_stream_error(self) -> Option<T> {
+ match self.0 {
+ Either::A(x) => Some(x),
+ _ => None,
+ }
+ }
+
+ /// Attempts to extract the underlying timer error, if it is present.
+ pub fn into_timer_error(self) -> Option<Error> {
+ match self.0 {
+ Either::B(x) => Some(x),
+ _ => None,
+ }
+ }
+
+ /// Returns whether the throttle error has occured because of an error
+ /// in the underlying stream.
+ pub fn is_stream_error(&self) -> bool {
+ !self.is_timer_error()
+ }
+
+ /// Returns whether the throttle error has occured because of an error
+ /// in tokio's timer system.
+ pub fn is_timer_error(&self) -> bool {
+ match self.0 {
+ Either::A(_) => false,
+ Either::B(_) => true,
+ }
+ }
+}
+
+impl<T: StdError> Display for ThrottleError<T> {
+ fn fmt(&self, f: &mut Formatter) -> FmtResult {
+ match self.0 {
+ Either::A(ref err) => write!(f, "stream error: {}", err),
+ Either::B(ref err) => write!(f, "timer error: {}", err),
+ }
+ }
+}
+
+impl<T: StdError + 'static> StdError for ThrottleError<T> {
+ fn description(&self) -> &str {
+ match self.0 {
+ Either::A(_) => "stream error",
+ Either::B(_) => "timer error",
+ }
+ }
+
+ // FIXME(taiki-e): When the minimum support version of tokio reaches Rust 1.30,
+ // replace this with Error::source.
+ #[allow(deprecated)]
+ fn cause(&self) -> Option<&dyn StdError> {
+ match self.0 {
+ Either::A(ref err) => Some(err),
+ Either::B(ref err) => Some(err),
+ }
+ }
+}
diff --git a/third_party/rust/tokio-timer/src/timeout.rs b/third_party/rust/tokio-timer/src/timeout.rs
new file mode 100644
index 0000000000..1c02a68675
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/timeout.rs
@@ -0,0 +1,311 @@
+//! Allows a future or stream to execute for a maximum amount of time.
+//!
+//! See [`Timeout`] documentation for more details.
+//!
+//! [`Timeout`]: struct.Timeout.html
+
+use clock::now;
+use Delay;
+
+use futures::{Async, Future, Poll, Stream};
+
+use std::error;
+use std::fmt;
+use std::time::{Duration, Instant};
+
+/// Allows a `Future` or `Stream` to execute for a limited amount of time.
+///
+/// If the future or stream completes before the timeout has expired, then
+/// `Timeout` returns the completed value. Otherwise, `Timeout` returns an
+/// [`Error`].
+///
+/// # Futures and Streams
+///
+/// The exact behavor depends on if the inner value is a `Future` or a `Stream`.
+/// In the case of a `Future`, `Timeout` will require the future to complete by
+/// a fixed deadline. In the case of a `Stream`, `Timeout` will allow each item
+/// to take the entire timeout before returning an error.
+///
+/// In order to set an upper bound on the processing of the *entire* stream,
+/// then a timeout should be set on the future that processes the stream. For
+/// example:
+///
+/// ```rust
+/// # extern crate futures;
+/// # extern crate tokio;
+/// // import the `timeout` function, usually this is done
+/// // with `use tokio::prelude::*`
+/// use tokio::prelude::FutureExt;
+/// use futures::Stream;
+/// use futures::sync::mpsc;
+/// use std::time::Duration;
+///
+/// # fn main() {
+/// let (tx, rx) = mpsc::unbounded();
+/// # tx.unbounded_send(()).unwrap();
+/// # drop(tx);
+///
+/// let process = rx.for_each(|item| {
+/// // do something with `item`
+/// # drop(item);
+/// # Ok(())
+/// });
+///
+/// # tokio::runtime::current_thread::block_on_all(
+/// // Wrap the future with a `Timeout` set to expire in 10 milliseconds.
+/// process.timeout(Duration::from_millis(10))
+/// # ).unwrap();
+/// # }
+/// ```
+///
+/// # Cancelation
+///
+/// Cancelling a `Timeout` is done by dropping the value. No additional cleanup
+/// or other work is required.
+///
+/// The original future or stream may be obtained by calling [`Timeout::into_inner`]. This
+/// consumes the `Timeout`.
+///
+/// [`Error`]: struct.Error.html
+/// [`Timeout::into_inner`]: struct.Timeout.html#method.into_iter
+#[must_use = "futures do nothing unless polled"]
+#[derive(Debug)]
+pub struct Timeout<T> {
+ value: T,
+ delay: Delay,
+}
+
+/// Error returned by `Timeout`.
+#[derive(Debug)]
+pub struct Error<T>(Kind<T>);
+
+/// Timeout error variants
+#[derive(Debug)]
+enum Kind<T> {
+ /// Inner value returned an error
+ Inner(T),
+
+ /// The timeout elapsed.
+ Elapsed,
+
+ /// Timer returned an error.
+ Timer(::Error),
+}
+
+impl<T> Timeout<T> {
+ /// Create a new `Timeout` that allows `value` to execute for a duration of
+ /// at most `timeout`.
+ ///
+ /// The exact behavior depends on if `value` is a `Future` or a `Stream`.
+ ///
+ /// See [type] level documentation for more details.
+ ///
+ /// [type]: #
+ ///
+ /// # Examples
+ ///
+ /// Create a new `Timeout` set to expire in 10 milliseconds.
+ ///
+ /// ```rust
+ /// # extern crate futures;
+ /// # extern crate tokio;
+ /// use tokio::timer::Timeout;
+ /// use futures::Future;
+ /// use futures::sync::oneshot;
+ /// use std::time::Duration;
+ ///
+ /// # fn main() {
+ /// let (tx, rx) = oneshot::channel();
+ /// # tx.send(()).unwrap();
+ ///
+ /// # tokio::runtime::current_thread::block_on_all(
+ /// // Wrap the future with a `Timeout` set to expire in 10 milliseconds.
+ /// Timeout::new(rx, Duration::from_millis(10))
+ /// # ).unwrap();
+ /// # }
+ /// ```
+ pub fn new(value: T, timeout: Duration) -> Timeout<T> {
+ let delay = Delay::new_timeout(now() + timeout, timeout);
+ Timeout::new_with_delay(value, delay)
+ }
+
+ pub(crate) fn new_with_delay(value: T, delay: Delay) -> Timeout<T> {
+ Timeout { value, delay }
+ }
+
+ /// Gets a reference to the underlying value in this timeout.
+ pub fn get_ref(&self) -> &T {
+ &self.value
+ }
+
+ /// Gets a mutable reference to the underlying value in this timeout.
+ pub fn get_mut(&mut self) -> &mut T {
+ &mut self.value
+ }
+
+ /// Consumes this timeout, returning the underlying value.
+ pub fn into_inner(self) -> T {
+ self.value
+ }
+}
+
+impl<T: Future> Timeout<T> {
+ /// Create a new `Timeout` that completes when `future` completes or when
+ /// `deadline` is reached.
+ ///
+ /// This function differs from `new` in that:
+ ///
+ /// * It only accepts `Future` arguments.
+ /// * It sets an explicit `Instant` at which the timeout expires.
+ pub fn new_at(future: T, deadline: Instant) -> Timeout<T> {
+ let delay = Delay::new(deadline);
+
+ Timeout {
+ value: future,
+ delay,
+ }
+ }
+}
+
+impl<T> Future for Timeout<T>
+where
+ T: Future,
+{
+ type Item = T::Item;
+ type Error = Error<T::Error>;
+
+ fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
+ // First, try polling the future
+ match self.value.poll() {
+ Ok(Async::Ready(v)) => return Ok(Async::Ready(v)),
+ Ok(Async::NotReady) => {}
+ Err(e) => return Err(Error::inner(e)),
+ }
+
+ // Now check the timer
+ match self.delay.poll() {
+ Ok(Async::NotReady) => Ok(Async::NotReady),
+ Ok(Async::Ready(_)) => Err(Error::elapsed()),
+ Err(e) => Err(Error::timer(e)),
+ }
+ }
+}
+
+impl<T> Stream for Timeout<T>
+where
+ T: Stream,
+{
+ type Item = T::Item;
+ type Error = Error<T::Error>;
+
+ fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
+ // First, try polling the future
+ match self.value.poll() {
+ Ok(Async::Ready(v)) => {
+ if v.is_some() {
+ self.delay.reset_timeout();
+ }
+ return Ok(Async::Ready(v));
+ }
+ Ok(Async::NotReady) => {}
+ Err(e) => return Err(Error::inner(e)),
+ }
+
+ // Now check the timer
+ match self.delay.poll() {
+ Ok(Async::NotReady) => Ok(Async::NotReady),
+ Ok(Async::Ready(_)) => {
+ self.delay.reset_timeout();
+ Err(Error::elapsed())
+ }
+ Err(e) => Err(Error::timer(e)),
+ }
+ }
+}
+
+// ===== impl Error =====
+
+impl<T> Error<T> {
+ /// Create a new `Error` representing the inner value completing with `Err`.
+ pub fn inner(err: T) -> Error<T> {
+ Error(Kind::Inner(err))
+ }
+
+ /// Returns `true` if the error was caused by the inner value completing
+ /// with `Err`.
+ pub fn is_inner(&self) -> bool {
+ match self.0 {
+ Kind::Inner(_) => true,
+ _ => false,
+ }
+ }
+
+ /// Consumes `self`, returning the inner future error.
+ pub fn into_inner(self) -> Option<T> {
+ match self.0 {
+ Kind::Inner(err) => Some(err),
+ _ => None,
+ }
+ }
+
+ /// Create a new `Error` representing the inner value not completing before
+ /// the deadline is reached.
+ pub fn elapsed() -> Error<T> {
+ Error(Kind::Elapsed)
+ }
+
+ /// Returns `true` if the error was caused by the inner value not completing
+ /// before the deadline is reached.
+ pub fn is_elapsed(&self) -> bool {
+ match self.0 {
+ Kind::Elapsed => true,
+ _ => false,
+ }
+ }
+
+ /// Creates a new `Error` representing an error encountered by the timer
+ /// implementation
+ pub fn timer(err: ::Error) -> Error<T> {
+ Error(Kind::Timer(err))
+ }
+
+ /// Returns `true` if the error was caused by the timer.
+ pub fn is_timer(&self) -> bool {
+ match self.0 {
+ Kind::Timer(_) => true,
+ _ => false,
+ }
+ }
+
+ /// Consumes `self`, returning the error raised by the timer implementation.
+ pub fn into_timer(self) -> Option<::Error> {
+ match self.0 {
+ Kind::Timer(err) => Some(err),
+ _ => None,
+ }
+ }
+}
+
+impl<T: error::Error> error::Error for Error<T> {
+ fn description(&self) -> &str {
+ use self::Kind::*;
+
+ match self.0 {
+ Inner(ref e) => e.description(),
+ Elapsed => "deadline has elapsed",
+ Timer(ref e) => e.description(),
+ }
+ }
+}
+
+impl<T: fmt::Display> fmt::Display for Error<T> {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ use self::Kind::*;
+
+ match self.0 {
+ Inner(ref e) => e.fmt(fmt),
+ Elapsed => "deadline has elapsed".fmt(fmt),
+ Timer(ref e) => e.fmt(fmt),
+ }
+ }
+}
diff --git a/third_party/rust/tokio-timer/src/timer/atomic_stack.rs b/third_party/rust/tokio-timer/src/timer/atomic_stack.rs
new file mode 100644
index 0000000000..4e7d8ed6ec
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/timer/atomic_stack.rs
@@ -0,0 +1,124 @@
+use super::Entry;
+use Error;
+
+use std::ptr;
+use std::sync::atomic::AtomicPtr;
+use std::sync::atomic::Ordering::SeqCst;
+use std::sync::Arc;
+
+/// A stack of `Entry` nodes
+#[derive(Debug)]
+pub(crate) struct AtomicStack {
+ /// Stack head
+ head: AtomicPtr<Entry>,
+}
+
+/// Entries that were removed from the stack
+#[derive(Debug)]
+pub(crate) struct AtomicStackEntries {
+ ptr: *mut Entry,
+}
+
+/// Used to indicate that the timer has shutdown.
+const SHUTDOWN: *mut Entry = 1 as *mut _;
+
+impl AtomicStack {
+ pub fn new() -> AtomicStack {
+ AtomicStack {
+ head: AtomicPtr::new(ptr::null_mut()),
+ }
+ }
+
+ /// Push an entry onto the stack.
+ ///
+ /// Returns `true` if the entry was pushed, `false` if the entry is already
+ /// on the stack, `Err` if the timer is shutdown.
+ pub fn push(&self, entry: &Arc<Entry>) -> Result<bool, Error> {
+ // First, set the queued bit on the entry
+ let queued = entry.queued.fetch_or(true, SeqCst).into();
+
+ if queued {
+ // Already queued, nothing more to do
+ return Ok(false);
+ }
+
+ let ptr = Arc::into_raw(entry.clone()) as *mut _;
+
+ let mut curr = self.head.load(SeqCst);
+
+ loop {
+ if curr == SHUTDOWN {
+ // Don't leak the entry node
+ let _ = unsafe { Arc::from_raw(ptr) };
+
+ return Err(Error::shutdown());
+ }
+
+ // Update the `next` pointer. This is safe because setting the queued
+ // bit is a "lock" on this field.
+ unsafe {
+ *(entry.next_atomic.get()) = curr;
+ }
+
+ let actual = self.head.compare_and_swap(curr, ptr, SeqCst);
+
+ if actual == curr {
+ break;
+ }
+
+ curr = actual;
+ }
+
+ Ok(true)
+ }
+
+ /// Take all entries from the stack
+ pub fn take(&self) -> AtomicStackEntries {
+ let ptr = self.head.swap(ptr::null_mut(), SeqCst);
+ AtomicStackEntries { ptr }
+ }
+
+ /// Drain all remaining nodes in the stack and prevent any new nodes from
+ /// being pushed onto the stack.
+ pub fn shutdown(&self) {
+ // Shutdown the processing queue
+ let ptr = self.head.swap(SHUTDOWN, SeqCst);
+
+ // Let the drop fn of `AtomicStackEntries` handle draining the stack
+ drop(AtomicStackEntries { ptr });
+ }
+}
+
+// ===== impl AtomicStackEntries =====
+
+impl Iterator for AtomicStackEntries {
+ type Item = Arc<Entry>;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ if self.ptr.is_null() {
+ return None;
+ }
+
+ // Convert the pointer to an `Arc<Entry>`
+ let entry = unsafe { Arc::from_raw(self.ptr) };
+
+ // Update `self.ptr` to point to the next element of the stack
+ self.ptr = unsafe { (*entry.next_atomic.get()) };
+
+ // Unset the queued flag
+ let res = entry.queued.fetch_and(false, SeqCst);
+ debug_assert!(res);
+
+ // Return the entry
+ Some(entry)
+ }
+}
+
+impl Drop for AtomicStackEntries {
+ fn drop(&mut self) {
+ while let Some(entry) = self.next() {
+ // Flag the entry as errored
+ entry.error();
+ }
+ }
+}
diff --git a/third_party/rust/tokio-timer/src/timer/entry.rs b/third_party/rust/tokio-timer/src/timer/entry.rs
new file mode 100644
index 0000000000..40979afaec
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/timer/entry.rs
@@ -0,0 +1,394 @@
+use atomic::AtomicU64;
+use timer::{HandlePriv, Inner};
+use Error;
+
+use crossbeam_utils::CachePadded;
+use futures::task::AtomicTask;
+use futures::Poll;
+
+use std::cell::UnsafeCell;
+use std::ptr;
+use std::sync::atomic::AtomicBool;
+use std::sync::atomic::Ordering::{Relaxed, SeqCst};
+use std::sync::{Arc, Weak};
+use std::time::{Duration, Instant};
+use std::u64;
+
+/// Internal state shared between a `Delay` instance and the timer.
+///
+/// This struct is used as a node in two intrusive data structures:
+///
+/// * An atomic stack used to signal to the timer thread that the entry state
+/// has changed. The timer thread will observe the entry on this stack and
+/// perform any actions as necessary.
+///
+/// * A doubly linked list used **only** by the timer thread. Each slot in the
+/// timer wheel is a head pointer to the list of entries that must be
+/// processed during that timer tick.
+#[derive(Debug)]
+pub(crate) struct Entry {
+ /// Only accessed from `Registration`.
+ time: CachePadded<UnsafeCell<Time>>,
+
+ /// Timer internals. Using a weak pointer allows the timer to shutdown
+ /// without all `Delay` instances having completed.
+ ///
+ /// When `None`, the entry has not yet been linked with a timer instance.
+ inner: Option<Weak<Inner>>,
+
+ /// Tracks the entry state. This value contains the following information:
+ ///
+ /// * The deadline at which the entry must be "fired".
+ /// * A flag indicating if the entry has already been fired.
+ /// * Whether or not the entry transitioned to the error state.
+ ///
+ /// When an `Entry` is created, `state` is initialized to the instant at
+ /// which the entry must be fired. When a timer is reset to a different
+ /// instant, this value is changed.
+ state: AtomicU64,
+
+ /// Task to notify once the deadline is reached.
+ task: AtomicTask,
+
+ /// True when the entry is queued in the "process" stack. This value
+ /// is set before pushing the value and unset after popping the value.
+ ///
+ /// TODO: This could possibly be rolled up into `state`.
+ pub(super) queued: AtomicBool,
+
+ /// Next entry in the "process" linked list.
+ ///
+ /// Access to this field is coordinated by the `queued` flag.
+ ///
+ /// Represents a strong Arc ref.
+ pub(super) next_atomic: UnsafeCell<*mut Entry>,
+
+ /// When the entry expires, relative to the `start` of the timer
+ /// (Inner::start). This is only used by the timer.
+ ///
+ /// A `Delay` instance can be reset to a different deadline by the thread
+ /// that owns the `Delay` instance. In this case, the timer thread will not
+ /// immediately know that this has happened. The timer thread must know the
+ /// last deadline that it saw as it uses this value to locate the entry in
+ /// its wheel.
+ ///
+ /// Once the timer thread observes that the instant has changed, it updates
+ /// the wheel and sets this value. The idea is that this value eventually
+ /// converges to the value of `state` as the timer thread makes updates.
+ when: UnsafeCell<Option<u64>>,
+
+ /// Next entry in the State's linked list.
+ ///
+ /// This is only accessed by the timer
+ pub(super) next_stack: UnsafeCell<Option<Arc<Entry>>>,
+
+ /// Previous entry in the State's linked list.
+ ///
+ /// This is only accessed by the timer and is used to unlink a canceled
+ /// entry.
+ ///
+ /// This is a weak reference.
+ pub(super) prev_stack: UnsafeCell<*const Entry>,
+}
+
+/// Stores the info for `Delay`.
+#[derive(Debug)]
+pub(crate) struct Time {
+ pub(crate) deadline: Instant,
+ pub(crate) duration: Duration,
+}
+
+/// Flag indicating a timer entry has elapsed
+const ELAPSED: u64 = 1 << 63;
+
+/// Flag indicating a timer entry has reached an error state
+const ERROR: u64 = u64::MAX;
+
+// ===== impl Entry =====
+
+impl Entry {
+ pub fn new(deadline: Instant, duration: Duration) -> Entry {
+ Entry {
+ time: CachePadded::new(UnsafeCell::new(Time { deadline, duration })),
+ inner: None,
+ task: AtomicTask::new(),
+ state: AtomicU64::new(0),
+ queued: AtomicBool::new(false),
+ next_atomic: UnsafeCell::new(ptr::null_mut()),
+ when: UnsafeCell::new(None),
+ next_stack: UnsafeCell::new(None),
+ prev_stack: UnsafeCell::new(ptr::null_mut()),
+ }
+ }
+
+ /// Only called by `Registration`
+ pub fn time_ref(&self) -> &Time {
+ unsafe { &*self.time.get() }
+ }
+
+ /// Only called by `Registration`
+ pub fn time_mut(&self) -> &mut Time {
+ unsafe { &mut *self.time.get() }
+ }
+
+ /// Returns `true` if the `Entry` is currently associated with a timer
+ /// instance.
+ pub fn is_registered(&self) -> bool {
+ self.inner.is_some()
+ }
+
+ /// Only called by `Registration`
+ pub fn register(me: &mut Arc<Self>) {
+ let handle = match HandlePriv::try_current() {
+ Ok(handle) => handle,
+ Err(_) => {
+ // Could not associate the entry with a timer, transition the
+ // state to error
+ Arc::get_mut(me).unwrap().transition_to_error();
+
+ return;
+ }
+ };
+
+ Entry::register_with(me, handle)
+ }
+
+ /// Only called by `Registration`
+ pub fn register_with(me: &mut Arc<Self>, handle: HandlePriv) {
+ assert!(!me.is_registered(), "only register an entry once");
+
+ let deadline = me.time_ref().deadline;
+
+ let inner = match handle.inner() {
+ Some(inner) => inner,
+ None => {
+ // Could not associate the entry with a timer, transition the
+ // state to error
+ Arc::get_mut(me).unwrap().transition_to_error();
+
+ return;
+ }
+ };
+
+ // Increment the number of active timeouts
+ if inner.increment().is_err() {
+ Arc::get_mut(me).unwrap().transition_to_error();
+
+ return;
+ }
+
+ // Associate the entry with the timer
+ Arc::get_mut(me).unwrap().inner = Some(handle.into_inner());
+
+ let when = inner.normalize_deadline(deadline);
+
+ // Relaxed OK: At this point, there are no other threads that have
+ // access to this entry.
+ if when <= inner.elapsed() {
+ me.state.store(ELAPSED, Relaxed);
+ return;
+ } else {
+ me.state.store(when, Relaxed);
+ }
+
+ if inner.queue(me).is_err() {
+ // The timer has shutdown, transition the entry to the error state.
+ me.error();
+ }
+ }
+
+ fn transition_to_error(&mut self) {
+ self.inner = Some(Weak::new());
+ self.state = AtomicU64::new(ERROR);
+ }
+
+ /// The current entry state as known by the timer. This is not the value of
+ /// `state`, but lets the timer know how to converge its state to `state`.
+ pub fn when_internal(&self) -> Option<u64> {
+ unsafe { (*self.when.get()) }
+ }
+
+ pub fn set_when_internal(&self, when: Option<u64>) {
+ unsafe {
+ (*self.when.get()) = when;
+ }
+ }
+
+ /// Called by `Timer` to load the current value of `state` for processing
+ pub fn load_state(&self) -> Option<u64> {
+ let state = self.state.load(SeqCst);
+
+ if is_elapsed(state) {
+ None
+ } else {
+ Some(state)
+ }
+ }
+
+ pub fn is_elapsed(&self) -> bool {
+ let state = self.state.load(SeqCst);
+ is_elapsed(state)
+ }
+
+ pub fn fire(&self, when: u64) {
+ let mut curr = self.state.load(SeqCst);
+
+ loop {
+ if is_elapsed(curr) || curr > when {
+ return;
+ }
+
+ let next = ELAPSED | curr;
+ let actual = self.state.compare_and_swap(curr, next, SeqCst);
+
+ if curr == actual {
+ break;
+ }
+
+ curr = actual;
+ }
+
+ self.task.notify();
+ }
+
+ pub fn error(&self) {
+ // Only transition to the error state if not currently elapsed
+ let mut curr = self.state.load(SeqCst);
+
+ loop {
+ if is_elapsed(curr) {
+ return;
+ }
+
+ let next = ERROR;
+
+ let actual = self.state.compare_and_swap(curr, next, SeqCst);
+
+ if curr == actual {
+ break;
+ }
+
+ curr = actual;
+ }
+
+ self.task.notify();
+ }
+
+ pub fn cancel(entry: &Arc<Entry>) {
+ let state = entry.state.fetch_or(ELAPSED, SeqCst);
+
+ if is_elapsed(state) {
+ // Nothing more to do
+ return;
+ }
+
+ // If registered with a timer instance, try to upgrade the Arc.
+ let inner = match entry.upgrade_inner() {
+ Some(inner) => inner,
+ None => return,
+ };
+
+ let _ = inner.queue(entry);
+ }
+
+ pub fn poll_elapsed(&self) -> Poll<(), Error> {
+ use futures::Async::NotReady;
+
+ let mut curr = self.state.load(SeqCst);
+
+ if is_elapsed(curr) {
+ if curr == ERROR {
+ return Err(Error::shutdown());
+ } else {
+ return Ok(().into());
+ }
+ }
+
+ self.task.register();
+
+ curr = self.state.load(SeqCst).into();
+
+ if is_elapsed(curr) {
+ if curr == ERROR {
+ return Err(Error::shutdown());
+ } else {
+ return Ok(().into());
+ }
+ }
+
+ Ok(NotReady)
+ }
+
+ /// Only called by `Registration`
+ pub fn reset(entry: &mut Arc<Entry>) {
+ if !entry.is_registered() {
+ return;
+ }
+
+ let inner = match entry.upgrade_inner() {
+ Some(inner) => inner,
+ None => return,
+ };
+
+ let deadline = entry.time_ref().deadline;
+ let when = inner.normalize_deadline(deadline);
+ let elapsed = inner.elapsed();
+
+ let mut curr = entry.state.load(SeqCst);
+ let mut notify;
+
+ loop {
+ // In these two cases, there is no work to do when resetting the
+ // timer. If the `Entry` is in an error state, then it cannot be
+ // used anymore. If resetting the entry to the current value, then
+ // the reset is a noop.
+ if curr == ERROR || curr == when {
+ return;
+ }
+
+ let next;
+
+ if when <= elapsed {
+ next = ELAPSED;
+ notify = !is_elapsed(curr);
+ } else {
+ next = when;
+ notify = true;
+ }
+
+ let actual = entry.state.compare_and_swap(curr, next, SeqCst);
+
+ if curr == actual {
+ break;
+ }
+
+ curr = actual;
+ }
+
+ if notify {
+ let _ = inner.queue(entry);
+ }
+ }
+
+ fn upgrade_inner(&self) -> Option<Arc<Inner>> {
+ self.inner.as_ref().and_then(|inner| inner.upgrade())
+ }
+}
+
+fn is_elapsed(state: u64) -> bool {
+ state & ELAPSED == ELAPSED
+}
+
+impl Drop for Entry {
+ fn drop(&mut self) {
+ let inner = match self.upgrade_inner() {
+ Some(inner) => inner,
+ None => return,
+ };
+
+ inner.decrement();
+ }
+}
+
+unsafe impl Send for Entry {}
+unsafe impl Sync for Entry {}
diff --git a/third_party/rust/tokio-timer/src/timer/handle.rs b/third_party/rust/tokio-timer/src/timer/handle.rs
new file mode 100644
index 0000000000..4c444d8a66
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/timer/handle.rs
@@ -0,0 +1,201 @@
+use timer::Inner;
+use {Deadline, Delay, Error, Interval, Timeout};
+
+use tokio_executor::Enter;
+
+use std::cell::RefCell;
+use std::fmt;
+use std::sync::{Arc, Weak};
+use std::time::{Duration, Instant};
+
+/// Handle to timer instance.
+///
+/// The `Handle` allows creating `Delay` instances that are driven by the
+/// associated timer.
+///
+/// A `Handle` is obtained by calling [`Timer::handle`], [`Handle::current`], or
+/// [`Handle::default`].
+///
+/// * [`Timer::handle`]: returns a handle associated with the specific timer.
+/// The handle will always reference the same timer.
+///
+/// * [`Handle::current`]: returns a handle to the timer for the execution
+/// context **at the time the function is called**. This function must be
+/// called from a runtime that has an associated timer or it will panic.
+/// The handle will always reference the same timer.
+///
+/// * [`Handle::default`]: returns a handle to the timer for the execution
+/// context **at the time the handle is used**. This function is safe to call
+/// at any time. The handle may reference different specific timer instances.
+/// Calling `Handle::default().delay(...)` is always equivalent to
+/// `Delay::new(...)`.
+///
+/// [`Timer::handle`]: struct.Timer.html#method.handle
+/// [`Handle::current`]: #method.current
+/// [`Handle::default`]: #method.default
+#[derive(Debug, Clone)]
+pub struct Handle {
+ inner: Option<HandlePriv>,
+}
+
+/// Like `Handle` but never `None`.
+#[derive(Clone)]
+pub(crate) struct HandlePriv {
+ inner: Weak<Inner>,
+}
+
+/// A guard that resets the current timer to `None` when dropped.
+#[derive(Debug)]
+pub struct DefaultGuard {
+ _p: (),
+}
+
+thread_local! {
+ /// Tracks the timer for the current execution context.
+ static CURRENT_TIMER: RefCell<Option<HandlePriv>> = RefCell::new(None)
+}
+
+/// Set the default timer for the duration of the closure.
+///
+/// From within the closure, [`Delay`] instances that are created via
+/// [`Delay::new`] can be used.
+///
+/// # Panics
+///
+/// This function panics if there already is a default timer set.
+///
+/// [`Delay`]: ../struct.Delay.html
+/// [`Delay::new`]: ../struct.Delay.html#method.new
+pub fn with_default<F, R>(handle: &Handle, enter: &mut Enter, f: F) -> R
+where
+ F: FnOnce(&mut Enter) -> R,
+{
+ let _guard = set_default(handle);
+ f(enter)
+}
+
+/// Sets `handle` as the default timer, returning a guard that unsets it on drop.
+///
+/// # Panics
+///
+/// This function panics if there already is a default timer set.
+pub fn set_default(handle: &Handle) -> DefaultGuard {
+ CURRENT_TIMER.with(|current| {
+ let mut current = current.borrow_mut();
+
+ assert!(
+ current.is_none(),
+ "default Tokio timer already set \
+ for execution context"
+ );
+
+ let handle = handle
+ .as_priv()
+ .unwrap_or_else(|| panic!("`handle` does not reference a timer"));
+
+ *current = Some(handle.clone());
+ });
+ DefaultGuard { _p: () }
+}
+
+impl Handle {
+ pub(crate) fn new(inner: Weak<Inner>) -> Handle {
+ let inner = HandlePriv { inner };
+ Handle { inner: Some(inner) }
+ }
+
+ /// Returns a handle to the current timer.
+ ///
+ /// The current timer is the timer that is currently set as default using
+ /// [`with_default`].
+ ///
+ /// This function should only be called from within the context of
+ /// [`with_default`]. Calling this function from outside of this context
+ /// will return a `Handle` that does not reference a timer. `Delay`
+ /// instances created with this handle will error.
+ ///
+ /// See [type] level documentation for more ways to obtain a `Handle` value.
+ ///
+ /// [`with_default`]: ../fn.with_default.html
+ /// [type]: #
+ pub fn current() -> Handle {
+ let private =
+ HandlePriv::try_current().unwrap_or_else(|_| HandlePriv { inner: Weak::new() });
+
+ Handle {
+ inner: Some(private),
+ }
+ }
+
+ /// Create a `Delay` driven by this handle's associated `Timer`.
+ pub fn delay(&self, deadline: Instant) -> Delay {
+ match self.inner {
+ Some(ref handle_priv) => Delay::new_with_handle(deadline, handle_priv.clone()),
+ None => Delay::new(deadline),
+ }
+ }
+
+ #[doc(hidden)]
+ #[deprecated(since = "0.2.11", note = "use timeout instead")]
+ pub fn deadline<T>(&self, future: T, deadline: Instant) -> Deadline<T> {
+ Deadline::new_with_delay(future, self.delay(deadline))
+ }
+
+ /// Create a `Timeout` driven by this handle's associated `Timer`.
+ pub fn timeout<T>(&self, value: T, deadline: Instant) -> Timeout<T> {
+ Timeout::new_with_delay(value, self.delay(deadline))
+ }
+
+ /// Create a new `Interval` that starts at `at` and yields every `duration`
+ /// interval after that.
+ pub fn interval(&self, at: Instant, duration: Duration) -> Interval {
+ Interval::new_with_delay(self.delay(at), duration)
+ }
+
+ fn as_priv(&self) -> Option<&HandlePriv> {
+ self.inner.as_ref()
+ }
+}
+
+impl Default for Handle {
+ fn default() -> Handle {
+ Handle { inner: None }
+ }
+}
+
+impl HandlePriv {
+ /// Try to get a handle to the current timer.
+ ///
+ /// Returns `Err` if no handle is found.
+ pub(crate) fn try_current() -> Result<HandlePriv, Error> {
+ CURRENT_TIMER.with(|current| match *current.borrow() {
+ Some(ref handle) => Ok(handle.clone()),
+ None => Err(Error::shutdown()),
+ })
+ }
+
+ /// Try to return a strong ref to the inner
+ pub(crate) fn inner(&self) -> Option<Arc<Inner>> {
+ self.inner.upgrade()
+ }
+
+ /// Consume the handle, returning the weak Inner ref.
+ pub(crate) fn into_inner(self) -> Weak<Inner> {
+ self.inner
+ }
+}
+
+impl fmt::Debug for HandlePriv {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write!(f, "HandlePriv")
+ }
+}
+
+impl Drop for DefaultGuard {
+ fn drop(&mut self) {
+ let _ = CURRENT_TIMER.try_with(|current| {
+ let mut current = current.borrow_mut();
+ *current = None;
+ });
+ }
+}
diff --git a/third_party/rust/tokio-timer/src/timer/mod.rs b/third_party/rust/tokio-timer/src/timer/mod.rs
new file mode 100644
index 0000000000..31eb0afbb1
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/timer/mod.rs
@@ -0,0 +1,490 @@
+//! Timer implementation.
+//!
+//! This module contains the types needed to run a timer.
+//!
+//! The [`Timer`] type runs the timer logic. It holds all the necessary state
+//! to track all associated [`Delay`] instances and delivering notifications
+//! once the deadlines are reached.
+//!
+//! The [`Handle`] type is a reference to a [`Timer`] instance. This type is
+//! `Clone`, `Send`, and `Sync`. This type is used to create instances of
+//! [`Delay`].
+//!
+//! The [`Now`] trait describes how to get an [`Instant`] representing the
+//! current moment in time. [`SystemNow`] is the default implementation, where
+//! [`Now::now`] is implemented by calling [`Instant::now`].
+//!
+//! [`Timer`] is generic over [`Now`]. This allows the source of time to be
+//! customized. This ability is especially useful in tests and any environment
+//! where determinism is necessary.
+//!
+//! Note, when using the Tokio runtime, the [`Timer`] does not need to be manually
+//! setup as the runtime comes pre-configured with a [`Timer`] instance.
+//!
+//! [`Timer`]: struct.Timer.html
+//! [`Handle`]: struct.Handle.html
+//! [`Delay`]: ../struct.Delay.html
+//! [`Now`]: ../clock/trait.Now.html
+//! [`Now::now`]: ../clock/trait.Now.html#method.now
+//! [`SystemNow`]: struct.SystemNow.html
+//! [`Instant`]: https://doc.rust-lang.org/std/time/struct.Instant.html
+//! [`Instant::now`]: https://doc.rust-lang.org/std/time/struct.Instant.html#method.now
+
+// This allows the usage of the old `Now` trait.
+#![allow(deprecated)]
+
+mod atomic_stack;
+mod entry;
+mod handle;
+mod now;
+mod registration;
+mod stack;
+
+use self::atomic_stack::AtomicStack;
+use self::entry::Entry;
+use self::stack::Stack;
+
+pub(crate) use self::handle::HandlePriv;
+pub use self::handle::{set_default, with_default, DefaultGuard, Handle};
+pub use self::now::{Now, SystemNow};
+pub(crate) use self::registration::Registration;
+
+use atomic::AtomicU64;
+use wheel;
+use Error;
+
+use tokio_executor::park::{Park, ParkThread, Unpark};
+
+use std::sync::atomic::AtomicUsize;
+use std::sync::atomic::Ordering::SeqCst;
+use std::sync::Arc;
+use std::time::{Duration, Instant};
+use std::usize;
+use std::{cmp, fmt};
+
+/// Timer implementation that drives [`Delay`], [`Interval`], and [`Timeout`].
+///
+/// A `Timer` instance tracks the state necessary for managing time and
+/// notifying the [`Delay`] instances once their deadlines are reached.
+///
+/// It is expected that a single `Timer` instance manages many individual
+/// [`Delay`] instances. The `Timer` implementation is thread-safe and, as such,
+/// is able to handle callers from across threads.
+///
+/// Callers do not use `Timer` directly to create [`Delay`] instances. Instead,
+/// [`Handle`][Handle.struct] is used. A handle for the timer instance is obtained by calling
+/// [`handle`]. [`Handle`][Handle.struct] is the type that implements `Clone` and is `Send +
+/// Sync`.
+///
+/// After creating the `Timer` instance, the caller must repeatedly call
+/// [`turn`]. The timer will perform no work unless [`turn`] is called
+/// repeatedly.
+///
+/// The `Timer` has a resolution of one millisecond. Any unit of time that falls
+/// between milliseconds are rounded up to the next millisecond.
+///
+/// When the `Timer` instance is dropped, any outstanding [`Delay`] instance that
+/// has not elapsed will be notified with an error. At this point, calling
+/// `poll` on the [`Delay`] instance will result in `Err` being returned.
+///
+/// # Implementation
+///
+/// `Timer` is based on the [paper by Varghese and Lauck][paper].
+///
+/// A hashed timing wheel is a vector of slots, where each slot handles a time
+/// slice. As time progresses, the timer walks over the slot for the current
+/// instant, and processes each entry for that slot. When the timer reaches the
+/// end of the wheel, it starts again at the beginning.
+///
+/// The `Timer` implementation maintains six wheels arranged in a set of levels.
+/// As the levels go up, the slots of the associated wheel represent larger
+/// intervals of time. At each level, the wheel has 64 slots. Each slot covers a
+/// range of time equal to the wheel at the lower level. At level zero, each
+/// slot represents one millisecond of time.
+///
+/// The wheels are:
+///
+/// * Level 0: 64 x 1 millisecond slots.
+/// * Level 1: 64 x 64 millisecond slots.
+/// * Level 2: 64 x ~4 second slots.
+/// * Level 3: 64 x ~4 minute slots.
+/// * Level 4: 64 x ~4 hour slots.
+/// * Level 5: 64 x ~12 day slots.
+///
+/// When the timer processes entries at level zero, it will notify all the
+/// [`Delay`] instances as their deadlines have been reached. For all higher
+/// levels, all entries will be redistributed across the wheel at the next level
+/// down. Eventually, as time progresses, entries will [`Delay`] instances will
+/// either be canceled (dropped) or their associated entries will reach level
+/// zero and be notified.
+///
+/// [`Delay`]: ../struct.Delay.html
+/// [`Interval`]: ../struct.Interval.html
+/// [`Timeout`]: ../struct.Timeout.html
+/// [paper]: http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf
+/// [`handle`]: #method.handle
+/// [`turn`]: #method.turn
+/// [Handle.struct]: struct.Handle.html
+#[derive(Debug)]
+pub struct Timer<T, N = SystemNow> {
+ /// Shared state
+ inner: Arc<Inner>,
+
+ /// Timer wheel
+ wheel: wheel::Wheel<Stack>,
+
+ /// Thread parker. The `Timer` park implementation delegates to this.
+ park: T,
+
+ /// Source of "now" instances
+ now: N,
+}
+
+/// Return value from the `turn` method on `Timer`.
+///
+/// Currently this value doesn't actually provide any functionality, but it may
+/// in the future give insight into what happened during `turn`.
+#[derive(Debug)]
+pub struct Turn(());
+
+/// Timer state shared between `Timer`, `Handle`, and `Registration`.
+pub(crate) struct Inner {
+ /// The instant at which the timer started running.
+ start: Instant,
+
+ /// The last published timer `elapsed` value.
+ elapsed: AtomicU64,
+
+ /// Number of active timeouts
+ num: AtomicUsize,
+
+ /// Head of the "process" linked list.
+ process: AtomicStack,
+
+ /// Unparks the timer thread.
+ unpark: Box<dyn Unpark>,
+}
+
+/// Maximum number of timeouts the system can handle concurrently.
+const MAX_TIMEOUTS: usize = usize::MAX >> 1;
+
+// ===== impl Timer =====
+
+impl<T> Timer<T>
+where
+ T: Park,
+{
+ /// Create a new `Timer` instance that uses `park` to block the current
+ /// thread.
+ ///
+ /// Once the timer has been created, a handle can be obtained using
+ /// [`handle`]. The handle is used to create `Delay` instances.
+ ///
+ /// Use `default` when constructing a `Timer` using the default `park`
+ /// instance.
+ ///
+ /// [`handle`]: #method.handle
+ pub fn new(park: T) -> Self {
+ Timer::new_with_now(park, SystemNow::new())
+ }
+}
+
+impl<T, N> Timer<T, N> {
+ /// Returns a reference to the underlying `Park` instance.
+ pub fn get_park(&self) -> &T {
+ &self.park
+ }
+
+ /// Returns a mutable reference to the underlying `Park` instance.
+ pub fn get_park_mut(&mut self) -> &mut T {
+ &mut self.park
+ }
+}
+
+impl<T, N> Timer<T, N>
+where
+ T: Park,
+ N: Now,
+{
+ /// Create a new `Timer` instance that uses `park` to block the current
+ /// thread and `now` to get the current `Instant`.
+ ///
+ /// Specifying the source of time is useful when testing.
+ pub fn new_with_now(park: T, mut now: N) -> Self {
+ let unpark = Box::new(park.unpark());
+
+ Timer {
+ inner: Arc::new(Inner::new(now.now(), unpark)),
+ wheel: wheel::Wheel::new(),
+ park,
+ now,
+ }
+ }
+
+ /// Returns a handle to the timer.
+ ///
+ /// The `Handle` is how `Delay` instances are created. The `Delay` instances
+ /// can either be created directly or the `Handle` instance can be passed to
+ /// `with_default`, setting the timer as the default timer for the execution
+ /// context.
+ pub fn handle(&self) -> Handle {
+ Handle::new(Arc::downgrade(&self.inner))
+ }
+
+ /// Performs one iteration of the timer loop.
+ ///
+ /// This function must be called repeatedly in order for the `Timer`
+ /// instance to make progress. This is where the work happens.
+ ///
+ /// The `Timer` will use the `Park` instance that was specified in [`new`]
+ /// to block the current thread until the next `Delay` instance elapses. One
+ /// call to `turn` results in at most one call to `park.park()`.
+ ///
+ /// # Return
+ ///
+ /// On success, `Ok(Turn)` is returned, where `Turn` is a placeholder type
+ /// that currently does nothing but may, in the future, have functions add
+ /// to provide information about the call to `turn`.
+ ///
+ /// If the call to `park.park()` fails, then `Err` is returned with the
+ /// error.
+ ///
+ /// [`new`]: #method.new
+ pub fn turn(&mut self, max_wait: Option<Duration>) -> Result<Turn, T::Error> {
+ match max_wait {
+ Some(timeout) => self.park_timeout(timeout)?,
+ None => self.park()?,
+ }
+
+ Ok(Turn(()))
+ }
+
+ /// Converts an `Expiration` to an `Instant`.
+ fn expiration_instant(&self, when: u64) -> Instant {
+ self.inner.start + Duration::from_millis(when)
+ }
+
+ /// Run timer related logic
+ fn process(&mut self) {
+ let now = ::ms(self.now.now() - self.inner.start, ::Round::Down);
+ let mut poll = wheel::Poll::new(now);
+
+ while let Some(entry) = self.wheel.poll(&mut poll, &mut ()) {
+ let when = entry.when_internal().expect("invalid internal entry state");
+
+ // Fire the entry
+ entry.fire(when);
+
+ // Track that the entry has been fired
+ entry.set_when_internal(None);
+ }
+
+ // Update the elapsed cache
+ self.inner.elapsed.store(self.wheel.elapsed(), SeqCst);
+ }
+
+ /// Process the entry queue
+ ///
+ /// This handles adding and canceling timeouts.
+ fn process_queue(&mut self) {
+ for entry in self.inner.process.take() {
+ match (entry.when_internal(), entry.load_state()) {
+ (None, None) => {
+ // Nothing to do
+ }
+ (Some(_), None) => {
+ // Remove the entry
+ self.clear_entry(&entry);
+ }
+ (None, Some(when)) => {
+ // Queue the entry
+ self.add_entry(entry, when);
+ }
+ (Some(_), Some(next)) => {
+ self.clear_entry(&entry);
+ self.add_entry(entry, next);
+ }
+ }
+ }
+ }
+
+ fn clear_entry(&mut self, entry: &Arc<Entry>) {
+ self.wheel.remove(entry, &mut ());
+ entry.set_when_internal(None);
+ }
+
+ /// Fire the entry if it needs to, otherwise queue it to be processed later.
+ ///
+ /// Returns `None` if the entry was fired.
+ fn add_entry(&mut self, entry: Arc<Entry>, when: u64) {
+ use wheel::InsertError;
+
+ entry.set_when_internal(Some(when));
+
+ match self.wheel.insert(when, entry, &mut ()) {
+ Ok(_) => {}
+ Err((entry, InsertError::Elapsed)) => {
+ // The entry's deadline has elapsed, so fire it and update the
+ // internal state accordingly.
+ entry.set_when_internal(None);
+ entry.fire(when);
+ }
+ Err((entry, InsertError::Invalid)) => {
+ // The entry's deadline is invalid, so error it and update the
+ // internal state accordingly.
+ entry.set_when_internal(None);
+ entry.error();
+ }
+ }
+ }
+}
+
+impl Default for Timer<ParkThread, SystemNow> {
+ fn default() -> Self {
+ Timer::new(ParkThread::new())
+ }
+}
+
+impl<T, N> Park for Timer<T, N>
+where
+ T: Park,
+ N: Now,
+{
+ type Unpark = T::Unpark;
+ type Error = T::Error;
+
+ fn unpark(&self) -> Self::Unpark {
+ self.park.unpark()
+ }
+
+ fn park(&mut self) -> Result<(), Self::Error> {
+ self.process_queue();
+
+ match self.wheel.poll_at() {
+ Some(when) => {
+ let now = self.now.now();
+ let deadline = self.expiration_instant(when);
+
+ if deadline > now {
+ self.park.park_timeout(deadline - now)?;
+ } else {
+ self.park.park_timeout(Duration::from_secs(0))?;
+ }
+ }
+ None => {
+ self.park.park()?;
+ }
+ }
+
+ self.process();
+
+ Ok(())
+ }
+
+ fn park_timeout(&mut self, duration: Duration) -> Result<(), Self::Error> {
+ self.process_queue();
+
+ match self.wheel.poll_at() {
+ Some(when) => {
+ let now = self.now.now();
+ let deadline = self.expiration_instant(when);
+
+ if deadline > now {
+ self.park.park_timeout(cmp::min(deadline - now, duration))?;
+ } else {
+ self.park.park_timeout(Duration::from_secs(0))?;
+ }
+ }
+ None => {
+ self.park.park_timeout(duration)?;
+ }
+ }
+
+ self.process();
+
+ Ok(())
+ }
+}
+
+impl<T, N> Drop for Timer<T, N> {
+ fn drop(&mut self) {
+ use std::u64;
+
+ // Shutdown the stack of entries to process, preventing any new entries
+ // from being pushed.
+ self.inner.process.shutdown();
+
+ // Clear the wheel, using u64::MAX allows us to drain everything
+ let mut poll = wheel::Poll::new(u64::MAX);
+
+ while let Some(entry) = self.wheel.poll(&mut poll, &mut ()) {
+ entry.error();
+ }
+ }
+}
+
+// ===== impl Inner =====
+
+impl Inner {
+ fn new(start: Instant, unpark: Box<dyn Unpark>) -> Inner {
+ Inner {
+ num: AtomicUsize::new(0),
+ elapsed: AtomicU64::new(0),
+ process: AtomicStack::new(),
+ start,
+ unpark,
+ }
+ }
+
+ fn elapsed(&self) -> u64 {
+ self.elapsed.load(SeqCst)
+ }
+
+ /// Increment the number of active timeouts
+ fn increment(&self) -> Result<(), Error> {
+ let mut curr = self.num.load(SeqCst);
+
+ loop {
+ if curr == MAX_TIMEOUTS {
+ return Err(Error::at_capacity());
+ }
+
+ let actual = self.num.compare_and_swap(curr, curr + 1, SeqCst);
+
+ if curr == actual {
+ return Ok(());
+ }
+
+ curr = actual;
+ }
+ }
+
+ /// Decrement the number of active timeouts
+ fn decrement(&self) {
+ let prev = self.num.fetch_sub(1, SeqCst);
+ debug_assert!(prev <= MAX_TIMEOUTS);
+ }
+
+ fn queue(&self, entry: &Arc<Entry>) -> Result<(), Error> {
+ if self.process.push(entry)? {
+ // The timer is notified so that it can process the timeout
+ self.unpark.unpark();
+ }
+
+ Ok(())
+ }
+
+ fn normalize_deadline(&self, deadline: Instant) -> u64 {
+ if deadline < self.start {
+ return 0;
+ }
+
+ ::ms(deadline - self.start, ::Round::Up)
+ }
+}
+
+impl fmt::Debug for Inner {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ fmt.debug_struct("Inner").finish()
+ }
+}
diff --git a/third_party/rust/tokio-timer/src/timer/now.rs b/third_party/rust/tokio-timer/src/timer/now.rs
new file mode 100644
index 0000000000..9f23bad711
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/timer/now.rs
@@ -0,0 +1,10 @@
+use std::time::Instant;
+
+#[doc(hidden)]
+#[deprecated(since = "0.2.4", note = "use clock::Now instead")]
+pub trait Now {
+ /// Returns an instant corresponding to "now".
+ fn now(&mut self) -> Instant;
+}
+
+pub use clock::Clock as SystemNow;
diff --git a/third_party/rust/tokio-timer/src/timer/registration.rs b/third_party/rust/tokio-timer/src/timer/registration.rs
new file mode 100644
index 0000000000..dad1355dcd
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/timer/registration.rs
@@ -0,0 +1,67 @@
+use clock::now;
+use timer::{Entry, HandlePriv};
+use Error;
+
+use futures::Poll;
+
+use std::sync::Arc;
+use std::time::{Duration, Instant};
+
+/// Registration with a timer.
+///
+/// The association between a `Delay` instance and a timer is done lazily in
+/// `poll`
+#[derive(Debug)]
+pub(crate) struct Registration {
+ entry: Arc<Entry>,
+}
+
+impl Registration {
+ pub fn new(deadline: Instant, duration: Duration) -> Registration {
+ fn is_send<T: Send + Sync>() {}
+ is_send::<Registration>();
+
+ Registration {
+ entry: Arc::new(Entry::new(deadline, duration)),
+ }
+ }
+
+ pub fn deadline(&self) -> Instant {
+ self.entry.time_ref().deadline
+ }
+
+ pub fn register(&mut self) {
+ if !self.entry.is_registered() {
+ Entry::register(&mut self.entry)
+ }
+ }
+
+ pub fn register_with(&mut self, handle: HandlePriv) {
+ Entry::register_with(&mut self.entry, handle)
+ }
+
+ pub fn reset(&mut self, deadline: Instant) {
+ self.entry.time_mut().deadline = deadline;
+ Entry::reset(&mut self.entry);
+ }
+
+ pub fn reset_timeout(&mut self) {
+ let deadline = now() + self.entry.time_ref().duration;
+ self.entry.time_mut().deadline = deadline;
+ Entry::reset(&mut self.entry);
+ }
+
+ pub fn is_elapsed(&self) -> bool {
+ self.entry.is_elapsed()
+ }
+
+ pub fn poll_elapsed(&self) -> Poll<(), Error> {
+ self.entry.poll_elapsed()
+ }
+}
+
+impl Drop for Registration {
+ fn drop(&mut self) {
+ Entry::cancel(&self.entry);
+ }
+}
diff --git a/third_party/rust/tokio-timer/src/timer/stack.rs b/third_party/rust/tokio-timer/src/timer/stack.rs
new file mode 100644
index 0000000000..c63eed971b
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/timer/stack.rs
@@ -0,0 +1,121 @@
+use super::Entry;
+use wheel;
+
+use std::ptr;
+use std::sync::Arc;
+
+/// A doubly linked stack
+#[derive(Debug)]
+pub(crate) struct Stack {
+ head: Option<Arc<Entry>>,
+}
+
+impl Default for Stack {
+ fn default() -> Stack {
+ Stack { head: None }
+ }
+}
+
+impl wheel::Stack for Stack {
+ type Owned = Arc<Entry>;
+ type Borrowed = Entry;
+ type Store = ();
+
+ fn is_empty(&self) -> bool {
+ self.head.is_none()
+ }
+
+ fn push(&mut self, entry: Self::Owned, _: &mut Self::Store) {
+ // Get a pointer to the entry to for the prev link
+ let ptr: *const Entry = &*entry as *const _;
+
+ // Remove the old head entry
+ let old = self.head.take();
+
+ unsafe {
+ // Ensure the entry is not already in a stack.
+ debug_assert!((*entry.next_stack.get()).is_none());
+ debug_assert!((*entry.prev_stack.get()).is_null());
+
+ if let Some(ref entry) = old.as_ref() {
+ debug_assert!({
+ // The head is not already set to the entry
+ ptr != &***entry as *const _
+ });
+
+ // Set the previous link on the old head
+ *entry.prev_stack.get() = ptr;
+ }
+
+ // Set this entry's next pointer
+ *entry.next_stack.get() = old;
+ }
+
+ // Update the head pointer
+ self.head = Some(entry);
+ }
+
+ /// Pop an item from the stack
+ fn pop(&mut self, _: &mut ()) -> Option<Arc<Entry>> {
+ let entry = self.head.take();
+
+ unsafe {
+ if let Some(entry) = entry.as_ref() {
+ self.head = (*entry.next_stack.get()).take();
+
+ if let Some(entry) = self.head.as_ref() {
+ *entry.prev_stack.get() = ptr::null();
+ }
+
+ *entry.prev_stack.get() = ptr::null();
+ }
+ }
+
+ entry
+ }
+
+ fn remove(&mut self, entry: &Entry, _: &mut ()) {
+ unsafe {
+ // Ensure that the entry is in fact contained by the stack
+ debug_assert!({
+ // This walks the full linked list even if an entry is found.
+ let mut next = self.head.as_ref();
+ let mut contains = false;
+
+ while let Some(n) = next {
+ if entry as *const _ == &**n as *const _ {
+ debug_assert!(!contains);
+ contains = true;
+ }
+
+ next = (*n.next_stack.get()).as_ref();
+ }
+
+ contains
+ });
+
+ // Unlink `entry` from the next node
+ let next = (*entry.next_stack.get()).take();
+
+ if let Some(next) = next.as_ref() {
+ (*next.prev_stack.get()) = *entry.prev_stack.get();
+ }
+
+ // Unlink `entry` from the prev node
+
+ if let Some(prev) = (*entry.prev_stack.get()).as_ref() {
+ *prev.next_stack.get() = next;
+ } else {
+ // It is the head
+ self.head = next;
+ }
+
+ // Unset the prev pointer
+ *entry.prev_stack.get() = ptr::null();
+ }
+ }
+
+ fn when(item: &Entry, _: &()) -> u64 {
+ item.when_internal().expect("invalid internal state")
+ }
+}
diff --git a/third_party/rust/tokio-timer/src/wheel/level.rs b/third_party/rust/tokio-timer/src/wheel/level.rs
new file mode 100644
index 0000000000..6bbd128e0d
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/wheel/level.rs
@@ -0,0 +1,255 @@
+use wheel::Stack;
+
+use std::fmt;
+
+/// Wheel for a single level in the timer. This wheel contains 64 slots.
+pub(crate) struct Level<T> {
+ level: usize,
+
+ /// Bit field tracking which slots currently contain entries.
+ ///
+ /// Using a bit field to track slots that contain entries allows avoiding a
+ /// scan to find entries. This field is updated when entries are added or
+ /// removed from a slot.
+ ///
+ /// The least-significant bit represents slot zero.
+ occupied: u64,
+
+ /// Slots
+ slot: [T; LEVEL_MULT],
+}
+
+/// Indicates when a slot must be processed next.
+#[derive(Debug)]
+pub(crate) struct Expiration {
+ /// The level containing the slot.
+ pub level: usize,
+
+ /// The slot index.
+ pub slot: usize,
+
+ /// The instant at which the slot needs to be processed.
+ pub deadline: u64,
+}
+
+/// Level multiplier.
+///
+/// Being a power of 2 is very important.
+const LEVEL_MULT: usize = 64;
+
+impl<T: Stack> Level<T> {
+ pub fn new(level: usize) -> Level<T> {
+ // Rust's derived implementations for arrays require that the value
+ // contained by the array be `Copy`. So, here we have to manually
+ // initialize every single slot.
+ macro_rules! s {
+ () => {
+ T::default()
+ };
+ };
+
+ Level {
+ level,
+ occupied: 0,
+ slot: [
+ // It does not look like the necessary traits are
+ // derived for [T; 64].
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ ],
+ }
+ }
+
+ /// Finds the slot that needs to be processed next and returns the slot and
+ /// `Instant` at which this slot must be processed.
+ pub fn next_expiration(&self, now: u64) -> Option<Expiration> {
+ // Use the `occupied` bit field to get the index of the next slot that
+ // needs to be processed.
+ let slot = match self.next_occupied_slot(now) {
+ Some(slot) => slot,
+ None => return None,
+ };
+
+ // From the slot index, calculate the `Instant` at which it needs to be
+ // processed. This value *must* be in the future with respect to `now`.
+
+ let level_range = level_range(self.level);
+ let slot_range = slot_range(self.level);
+
+ // TODO: This can probably be simplified w/ power of 2 math
+ let level_start = now - (now % level_range);
+ let deadline = level_start + slot as u64 * slot_range;
+
+ debug_assert!(
+ deadline >= now,
+ "deadline={}; now={}; level={}; slot={}; occupied={:b}",
+ deadline,
+ now,
+ self.level,
+ slot,
+ self.occupied
+ );
+
+ Some(Expiration {
+ level: self.level,
+ slot,
+ deadline,
+ })
+ }
+
+ fn next_occupied_slot(&self, now: u64) -> Option<usize> {
+ if self.occupied == 0 {
+ return None;
+ }
+
+ // Get the slot for now using Maths
+ let now_slot = (now / slot_range(self.level)) as usize;
+ let occupied = self.occupied.rotate_right(now_slot as u32);
+ let zeros = occupied.trailing_zeros() as usize;
+ let slot = (zeros + now_slot) % 64;
+
+ Some(slot)
+ }
+
+ pub fn add_entry(&mut self, when: u64, item: T::Owned, store: &mut T::Store) {
+ let slot = slot_for(when, self.level);
+
+ self.slot[slot].push(item, store);
+ self.occupied |= occupied_bit(slot);
+ }
+
+ pub fn remove_entry(&mut self, when: u64, item: &T::Borrowed, store: &mut T::Store) {
+ let slot = slot_for(when, self.level);
+
+ self.slot[slot].remove(item, store);
+
+ if self.slot[slot].is_empty() {
+ // The bit is currently set
+ debug_assert!(self.occupied & occupied_bit(slot) != 0);
+
+ // Unset the bit
+ self.occupied ^= occupied_bit(slot);
+ }
+ }
+
+ pub fn pop_entry_slot(&mut self, slot: usize, store: &mut T::Store) -> Option<T::Owned> {
+ let ret = self.slot[slot].pop(store);
+
+ if ret.is_some() && self.slot[slot].is_empty() {
+ // The bit is currently set
+ debug_assert!(self.occupied & occupied_bit(slot) != 0);
+
+ self.occupied ^= occupied_bit(slot);
+ }
+
+ ret
+ }
+}
+
+impl<T> fmt::Debug for Level<T> {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ fmt.debug_struct("Level")
+ .field("occupied", &self.occupied)
+ .finish()
+ }
+}
+
+fn occupied_bit(slot: usize) -> u64 {
+ (1 << slot)
+}
+
+fn slot_range(level: usize) -> u64 {
+ LEVEL_MULT.pow(level as u32) as u64
+}
+
+fn level_range(level: usize) -> u64 {
+ LEVEL_MULT as u64 * slot_range(level)
+}
+
+/// Convert a duration (milliseconds) and a level to a slot position
+fn slot_for(duration: u64, level: usize) -> usize {
+ ((duration >> (level * 6)) % LEVEL_MULT as u64) as usize
+}
+
+/*
+#[cfg(test)]
+mod test {
+ use super::*;
+
+ #[test]
+ fn test_slot_for() {
+ for pos in 1..64 {
+ assert_eq!(pos as usize, slot_for(pos, 0));
+ }
+
+ for level in 1..5 {
+ for pos in level..64 {
+ let a = pos * 64_usize.pow(level as u32);
+ assert_eq!(pos as usize, slot_for(a as u64, level));
+ }
+ }
+ }
+}
+*/
diff --git a/third_party/rust/tokio-timer/src/wheel/mod.rs b/third_party/rust/tokio-timer/src/wheel/mod.rs
new file mode 100644
index 0000000000..81f92cd886
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/wheel/mod.rs
@@ -0,0 +1,311 @@
+mod level;
+mod stack;
+
+pub(crate) use self::level::Expiration;
+use self::level::Level;
+pub(crate) use self::stack::Stack;
+
+use std::borrow::Borrow;
+use std::usize;
+
+/// Timing wheel implementation.
+///
+/// This type provides the hashed timing wheel implementation that backs `Timer`
+/// and `DelayQueue`.
+///
+/// The structure is generic over `T: Stack`. This allows handling timeout data
+/// being stored on the heap or in a slab. In order to support the latter case,
+/// the slab must be passed into each function allowing the implementation to
+/// lookup timer entries.
+///
+/// See `Timer` documentation for some implementation notes.
+#[derive(Debug)]
+pub(crate) struct Wheel<T> {
+ /// The number of milliseconds elapsed since the wheel started.
+ elapsed: u64,
+
+ /// Timer wheel.
+ ///
+ /// Levels:
+ ///
+ /// * 1 ms slots / 64 ms range
+ /// * 64 ms slots / ~ 4 sec range
+ /// * ~ 4 sec slots / ~ 4 min range
+ /// * ~ 4 min slots / ~ 4 hr range
+ /// * ~ 4 hr slots / ~ 12 day range
+ /// * ~ 12 day slots / ~ 2 yr range
+ levels: Vec<Level<T>>,
+}
+
+/// Number of levels. Each level has 64 slots. By using 6 levels with 64 slots
+/// each, the timer is able to track time up to 2 years into the future with a
+/// precision of 1 millisecond.
+const NUM_LEVELS: usize = 6;
+
+/// The maximum duration of a delay
+const MAX_DURATION: u64 = 1 << (6 * NUM_LEVELS);
+
+#[derive(Debug)]
+pub(crate) enum InsertError {
+ Elapsed,
+ Invalid,
+}
+
+/// Poll expirations from the wheel
+#[derive(Debug, Default)]
+pub(crate) struct Poll {
+ now: u64,
+ expiration: Option<Expiration>,
+}
+
+impl<T> Wheel<T>
+where
+ T: Stack,
+{
+ /// Create a new timing wheel
+ pub fn new() -> Wheel<T> {
+ let levels = (0..NUM_LEVELS).map(Level::new).collect();
+
+ Wheel { elapsed: 0, levels }
+ }
+
+ /// Return the number of milliseconds that have elapsed since the timing
+ /// wheel's creation.
+ pub fn elapsed(&self) -> u64 {
+ self.elapsed
+ }
+
+ /// Insert an entry into the timing wheel.
+ ///
+ /// # Arguments
+ ///
+ /// * `when`: is the instant at which the entry should be fired. It is
+ /// represented as the number of milliseconds since the creation
+ /// of the timing wheel.
+ ///
+ /// * `item`: The item to insert into the wheel.
+ ///
+ /// * `store`: The slab or `()` when using heap storage.
+ ///
+ /// # Return
+ ///
+ /// Returns `Ok` when the item is successfully inserted, `Err` otherwise.
+ ///
+ /// `Err(Elapsed)` indicates that `when` represents an instant that has
+ /// already passed. In this case, the caller should fire the timeout
+ /// immediately.
+ ///
+ /// `Err(Invalid)` indicates an invalid `when` argument as been supplied.
+ pub fn insert(
+ &mut self,
+ when: u64,
+ item: T::Owned,
+ store: &mut T::Store,
+ ) -> Result<(), (T::Owned, InsertError)> {
+ if when <= self.elapsed {
+ return Err((item, InsertError::Elapsed));
+ } else if when - self.elapsed > MAX_DURATION {
+ return Err((item, InsertError::Invalid));
+ }
+
+ // Get the level at which the entry should be stored
+ let level = self.level_for(when);
+
+ self.levels[level].add_entry(when, item, store);
+
+ debug_assert!({
+ self.levels[level]
+ .next_expiration(self.elapsed)
+ .map(|e| e.deadline >= self.elapsed)
+ .unwrap_or(true)
+ });
+
+ Ok(())
+ }
+
+ /// Remove `item` from thee timing wheel.
+ pub fn remove(&mut self, item: &T::Borrowed, store: &mut T::Store) {
+ let when = T::when(item, store);
+ let level = self.level_for(when);
+
+ self.levels[level].remove_entry(when, item, store);
+ }
+
+ /// Instant at which to poll
+ pub fn poll_at(&self) -> Option<u64> {
+ self.next_expiration().map(|expiration| expiration.deadline)
+ }
+
+ pub fn poll(&mut self, poll: &mut Poll, store: &mut T::Store) -> Option<T::Owned> {
+ loop {
+ if poll.expiration.is_none() {
+ poll.expiration = self.next_expiration().and_then(|expiration| {
+ if expiration.deadline > poll.now {
+ None
+ } else {
+ Some(expiration)
+ }
+ });
+ }
+
+ match poll.expiration {
+ Some(ref expiration) => {
+ if let Some(item) = self.poll_expiration(expiration, store) {
+ return Some(item);
+ }
+
+ self.set_elapsed(expiration.deadline);
+ }
+ None => {
+ self.set_elapsed(poll.now);
+ return None;
+ }
+ }
+
+ poll.expiration = None;
+ }
+ }
+
+ /// Returns the instant at which the next timeout expires.
+ fn next_expiration(&self) -> Option<Expiration> {
+ // Check all levels
+ for level in 0..NUM_LEVELS {
+ if let Some(expiration) = self.levels[level].next_expiration(self.elapsed) {
+ // There cannot be any expirations at a higher level that happen
+ // before this one.
+ debug_assert!({
+ let mut res = true;
+
+ for l2 in (level + 1)..NUM_LEVELS {
+ if let Some(e2) = self.levels[l2].next_expiration(self.elapsed) {
+ if e2.deadline < expiration.deadline {
+ res = false;
+ }
+ }
+ }
+
+ res
+ });
+
+ return Some(expiration);
+ }
+ }
+
+ None
+ }
+
+ pub fn poll_expiration(
+ &mut self,
+ expiration: &Expiration,
+ store: &mut T::Store,
+ ) -> Option<T::Owned> {
+ while let Some(item) = self.pop_entry(expiration, store) {
+ if expiration.level == 0 {
+ debug_assert_eq!(T::when(item.borrow(), store), expiration.deadline);
+
+ return Some(item);
+ } else {
+ let when = T::when(item.borrow(), store);
+
+ let next_level = expiration.level - 1;
+
+ self.levels[next_level].add_entry(when, item, store);
+ }
+ }
+
+ None
+ }
+
+ fn set_elapsed(&mut self, when: u64) {
+ assert!(
+ self.elapsed <= when,
+ "elapsed={:?}; when={:?}",
+ self.elapsed,
+ when
+ );
+
+ if when > self.elapsed {
+ self.elapsed = when;
+ }
+ }
+
+ fn pop_entry(&mut self, expiration: &Expiration, store: &mut T::Store) -> Option<T::Owned> {
+ self.levels[expiration.level].pop_entry_slot(expiration.slot, store)
+ }
+
+ fn level_for(&self, when: u64) -> usize {
+ level_for(self.elapsed, when)
+ }
+}
+
+fn level_for(elapsed: u64, when: u64) -> usize {
+ let masked = elapsed ^ when;
+
+ assert!(masked != 0, "elapsed={}; when={}", elapsed, when);
+
+ let leading_zeros = masked.leading_zeros() as usize;
+ let significant = 63 - leading_zeros;
+ significant / 6
+}
+
+impl Poll {
+ pub fn new(now: u64) -> Poll {
+ Poll {
+ now,
+ expiration: None,
+ }
+ }
+}
+
+#[cfg(test)]
+mod test {
+ use super::*;
+
+ #[test]
+ fn test_level_for() {
+ for pos in 1..64 {
+ assert_eq!(
+ 0,
+ level_for(0, pos),
+ "level_for({}) -- binary = {:b}",
+ pos,
+ pos
+ );
+ }
+
+ for level in 1..5 {
+ for pos in level..64 {
+ let a = pos * 64_usize.pow(level as u32);
+ assert_eq!(
+ level,
+ level_for(0, a as u64),
+ "level_for({}) -- binary = {:b}",
+ a,
+ a
+ );
+
+ if pos > level {
+ let a = a - 1;
+ assert_eq!(
+ level,
+ level_for(0, a as u64),
+ "level_for({}) -- binary = {:b}",
+ a,
+ a
+ );
+ }
+
+ if pos < 64 {
+ let a = a + 1;
+ assert_eq!(
+ level,
+ level_for(0, a as u64),
+ "level_for({}) -- binary = {:b}",
+ a,
+ a
+ );
+ }
+ }
+ }
+ }
+}
diff --git a/third_party/rust/tokio-timer/src/wheel/stack.rs b/third_party/rust/tokio-timer/src/wheel/stack.rs
new file mode 100644
index 0000000000..6e55c38ccd
--- /dev/null
+++ b/third_party/rust/tokio-timer/src/wheel/stack.rs
@@ -0,0 +1,26 @@
+use std::borrow::Borrow;
+
+/// Abstracts the stack operations needed to track timeouts.
+pub(crate) trait Stack: Default {
+ /// Type of the item stored in the stack
+ type Owned: Borrow<Self::Borrowed>;
+
+ /// Borrowed item
+ type Borrowed;
+
+ /// Item storage, this allows a slab to be used instead of just the heap
+ type Store;
+
+ /// Returns `true` if the stack is empty
+ fn is_empty(&self) -> bool;
+
+ /// Push an item onto the stack
+ fn push(&mut self, item: Self::Owned, store: &mut Self::Store);
+
+ /// Pop an item from the stack
+ fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned>;
+
+ fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store);
+
+ fn when(item: &Self::Borrowed, store: &Self::Store) -> u64;
+}