diff options
Diffstat (limited to 'gfx/2d/Matrix.h')
-rw-r--r-- | gfx/2d/Matrix.h | 2333 |
1 files changed, 2333 insertions, 0 deletions
diff --git a/gfx/2d/Matrix.h b/gfx/2d/Matrix.h new file mode 100644 index 0000000000..4006183e55 --- /dev/null +++ b/gfx/2d/Matrix.h @@ -0,0 +1,2333 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef MOZILLA_GFX_MATRIX_H_ +#define MOZILLA_GFX_MATRIX_H_ + +#include "Types.h" +#include "Triangle.h" +#include "Rect.h" +#include "Point.h" +#include "Quaternion.h" +#include <iosfwd> +#include <math.h> +#include "mozilla/Attributes.h" +#include "mozilla/DebugOnly.h" +#include "mozilla/FloatingPoint.h" +#include "mozilla/gfx/ScaleFactors2D.h" +#include "mozilla/Span.h" + +namespace mozilla { +namespace gfx { + +static inline bool FuzzyEqual(Float aV1, Float aV2) { + // XXX - Check if fabs does the smart thing and just negates the sign bit. + return fabs(aV2 - aV1) < 1e-6; +} + +template <typename F> +Span<Point4DTyped<UnknownUnits, F>> IntersectPolygon( + Span<Point4DTyped<UnknownUnits, F>> aPoints, + const Point4DTyped<UnknownUnits, F>& aPlaneNormal, + Span<Point4DTyped<UnknownUnits, F>> aDestBuffer); + +template <class T> +using BaseMatrixScales = BaseScaleFactors2D<UnknownUnits, UnknownUnits, T>; + +using MatrixScales = BaseMatrixScales<float>; +using MatrixScalesDouble = BaseMatrixScales<double>; + +template <class T> +class BaseMatrix { + // Alias that maps to either Point or PointDouble depending on whether T is a + // float or a double. + typedef PointTyped<UnknownUnits, T> MatrixPoint; + // Same for size and rect + typedef SizeTyped<UnknownUnits, T> MatrixSize; + typedef RectTyped<UnknownUnits, T> MatrixRect; + + public: + BaseMatrix() : _11(1.0f), _12(0), _21(0), _22(1.0f), _31(0), _32(0) {} + BaseMatrix(T a11, T a12, T a21, T a22, T a31, T a32) + : _11(a11), _12(a12), _21(a21), _22(a22), _31(a31), _32(a32) {} + union { + struct { + T _11, _12; + T _21, _22; + T _31, _32; + }; + T components[6]; + }; + + template <class T2> + explicit BaseMatrix(const BaseMatrix<T2>& aOther) + : _11(aOther._11), + _12(aOther._12), + _21(aOther._21), + _22(aOther._22), + _31(aOther._31), + _32(aOther._32) {} + + MOZ_ALWAYS_INLINE BaseMatrix Copy() const { return BaseMatrix<T>(*this); } + + friend std::ostream& operator<<(std::ostream& aStream, + const BaseMatrix& aMatrix) { + if (aMatrix.IsIdentity()) { + return aStream << "[ I ]"; + } + return aStream << "[ " << aMatrix._11 << " " << aMatrix._12 << "; " + << aMatrix._21 << " " << aMatrix._22 << "; " << aMatrix._31 + << " " << aMatrix._32 << "; ]"; + } + + MatrixPoint TransformPoint(const MatrixPoint& aPoint) const { + MatrixPoint retPoint; + + retPoint.x = aPoint.x * _11 + aPoint.y * _21 + _31; + retPoint.y = aPoint.x * _12 + aPoint.y * _22 + _32; + + return retPoint; + } + + MatrixSize TransformSize(const MatrixSize& aSize) const { + MatrixSize retSize; + + retSize.width = aSize.width * _11 + aSize.height * _21; + retSize.height = aSize.width * _12 + aSize.height * _22; + + return retSize; + } + + /** + * In most cases you probably want to use TransformBounds. This function + * just transforms the top-left and size separately and constructs a rect + * from those results. + */ + MatrixRect TransformRect(const MatrixRect& aRect) const { + return MatrixRect(TransformPoint(aRect.TopLeft()), + TransformSize(aRect.Size())); + } + + GFX2D_API MatrixRect TransformBounds(const MatrixRect& aRect) const { + int i; + MatrixPoint quad[4]; + T min_x, max_x; + T min_y, max_y; + + quad[0] = TransformPoint(aRect.TopLeft()); + quad[1] = TransformPoint(aRect.TopRight()); + quad[2] = TransformPoint(aRect.BottomLeft()); + quad[3] = TransformPoint(aRect.BottomRight()); + + min_x = max_x = quad[0].x; + min_y = max_y = quad[0].y; + + for (i = 1; i < 4; i++) { + if (quad[i].x < min_x) min_x = quad[i].x; + if (quad[i].x > max_x) max_x = quad[i].x; + + if (quad[i].y < min_y) min_y = quad[i].y; + if (quad[i].y > max_y) max_y = quad[i].y; + } + + return MatrixRect(min_x, min_y, max_x - min_x, max_y - min_y); + } + + static BaseMatrix<T> Translation(T aX, T aY) { + return BaseMatrix<T>(1.0f, 0.0f, 0.0f, 1.0f, aX, aY); + } + + static BaseMatrix<T> Translation(MatrixPoint aPoint) { + return Translation(aPoint.x, aPoint.y); + } + + /** + * Apply a translation to this matrix. + * + * The "Pre" in this method's name means that the translation is applied + * -before- this matrix's existing transformation. That is, any vector that + * is multiplied by the resulting matrix will first be translated, then be + * transformed by the original transform. + * + * Calling this method will result in this matrix having the same value as + * the result of: + * + * BaseMatrix<T>::Translation(x, y) * this + * + * (Note that in performance critical code multiplying by the result of a + * Translation()/Scaling() call is not recommended since that results in a + * full matrix multiply involving 12 floating-point multiplications. Calling + * this method would be preferred since it only involves four floating-point + * multiplications.) + */ + BaseMatrix<T>& PreTranslate(T aX, T aY) { + _31 += _11 * aX + _21 * aY; + _32 += _12 * aX + _22 * aY; + + return *this; + } + + BaseMatrix<T>& PreTranslate(const MatrixPoint& aPoint) { + return PreTranslate(aPoint.x, aPoint.y); + } + + /** + * Similar to PreTranslate, but the translation is applied -after- this + * matrix's existing transformation instead of before it. + * + * This method is generally less used than PreTranslate since typically code + * want to adjust an existing user space to device space matrix to create a + * transform to device space from a -new- user space (translated from the + * previous user space). In that case consumers will need to use the Pre* + * variants of the matrix methods rather than using the Post* methods, since + * the Post* methods add a transform to the device space end of the + * transformation. + */ + BaseMatrix<T>& PostTranslate(T aX, T aY) { + _31 += aX; + _32 += aY; + return *this; + } + + BaseMatrix<T>& PostTranslate(const MatrixPoint& aPoint) { + return PostTranslate(aPoint.x, aPoint.y); + } + + static BaseMatrix<T> Scaling(T aScaleX, T aScaleY) { + return BaseMatrix<T>(aScaleX, 0.0f, 0.0f, aScaleY, 0.0f, 0.0f); + } + + static BaseMatrix<T> Scaling(const BaseMatrixScales<T>& scale) { + return Scaling(scale.xScale, scale.yScale); + } + + /** + * Similar to PreTranslate, but applies a scale instead of a translation. + */ + BaseMatrix<T>& PreScale(T aX, T aY) { + _11 *= aX; + _12 *= aX; + _21 *= aY; + _22 *= aY; + + return *this; + } + + BaseMatrix<T>& PreScale(const BaseMatrixScales<T>& scale) { + return PreScale(scale.xScale, scale.yScale); + } + + /** + * Similar to PostTranslate, but applies a scale instead of a translation. + */ + BaseMatrix<T>& PostScale(T aScaleX, T aScaleY) { + _11 *= aScaleX; + _12 *= aScaleY; + _21 *= aScaleX; + _22 *= aScaleY; + _31 *= aScaleX; + _32 *= aScaleY; + + return *this; + } + + GFX2D_API static BaseMatrix<T> Rotation(T aAngle); + + /** + * Similar to PreTranslate, but applies a rotation instead of a translation. + */ + BaseMatrix<T>& PreRotate(T aAngle) { + return *this = BaseMatrix<T>::Rotation(aAngle) * *this; + } + + bool Invert() { + // Compute co-factors. + T A = _22; + T B = -_21; + T C = _21 * _32 - _22 * _31; + T D = -_12; + T E = _11; + T F = _31 * _12 - _11 * _32; + + T det = Determinant(); + + if (!det) { + return false; + } + + T inv_det = 1 / det; + + _11 = inv_det * A; + _12 = inv_det * D; + _21 = inv_det * B; + _22 = inv_det * E; + _31 = inv_det * C; + _32 = inv_det * F; + + return true; + } + + BaseMatrix<T> Inverse() const { + BaseMatrix<T> clone = *this; + DebugOnly<bool> inverted = clone.Invert(); + MOZ_ASSERT(inverted, + "Attempted to get the inverse of a non-invertible matrix"); + return clone; + } + + T Determinant() const { return _11 * _22 - _12 * _21; } + + BaseMatrix<T> operator*(const BaseMatrix<T>& aMatrix) const { + BaseMatrix<T> resultMatrix; + + resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21; + resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22; + resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21; + resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22; + resultMatrix._31 = + this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + aMatrix._31; + resultMatrix._32 = + this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + aMatrix._32; + + return resultMatrix; + } + + BaseMatrix<T>& operator*=(const BaseMatrix<T>& aMatrix) { + *this = *this * aMatrix; + return *this; + } + + /** + * Multiplies *this with aMatrix and returns the result. + */ + Matrix4x4 operator*(const Matrix4x4& aMatrix) const; + + /** + * Multiplies in the opposite order to operator=*. + */ + BaseMatrix<T>& PreMultiply(const BaseMatrix<T>& aMatrix) { + *this = aMatrix * *this; + return *this; + } + + /** + * Please explicitly use either FuzzyEquals or ExactlyEquals. + */ + bool operator==(const BaseMatrix<T>& other) const = delete; + bool operator!=(const BaseMatrix<T>& other) const = delete; + + /* Returns true if the other matrix is fuzzy-equal to this matrix. + * Note that this isn't a cheap comparison! + */ + bool FuzzyEquals(const BaseMatrix<T>& o) const { + return FuzzyEqual(_11, o._11) && FuzzyEqual(_12, o._12) && + FuzzyEqual(_21, o._21) && FuzzyEqual(_22, o._22) && + FuzzyEqual(_31, o._31) && FuzzyEqual(_32, o._32); + } + + bool ExactlyEquals(const BaseMatrix<T>& o) const { + return _11 == o._11 && _12 == o._12 && _21 == o._21 && _22 == o._22 && + _31 == o._31 && _32 == o._32; + } + + /* Verifies that the matrix contains no Infs or NaNs. */ + bool IsFinite() const { + return mozilla::IsFinite(_11) && mozilla::IsFinite(_12) && + mozilla::IsFinite(_21) && mozilla::IsFinite(_22) && + mozilla::IsFinite(_31) && mozilla::IsFinite(_32); + } + + /* Returns true if the matrix is a rectilinear transformation (i.e. + * grid-aligned rectangles are transformed to grid-aligned rectangles) + */ + bool IsRectilinear() const { + if (FuzzyEqual(_12, 0) && FuzzyEqual(_21, 0)) { + return true; + } else if (FuzzyEqual(_22, 0) && FuzzyEqual(_11, 0)) { + return true; + } + + return false; + } + + /** + * Returns true if the matrix is anything other than a straight + * translation by integers. + */ + bool HasNonIntegerTranslation() const { + return HasNonTranslation() || !FuzzyEqual(_31, floor(_31 + 0.5f)) || + !FuzzyEqual(_32, floor(_32 + 0.5f)); + } + + /** + * Returns true if the matrix only has an integer translation. + */ + bool HasOnlyIntegerTranslation() const { return !HasNonIntegerTranslation(); } + + /** + * Returns true if the matrix has any transform other + * than a straight translation. + */ + bool HasNonTranslation() const { + return !FuzzyEqual(_11, 1.0) || !FuzzyEqual(_22, 1.0) || + !FuzzyEqual(_12, 0.0) || !FuzzyEqual(_21, 0.0); + } + + /** + * Returns true if the matrix has any transform other + * than a translation or a -1 y scale (y axis flip) + */ + bool HasNonTranslationOrFlip() const { + return !FuzzyEqual(_11, 1.0) || + (!FuzzyEqual(_22, 1.0) && !FuzzyEqual(_22, -1.0)) || + !FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0); + } + + /* Returns true if the matrix is an identity matrix. + */ + bool IsIdentity() const { + return _11 == 1.0f && _12 == 0.0f && _21 == 0.0f && _22 == 1.0f && + _31 == 0.0f && _32 == 0.0f; + } + + /* Returns true if the matrix is singular. + */ + bool IsSingular() const { + T det = Determinant(); + return !mozilla::IsFinite(det) || det == 0; + } + + GFX2D_API BaseMatrix<T>& NudgeToIntegers() { + NudgeToInteger(&_11); + NudgeToInteger(&_12); + NudgeToInteger(&_21); + NudgeToInteger(&_22); + NudgeToInteger(&_31); + NudgeToInteger(&_32); + return *this; + } + + bool IsTranslation() const { + return FuzzyEqual(_11, 1.0f) && FuzzyEqual(_12, 0.0f) && + FuzzyEqual(_21, 0.0f) && FuzzyEqual(_22, 1.0f); + } + + static bool FuzzyIsInteger(T aValue) { + return FuzzyEqual(aValue, floorf(aValue + 0.5f)); + } + + bool IsIntegerTranslation() const { + return IsTranslation() && FuzzyIsInteger(_31) && FuzzyIsInteger(_32); + } + + bool IsAllIntegers() const { + return FuzzyIsInteger(_11) && FuzzyIsInteger(_12) && FuzzyIsInteger(_21) && + FuzzyIsInteger(_22) && FuzzyIsInteger(_31) && FuzzyIsInteger(_32); + } + + MatrixPoint GetTranslation() const { return MatrixPoint(_31, _32); } + + /** + * Returns true if matrix is multiple of 90 degrees rotation with flipping, + * scaling and translation. + */ + bool PreservesAxisAlignedRectangles() const { + return ((FuzzyEqual(_11, 0.0) && FuzzyEqual(_22, 0.0)) || + (FuzzyEqual(_12, 0.0) && FuzzyEqual(_21, 0.0))); + } + + /** + * Returns true if the matrix has any transform other + * than a translation or scale; this is, if there is + * rotation. + */ + bool HasNonAxisAlignedTransform() const { + return !FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0); + } + + /** + * Returns true if the matrix has negative scaling (i.e. flip). + */ + bool HasNegativeScaling() const { return (_11 < 0.0) || (_22 < 0.0); } + + /** + * Computes the scale factors of this matrix; that is, + * the amounts each basis vector is scaled by. + * The xMajor parameter indicates if the larger scale is + * to be assumed to be in the X direction or not. + */ + BaseMatrixScales<T> ScaleFactors() const { + T det = Determinant(); + + if (det == 0.0) { + return BaseMatrixScales<T>(0.0, 0.0); + } + + MatrixSize sz = MatrixSize(1.0, 0.0); + sz = TransformSize(sz); + + T major = sqrt(sz.width * sz.width + sz.height * sz.height); + T minor = 0.0; + + // ignore mirroring + if (det < 0.0) { + det = -det; + } + + if (major) { + minor = det / major; + } + + return BaseMatrixScales<T>(major, minor); + } + + /** + * Returns true if the matrix preserves distances, i.e. a rigid transformation + * that doesn't change size or shape). Such a matrix has uniform unit scaling + * and an orthogonal basis. + */ + bool PreservesDistance() const { + return FuzzyEqual(_11 * _11 + _12 * _12, 1.0) && + FuzzyEqual(_21 * _21 + _22 * _22, 1.0) && + FuzzyEqual(_11 * _21 + _12 * _22, 0.0); + } +}; + +typedef BaseMatrix<Float> Matrix; +typedef BaseMatrix<Double> MatrixDouble; + +// Helper functions used by Matrix4x4Typed defined in Matrix.cpp +double SafeTangent(double aTheta); +double FlushToZero(double aVal); + +template <class Units, class F> +Point4DTyped<Units, F> ComputePerspectivePlaneIntercept( + const Point4DTyped<Units, F>& aFirst, + const Point4DTyped<Units, F>& aSecond) { + // This function will always return a point with a w value of 0. + // The X, Y, and Z components will point towards an infinite vanishing + // point. + + // We want to interpolate aFirst and aSecond to find the point intersecting + // with the w=0 plane. + + // Since we know what we want the w component to be, we can rearrange the + // interpolation equation and solve for t. + float t = -aFirst.w / (aSecond.w - aFirst.w); + + // Use t to find the remainder of the components + return aFirst + (aSecond - aFirst) * t; +} + +template <class SourceUnits, class TargetUnits, class T> +class Matrix4x4Typed { + public: + typedef PointTyped<SourceUnits, T> SourcePoint; + typedef PointTyped<TargetUnits, T> TargetPoint; + typedef Point3DTyped<SourceUnits, T> SourcePoint3D; + typedef Point3DTyped<TargetUnits, T> TargetPoint3D; + typedef Point4DTyped<SourceUnits, T> SourcePoint4D; + typedef Point4DTyped<TargetUnits, T> TargetPoint4D; + typedef RectTyped<SourceUnits, T> SourceRect; + typedef RectTyped<TargetUnits, T> TargetRect; + + Matrix4x4Typed() + : _11(1.0f), + _12(0.0f), + _13(0.0f), + _14(0.0f), + _21(0.0f), + _22(1.0f), + _23(0.0f), + _24(0.0f), + _31(0.0f), + _32(0.0f), + _33(1.0f), + _34(0.0f), + _41(0.0f), + _42(0.0f), + _43(0.0f), + _44(1.0f) {} + + Matrix4x4Typed(T a11, T a12, T a13, T a14, T a21, T a22, T a23, T a24, T a31, + T a32, T a33, T a34, T a41, T a42, T a43, T a44) + : _11(a11), + _12(a12), + _13(a13), + _14(a14), + _21(a21), + _22(a22), + _23(a23), + _24(a24), + _31(a31), + _32(a32), + _33(a33), + _34(a34), + _41(a41), + _42(a42), + _43(a43), + _44(a44) {} + + explicit Matrix4x4Typed(const T aArray[16]) { + memcpy(components, aArray, sizeof(components)); + } + + Matrix4x4Typed(const Matrix4x4Typed& aOther) { + memcpy(components, aOther.components, sizeof(components)); + } + + template <class T2> + explicit Matrix4x4Typed( + const Matrix4x4Typed<SourceUnits, TargetUnits, T2>& aOther) + : _11(aOther._11), + _12(aOther._12), + _13(aOther._13), + _14(aOther._14), + _21(aOther._21), + _22(aOther._22), + _23(aOther._23), + _24(aOther._24), + _31(aOther._31), + _32(aOther._32), + _33(aOther._33), + _34(aOther._34), + _41(aOther._41), + _42(aOther._42), + _43(aOther._43), + _44(aOther._44) {} + + union { + struct { + T _11, _12, _13, _14; + T _21, _22, _23, _24; + T _31, _32, _33, _34; + T _41, _42, _43, _44; + }; + T components[16]; + }; + + friend std::ostream& operator<<(std::ostream& aStream, + const Matrix4x4Typed& aMatrix) { + if (aMatrix.Is2D()) { + BaseMatrix<T> matrix = aMatrix.As2D(); + return aStream << matrix; + } + const T* f = &aMatrix._11; + aStream << "[ " << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';'; + f += 4; + aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';'; + f += 4; + aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';'; + f += 4; + aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] + << "; ]"; + return aStream; + } + + Point4DTyped<UnknownUnits, T>& operator[](int aIndex) { + MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index"); + return *reinterpret_cast<Point4DTyped<UnknownUnits, T>*>((&_11) + + 4 * aIndex); + } + const Point4DTyped<UnknownUnits, T>& operator[](int aIndex) const { + MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index"); + return *reinterpret_cast<const Point4DTyped<UnknownUnits, T>*>((&_11) + + 4 * aIndex); + } + + /** + * Returns true if the matrix is isomorphic to a 2D affine transformation. + */ + bool Is2D() const { + if (_13 != 0.0f || _14 != 0.0f || _23 != 0.0f || _24 != 0.0f || + _31 != 0.0f || _32 != 0.0f || _33 != 1.0f || _34 != 0.0f || + _43 != 0.0f || _44 != 1.0f) { + return false; + } + return true; + } + + bool Is2D(BaseMatrix<T>* aMatrix) const { + if (!Is2D()) { + return false; + } + if (aMatrix) { + aMatrix->_11 = _11; + aMatrix->_12 = _12; + aMatrix->_21 = _21; + aMatrix->_22 = _22; + aMatrix->_31 = _41; + aMatrix->_32 = _42; + } + return true; + } + + BaseMatrix<T> As2D() const { + MOZ_ASSERT(Is2D(), "Matrix is not a 2D affine transform"); + + return BaseMatrix<T>(_11, _12, _21, _22, _41, _42); + } + + bool CanDraw2D(BaseMatrix<T>* aMatrix = nullptr) const { + if (_14 != 0.0f || _24 != 0.0f || _44 != 1.0f) { + return false; + } + if (aMatrix) { + aMatrix->_11 = _11; + aMatrix->_12 = _12; + aMatrix->_21 = _21; + aMatrix->_22 = _22; + aMatrix->_31 = _41; + aMatrix->_32 = _42; + } + return true; + } + + Matrix4x4Typed& ProjectTo2D() { + _31 = 0.0f; + _32 = 0.0f; + _13 = 0.0f; + _23 = 0.0f; + _33 = 1.0f; + _43 = 0.0f; + _34 = 0.0f; + // Some matrices, such as those derived from perspective transforms, + // can modify _44 from 1, while leaving the rest of the fourth column + // (_14, _24) at 0. In this case, after resetting the third row and + // third column above, the value of _44 functions only to scale the + // coordinate transform divide by W. The matrix can be converted to + // a true 2D matrix by normalizing out the scaling effect of _44 on + // the remaining components ahead of time. + if (_14 == 0.0f && _24 == 0.0f && _44 != 1.0f && _44 != 0.0f) { + T scale = 1.0f / _44; + _11 *= scale; + _12 *= scale; + _21 *= scale; + _22 *= scale; + _41 *= scale; + _42 *= scale; + _44 = 1.0f; + } + return *this; + } + + template <class F> + Point4DTyped<TargetUnits, F> ProjectPoint( + const PointTyped<SourceUnits, F>& aPoint) const { + // Find a value for z that will transform to 0. + + // The transformed value of z is computed as: + // z' = aPoint.x * _13 + aPoint.y * _23 + z * _33 + _43; + + // Solving for z when z' = 0 gives us: + F z = -(aPoint.x * _13 + aPoint.y * _23 + _43) / _33; + + // Compute the transformed point + return this->TransformPoint( + Point4DTyped<SourceUnits, F>(aPoint.x, aPoint.y, z, 1)); + } + + template <class F> + RectTyped<TargetUnits, F> ProjectRectBounds( + const RectTyped<SourceUnits, F>& aRect, + const RectTyped<TargetUnits, F>& aClip) const { + // This function must never return std::numeric_limits<Float>::max() or any + // other arbitrary large value in place of inifinity. This often occurs + // when aRect is an inversed projection matrix or when aRect is transformed + // to be partly behind and in front of the camera (w=0 plane in homogenous + // coordinates) - See Bug 1035611 + + // Some call-sites will call RoundGfxRectToAppRect which clips both the + // extents and dimensions of the rect to be bounded by nscoord_MAX. + // If we return a Rect that, when converted to nscoords, has a width or + // height greater than nscoord_MAX, RoundGfxRectToAppRect will clip the + // overflow off both the min and max end of the rect after clipping the + // extents of the rect, resulting in a translation of the rect towards the + // infinite end. + + // The bounds returned by ProjectRectBounds are expected to be clipped only + // on the edges beyond the bounds of the coordinate system; otherwise, the + // clipped bounding box would be smaller than the correct one and result + // bugs such as incorrect culling (eg. Bug 1073056) + + // To address this without requiring all code to work in homogenous + // coordinates or interpret infinite values correctly, a specialized + // clipping function is integrated into ProjectRectBounds. + + // Callers should pass an aClip value that represents the extents to clip + // the result to, in the same coordinate system as aRect. + Point4DTyped<TargetUnits, F> points[4]; + + points[0] = ProjectPoint(aRect.TopLeft()); + points[1] = ProjectPoint(aRect.TopRight()); + points[2] = ProjectPoint(aRect.BottomRight()); + points[3] = ProjectPoint(aRect.BottomLeft()); + + F min_x = std::numeric_limits<F>::max(); + F min_y = std::numeric_limits<F>::max(); + F max_x = -std::numeric_limits<F>::max(); + F max_y = -std::numeric_limits<F>::max(); + + for (int i = 0; i < 4; i++) { + // Only use points that exist above the w=0 plane + if (points[i].HasPositiveWCoord()) { + PointTyped<TargetUnits, F> point2d = + aClip.ClampPoint(points[i].As2DPoint()); + min_x = std::min<F>(point2d.x, min_x); + max_x = std::max<F>(point2d.x, max_x); + min_y = std::min<F>(point2d.y, min_y); + max_y = std::max<F>(point2d.y, max_y); + } + + int next = (i == 3) ? 0 : i + 1; + if (points[i].HasPositiveWCoord() != points[next].HasPositiveWCoord()) { + // If the line between two points crosses the w=0 plane, then + // interpolate to find the point of intersection with the w=0 plane and + // use that instead. + Point4DTyped<TargetUnits, F> intercept = + ComputePerspectivePlaneIntercept(points[i], points[next]); + // Since intercept.w will always be 0 here, we interpret x,y,z as a + // direction towards an infinite vanishing point. + if (intercept.x < 0.0f) { + min_x = aClip.X(); + } else if (intercept.x > 0.0f) { + max_x = aClip.XMost(); + } + if (intercept.y < 0.0f) { + min_y = aClip.Y(); + } else if (intercept.y > 0.0f) { + max_y = aClip.YMost(); + } + } + } + + if (max_x < min_x || max_y < min_y) { + return RectTyped<TargetUnits, F>(0, 0, 0, 0); + } + + return RectTyped<TargetUnits, F>(min_x, min_y, max_x - min_x, + max_y - min_y); + } + + /** + * TransformAndClipBounds transforms aRect as a bounding box, while clipping + * the transformed bounds to the extents of aClip. + */ + template <class F> + RectTyped<TargetUnits, F> TransformAndClipBounds( + const RectTyped<SourceUnits, F>& aRect, + const RectTyped<TargetUnits, F>& aClip) const { + PointTyped<UnknownUnits, F> verts[kTransformAndClipRectMaxVerts]; + size_t vertCount = TransformAndClipRect(aRect, aClip, verts); + + F min_x = std::numeric_limits<F>::max(); + F min_y = std::numeric_limits<F>::max(); + F max_x = -std::numeric_limits<F>::max(); + F max_y = -std::numeric_limits<F>::max(); + for (size_t i = 0; i < vertCount; i++) { + min_x = std::min(min_x, verts[i].x.value); + max_x = std::max(max_x, verts[i].x.value); + min_y = std::min(min_y, verts[i].y.value); + max_y = std::max(max_y, verts[i].y.value); + } + + if (max_x < min_x || max_y < min_y) { + return RectTyped<TargetUnits, F>(0, 0, 0, 0); + } + + return RectTyped<TargetUnits, F>(min_x, min_y, max_x - min_x, + max_y - min_y); + } + + template <class F> + RectTyped<TargetUnits, F> TransformAndClipBounds( + const TriangleTyped<SourceUnits, F>& aTriangle, + const RectTyped<TargetUnits, F>& aClip) const { + return TransformAndClipBounds(aTriangle.BoundingBox(), aClip); + } + + /** + * TransformAndClipRect projects a rectangle and clips against view frustum + * clipping planes in homogenous space so that its projected vertices are + * constrained within the 2d rectangle passed in aClip. + * The resulting vertices are populated in aVerts. aVerts must be + * pre-allocated to hold at least kTransformAndClipRectMaxVerts Points. + * The vertex count is returned by TransformAndClipRect. It is possible to + * emit fewer than 3 vertices, indicating that aRect will not be visible + * within aClip. + */ + template <class F> + size_t TransformAndClipRect(const RectTyped<SourceUnits, F>& aRect, + const RectTyped<TargetUnits, F>& aClip, + PointTyped<TargetUnits, F>* aVerts) const { + typedef Point4DTyped<UnknownUnits, F> P4D; + + // The initial polygon is made up by the corners of aRect in homogenous + // space, mapped into the destination space of this transform. + P4D rectCorners[] = { + TransformPoint(P4D(aRect.X(), aRect.Y(), 0, 1)), + TransformPoint(P4D(aRect.XMost(), aRect.Y(), 0, 1)), + TransformPoint(P4D(aRect.XMost(), aRect.YMost(), 0, 1)), + TransformPoint(P4D(aRect.X(), aRect.YMost(), 0, 1)), + }; + + // Cut off pieces of the polygon that are outside of aClip (the "view + // frustrum"), by consecutively intersecting the polygon with the half space + // induced by the clipping plane for each side of aClip. + // View frustum clipping planes are described as normals originating from + // the 0,0,0,0 origin. + // Each pass can increase or decrease the number of points that make up the + // current clipped polygon. We double buffer the set of points, alternating + // between polygonBufA and polygonBufB. Duplicated points in the polygons + // are kept around until all clipping is done. The loop at the end filters + // out any consecutive duplicates. + P4D polygonBufA[kTransformAndClipRectMaxVerts]; + P4D polygonBufB[kTransformAndClipRectMaxVerts]; + + Span<P4D> polygon(rectCorners); + polygon = IntersectPolygon<F>(polygon, P4D(1.0, 0.0, 0.0, -aClip.X()), + polygonBufA); + polygon = IntersectPolygon<F>(polygon, P4D(-1.0, 0.0, 0.0, aClip.XMost()), + polygonBufB); + polygon = IntersectPolygon<F>(polygon, P4D(0.0, 1.0, 0.0, -aClip.Y()), + polygonBufA); + polygon = IntersectPolygon<F>(polygon, P4D(0.0, -1.0, 0.0, aClip.YMost()), + polygonBufB); + + size_t vertCount = 0; + for (const auto& srcPoint : polygon) { + PointTyped<TargetUnits, F> p; + if (srcPoint.w == 0.0) { + // If a point lies on the intersection of the clipping planes at + // (0,0,0,0), we must avoid a division by zero w component. + p = PointTyped<TargetUnits, F>(0.0, 0.0); + } else { + p = srcPoint.As2DPoint(); + } + // Emit only unique points + if (vertCount == 0 || p != aVerts[vertCount - 1]) { + aVerts[vertCount++] = p; + } + } + + return vertCount; + } + + static const int kTransformAndClipRectMaxVerts = 32; + + static Matrix4x4Typed From2D(const BaseMatrix<T>& aMatrix) { + Matrix4x4Typed matrix; + matrix._11 = aMatrix._11; + matrix._12 = aMatrix._12; + matrix._21 = aMatrix._21; + matrix._22 = aMatrix._22; + matrix._41 = aMatrix._31; + matrix._42 = aMatrix._32; + return matrix; + } + + bool Is2DIntegerTranslation() const { + return Is2D() && As2D().IsIntegerTranslation(); + } + + TargetPoint4D TransposeTransform4D(const SourcePoint4D& aPoint) const { + Float x = aPoint.x * _11 + aPoint.y * _12 + aPoint.z * _13 + aPoint.w * _14; + Float y = aPoint.x * _21 + aPoint.y * _22 + aPoint.z * _23 + aPoint.w * _24; + Float z = aPoint.x * _31 + aPoint.y * _32 + aPoint.z * _33 + aPoint.w * _34; + Float w = aPoint.x * _41 + aPoint.y * _42 + aPoint.z * _43 + aPoint.w * _44; + + return TargetPoint4D(x, y, z, w); + } + + template <class F> + Point4DTyped<TargetUnits, F> TransformPoint( + const Point4DTyped<SourceUnits, F>& aPoint) const { + Point4DTyped<TargetUnits, F> retPoint; + + retPoint.x = + aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31 + aPoint.w * _41; + retPoint.y = + aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32 + aPoint.w * _42; + retPoint.z = + aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33 + aPoint.w * _43; + retPoint.w = + aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34 + aPoint.w * _44; + + return retPoint; + } + + template <class F> + Point3DTyped<TargetUnits, F> TransformPoint( + const Point3DTyped<SourceUnits, F>& aPoint) const { + Point3DTyped<TargetUnits, F> result; + result.x = aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31 + _41; + result.y = aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32 + _42; + result.z = aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33 + _43; + + result /= (aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34 + _44); + + return result; + } + + template <class F> + PointTyped<TargetUnits, F> TransformPoint( + const PointTyped<SourceUnits, F>& aPoint) const { + Point4DTyped<SourceUnits, F> temp(aPoint.x, aPoint.y, 0, 1); + return TransformPoint(temp).As2DPoint(); + } + + template <class F> + GFX2D_API RectTyped<TargetUnits, F> TransformBounds( + const RectTyped<SourceUnits, F>& aRect) const { + PointTyped<TargetUnits, F> quad[4]; + F min_x, max_x; + F min_y, max_y; + + quad[0] = TransformPoint(aRect.TopLeft()); + quad[1] = TransformPoint(aRect.TopRight()); + quad[2] = TransformPoint(aRect.BottomLeft()); + quad[3] = TransformPoint(aRect.BottomRight()); + + min_x = max_x = quad[0].x; + min_y = max_y = quad[0].y; + + for (int i = 1; i < 4; i++) { + if (quad[i].x < min_x) { + min_x = quad[i].x; + } + if (quad[i].x > max_x) { + max_x = quad[i].x; + } + + if (quad[i].y < min_y) { + min_y = quad[i].y; + } + if (quad[i].y > max_y) { + max_y = quad[i].y; + } + } + + return RectTyped<TargetUnits, F>(min_x, min_y, max_x - min_x, + max_y - min_y); + } + + static Matrix4x4Typed Translation(T aX, T aY, T aZ) { + return Matrix4x4Typed(1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, + 0.0f, 1.0f, 0.0f, aX, aY, aZ, 1.0f); + } + + static Matrix4x4Typed Translation(const TargetPoint3D& aP) { + return Translation(aP.x, aP.y, aP.z); + } + + static Matrix4x4Typed Translation(const TargetPoint& aP) { + return Translation(aP.x, aP.y, 0); + } + + /** + * Apply a translation to this matrix. + * + * The "Pre" in this method's name means that the translation is applied + * -before- this matrix's existing transformation. That is, any vector that + * is multiplied by the resulting matrix will first be translated, then be + * transformed by the original transform. + * + * Calling this method will result in this matrix having the same value as + * the result of: + * + * Matrix4x4::Translation(x, y) * this + * + * (Note that in performance critical code multiplying by the result of a + * Translation()/Scaling() call is not recommended since that results in a + * full matrix multiply involving 64 floating-point multiplications. Calling + * this method would be preferred since it only involves 12 floating-point + * multiplications.) + */ + Matrix4x4Typed& PreTranslate(T aX, T aY, T aZ) { + _41 += aX * _11 + aY * _21 + aZ * _31; + _42 += aX * _12 + aY * _22 + aZ * _32; + _43 += aX * _13 + aY * _23 + aZ * _33; + _44 += aX * _14 + aY * _24 + aZ * _34; + + return *this; + } + + Matrix4x4Typed& PreTranslate(const Point3DTyped<UnknownUnits, T>& aPoint) { + return PreTranslate(aPoint.x, aPoint.y, aPoint.z); + } + + /** + * Similar to PreTranslate, but the translation is applied -after- this + * matrix's existing transformation instead of before it. + * + * This method is generally less used than PreTranslate since typically code + * wants to adjust an existing user space to device space matrix to create a + * transform to device space from a -new- user space (translated from the + * previous user space). In that case consumers will need to use the Pre* + * variants of the matrix methods rather than using the Post* methods, since + * the Post* methods add a transform to the device space end of the + * transformation. + */ + Matrix4x4Typed& PostTranslate(T aX, T aY, T aZ) { + _11 += _14 * aX; + _21 += _24 * aX; + _31 += _34 * aX; + _41 += _44 * aX; + _12 += _14 * aY; + _22 += _24 * aY; + _32 += _34 * aY; + _42 += _44 * aY; + _13 += _14 * aZ; + _23 += _24 * aZ; + _33 += _34 * aZ; + _43 += _44 * aZ; + + return *this; + } + + Matrix4x4Typed& PostTranslate(const TargetPoint3D& aPoint) { + return PostTranslate(aPoint.x, aPoint.y, aPoint.z); + } + + Matrix4x4Typed& PostTranslate(const TargetPoint& aPoint) { + return PostTranslate(aPoint.x, aPoint.y, 0); + } + + static Matrix4x4Typed Scaling(T aScaleX, T aScaleY, T aScaleZ) { + return Matrix4x4Typed(aScaleX, 0.0f, 0.0f, 0.0f, 0.0f, aScaleY, 0.0f, 0.0f, + 0.0f, 0.0f, aScaleZ, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); + } + + /** + * Similar to PreTranslate, but applies a scale instead of a translation. + */ + Matrix4x4Typed& PreScale(T aX, T aY, T aZ) { + _11 *= aX; + _12 *= aX; + _13 *= aX; + _14 *= aX; + _21 *= aY; + _22 *= aY; + _23 *= aY; + _24 *= aY; + _31 *= aZ; + _32 *= aZ; + _33 *= aZ; + _34 *= aZ; + + return *this; + } + + /** + * Similar to PostTranslate, but applies a scale instead of a translation. + */ + Matrix4x4Typed& PostScale(T aScaleX, T aScaleY, T aScaleZ) { + _11 *= aScaleX; + _21 *= aScaleX; + _31 *= aScaleX; + _41 *= aScaleX; + _12 *= aScaleY; + _22 *= aScaleY; + _32 *= aScaleY; + _42 *= aScaleY; + _13 *= aScaleZ; + _23 *= aScaleZ; + _33 *= aScaleZ; + _43 *= aScaleZ; + + return *this; + } + + void SkewXY(T aSkew) { (*this)[1] += (*this)[0] * aSkew; } + + void SkewXZ(T aSkew) { (*this)[2] += (*this)[0] * aSkew; } + + void SkewYZ(T aSkew) { (*this)[2] += (*this)[1] * aSkew; } + + Matrix4x4Typed& ChangeBasis(const Point3DTyped<UnknownUnits, T>& aOrigin) { + return ChangeBasis(aOrigin.x, aOrigin.y, aOrigin.z); + } + + Matrix4x4Typed& ChangeBasis(T aX, T aY, T aZ) { + // Translate to the origin before applying this matrix + PreTranslate(-aX, -aY, -aZ); + + // Translate back into position after applying this matrix + PostTranslate(aX, aY, aZ); + + return *this; + } + + Matrix4x4Typed& Transpose() { + std::swap(_12, _21); + std::swap(_13, _31); + std::swap(_14, _41); + + std::swap(_23, _32); + std::swap(_24, _42); + + std::swap(_34, _43); + + return *this; + } + + bool operator==(const Matrix4x4Typed& o) const { + // XXX would be nice to memcmp here, but that breaks IEEE 754 semantics + return _11 == o._11 && _12 == o._12 && _13 == o._13 && _14 == o._14 && + _21 == o._21 && _22 == o._22 && _23 == o._23 && _24 == o._24 && + _31 == o._31 && _32 == o._32 && _33 == o._33 && _34 == o._34 && + _41 == o._41 && _42 == o._42 && _43 == o._43 && _44 == o._44; + } + + bool operator!=(const Matrix4x4Typed& o) const { return !((*this) == o); } + + Matrix4x4Typed& operator=(const Matrix4x4Typed& aOther) = default; + + template <typename NewTargetUnits> + Matrix4x4Typed<SourceUnits, NewTargetUnits, T> operator*( + const Matrix4x4Typed<TargetUnits, NewTargetUnits, T>& aMatrix) const { + Matrix4x4Typed<SourceUnits, NewTargetUnits, T> matrix; + + matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21 + _13 * aMatrix._31 + + _14 * aMatrix._41; + matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21 + _23 * aMatrix._31 + + _24 * aMatrix._41; + matrix._31 = _31 * aMatrix._11 + _32 * aMatrix._21 + _33 * aMatrix._31 + + _34 * aMatrix._41; + matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + _43 * aMatrix._31 + + _44 * aMatrix._41; + matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22 + _13 * aMatrix._32 + + _14 * aMatrix._42; + matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22 + _23 * aMatrix._32 + + _24 * aMatrix._42; + matrix._32 = _31 * aMatrix._12 + _32 * aMatrix._22 + _33 * aMatrix._32 + + _34 * aMatrix._42; + matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + _43 * aMatrix._32 + + _44 * aMatrix._42; + matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23 + _13 * aMatrix._33 + + _14 * aMatrix._43; + matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23 + _23 * aMatrix._33 + + _24 * aMatrix._43; + matrix._33 = _31 * aMatrix._13 + _32 * aMatrix._23 + _33 * aMatrix._33 + + _34 * aMatrix._43; + matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + _43 * aMatrix._33 + + _44 * aMatrix._43; + matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24 + _13 * aMatrix._34 + + _14 * aMatrix._44; + matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24 + _23 * aMatrix._34 + + _24 * aMatrix._44; + matrix._34 = _31 * aMatrix._14 + _32 * aMatrix._24 + _33 * aMatrix._34 + + _34 * aMatrix._44; + matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + _43 * aMatrix._34 + + _44 * aMatrix._44; + + return matrix; + } + + Matrix4x4Typed& operator*=( + const Matrix4x4Typed<TargetUnits, TargetUnits, T>& aMatrix) { + *this = *this * aMatrix; + return *this; + } + + /* Returns true if the matrix is an identity matrix. + */ + bool IsIdentity() const { + return _11 == 1.0f && _12 == 0.0f && _13 == 0.0f && _14 == 0.0f && + _21 == 0.0f && _22 == 1.0f && _23 == 0.0f && _24 == 0.0f && + _31 == 0.0f && _32 == 0.0f && _33 == 1.0f && _34 == 0.0f && + _41 == 0.0f && _42 == 0.0f && _43 == 0.0f && _44 == 1.0f; + } + + bool IsSingular() const { return Determinant() == 0.0; } + + T Determinant() const { + return _14 * _23 * _32 * _41 - _13 * _24 * _32 * _41 - + _14 * _22 * _33 * _41 + _12 * _24 * _33 * _41 + + _13 * _22 * _34 * _41 - _12 * _23 * _34 * _41 - + _14 * _23 * _31 * _42 + _13 * _24 * _31 * _42 + + _14 * _21 * _33 * _42 - _11 * _24 * _33 * _42 - + _13 * _21 * _34 * _42 + _11 * _23 * _34 * _42 + + _14 * _22 * _31 * _43 - _12 * _24 * _31 * _43 - + _14 * _21 * _32 * _43 + _11 * _24 * _32 * _43 + + _12 * _21 * _34 * _43 - _11 * _22 * _34 * _43 - + _13 * _22 * _31 * _44 + _12 * _23 * _31 * _44 + + _13 * _21 * _32 * _44 - _11 * _23 * _32 * _44 - + _12 * _21 * _33 * _44 + _11 * _22 * _33 * _44; + } + + // Invert() is not unit-correct. Prefer Inverse() where possible. + bool Invert() { + T det = Determinant(); + if (!det) { + return false; + } + + Matrix4x4Typed<SourceUnits, TargetUnits, T> result; + result._11 = _23 * _34 * _42 - _24 * _33 * _42 + _24 * _32 * _43 - + _22 * _34 * _43 - _23 * _32 * _44 + _22 * _33 * _44; + result._12 = _14 * _33 * _42 - _13 * _34 * _42 - _14 * _32 * _43 + + _12 * _34 * _43 + _13 * _32 * _44 - _12 * _33 * _44; + result._13 = _13 * _24 * _42 - _14 * _23 * _42 + _14 * _22 * _43 - + _12 * _24 * _43 - _13 * _22 * _44 + _12 * _23 * _44; + result._14 = _14 * _23 * _32 - _13 * _24 * _32 - _14 * _22 * _33 + + _12 * _24 * _33 + _13 * _22 * _34 - _12 * _23 * _34; + result._21 = _24 * _33 * _41 - _23 * _34 * _41 - _24 * _31 * _43 + + _21 * _34 * _43 + _23 * _31 * _44 - _21 * _33 * _44; + result._22 = _13 * _34 * _41 - _14 * _33 * _41 + _14 * _31 * _43 - + _11 * _34 * _43 - _13 * _31 * _44 + _11 * _33 * _44; + result._23 = _14 * _23 * _41 - _13 * _24 * _41 - _14 * _21 * _43 + + _11 * _24 * _43 + _13 * _21 * _44 - _11 * _23 * _44; + result._24 = _13 * _24 * _31 - _14 * _23 * _31 + _14 * _21 * _33 - + _11 * _24 * _33 - _13 * _21 * _34 + _11 * _23 * _34; + result._31 = _22 * _34 * _41 - _24 * _32 * _41 + _24 * _31 * _42 - + _21 * _34 * _42 - _22 * _31 * _44 + _21 * _32 * _44; + result._32 = _14 * _32 * _41 - _12 * _34 * _41 - _14 * _31 * _42 + + _11 * _34 * _42 + _12 * _31 * _44 - _11 * _32 * _44; + result._33 = _12 * _24 * _41 - _14 * _22 * _41 + _14 * _21 * _42 - + _11 * _24 * _42 - _12 * _21 * _44 + _11 * _22 * _44; + result._34 = _14 * _22 * _31 - _12 * _24 * _31 - _14 * _21 * _32 + + _11 * _24 * _32 + _12 * _21 * _34 - _11 * _22 * _34; + result._41 = _23 * _32 * _41 - _22 * _33 * _41 - _23 * _31 * _42 + + _21 * _33 * _42 + _22 * _31 * _43 - _21 * _32 * _43; + result._42 = _12 * _33 * _41 - _13 * _32 * _41 + _13 * _31 * _42 - + _11 * _33 * _42 - _12 * _31 * _43 + _11 * _32 * _43; + result._43 = _13 * _22 * _41 - _12 * _23 * _41 - _13 * _21 * _42 + + _11 * _23 * _42 + _12 * _21 * _43 - _11 * _22 * _43; + result._44 = _12 * _23 * _31 - _13 * _22 * _31 + _13 * _21 * _32 - + _11 * _23 * _32 - _12 * _21 * _33 + _11 * _22 * _33; + + result._11 /= det; + result._12 /= det; + result._13 /= det; + result._14 /= det; + result._21 /= det; + result._22 /= det; + result._23 /= det; + result._24 /= det; + result._31 /= det; + result._32 /= det; + result._33 /= det; + result._34 /= det; + result._41 /= det; + result._42 /= det; + result._43 /= det; + result._44 /= det; + *this = result; + + return true; + } + + Matrix4x4Typed<TargetUnits, SourceUnits, T> Inverse() const { + typedef Matrix4x4Typed<TargetUnits, SourceUnits, T> InvertedMatrix; + InvertedMatrix clone = InvertedMatrix::FromUnknownMatrix(ToUnknownMatrix()); + DebugOnly<bool> inverted = clone.Invert(); + MOZ_ASSERT(inverted, + "Attempted to get the inverse of a non-invertible matrix"); + return clone; + } + + Maybe<Matrix4x4Typed<TargetUnits, SourceUnits, T>> MaybeInverse() const { + typedef Matrix4x4Typed<TargetUnits, SourceUnits, T> InvertedMatrix; + InvertedMatrix clone = InvertedMatrix::FromUnknownMatrix(ToUnknownMatrix()); + if (clone.Invert()) { + return Some(clone); + } + return Nothing(); + } + + void Normalize() { + for (int i = 0; i < 4; i++) { + for (int j = 0; j < 4; j++) { + (*this)[i][j] /= (*this)[3][3]; + } + } + } + + bool FuzzyEqual(const Matrix4x4Typed& o) const { + return gfx::FuzzyEqual(_11, o._11) && gfx::FuzzyEqual(_12, o._12) && + gfx::FuzzyEqual(_13, o._13) && gfx::FuzzyEqual(_14, o._14) && + gfx::FuzzyEqual(_21, o._21) && gfx::FuzzyEqual(_22, o._22) && + gfx::FuzzyEqual(_23, o._23) && gfx::FuzzyEqual(_24, o._24) && + gfx::FuzzyEqual(_31, o._31) && gfx::FuzzyEqual(_32, o._32) && + gfx::FuzzyEqual(_33, o._33) && gfx::FuzzyEqual(_34, o._34) && + gfx::FuzzyEqual(_41, o._41) && gfx::FuzzyEqual(_42, o._42) && + gfx::FuzzyEqual(_43, o._43) && gfx::FuzzyEqual(_44, o._44); + } + + bool FuzzyEqualsMultiplicative(const Matrix4x4Typed& o) const { + return ::mozilla::FuzzyEqualsMultiplicative(_11, o._11) && + ::mozilla::FuzzyEqualsMultiplicative(_12, o._12) && + ::mozilla::FuzzyEqualsMultiplicative(_13, o._13) && + ::mozilla::FuzzyEqualsMultiplicative(_14, o._14) && + ::mozilla::FuzzyEqualsMultiplicative(_21, o._21) && + ::mozilla::FuzzyEqualsMultiplicative(_22, o._22) && + ::mozilla::FuzzyEqualsMultiplicative(_23, o._23) && + ::mozilla::FuzzyEqualsMultiplicative(_24, o._24) && + ::mozilla::FuzzyEqualsMultiplicative(_31, o._31) && + ::mozilla::FuzzyEqualsMultiplicative(_32, o._32) && + ::mozilla::FuzzyEqualsMultiplicative(_33, o._33) && + ::mozilla::FuzzyEqualsMultiplicative(_34, o._34) && + ::mozilla::FuzzyEqualsMultiplicative(_41, o._41) && + ::mozilla::FuzzyEqualsMultiplicative(_42, o._42) && + ::mozilla::FuzzyEqualsMultiplicative(_43, o._43) && + ::mozilla::FuzzyEqualsMultiplicative(_44, o._44); + } + + bool IsBackfaceVisible() const { + // Inverse()._33 < 0; + T det = Determinant(); + T __33 = _12 * _24 * _41 - _14 * _22 * _41 + _14 * _21 * _42 - + _11 * _24 * _42 - _12 * _21 * _44 + _11 * _22 * _44; + return (__33 * det) < 0; + } + + Matrix4x4Typed& NudgeToIntegersFixedEpsilon() { + NudgeToInteger(&_11); + NudgeToInteger(&_12); + NudgeToInteger(&_13); + NudgeToInteger(&_14); + NudgeToInteger(&_21); + NudgeToInteger(&_22); + NudgeToInteger(&_23); + NudgeToInteger(&_24); + NudgeToInteger(&_31); + NudgeToInteger(&_32); + NudgeToInteger(&_33); + NudgeToInteger(&_34); + static const float error = 1e-5f; + NudgeToInteger(&_41, error); + NudgeToInteger(&_42, error); + NudgeToInteger(&_43, error); + NudgeToInteger(&_44, error); + return *this; + } + + Point4D TransposedVector(int aIndex) const { + MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index"); + return Point4DTyped<UnknownUnits, T>(*((&_11) + aIndex), *((&_21) + aIndex), + *((&_31) + aIndex), + *((&_41) + aIndex)); + } + + void SetTransposedVector(int aIndex, Point4DTyped<UnknownUnits, T>& aVector) { + MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index"); + *((&_11) + aIndex) = aVector.x; + *((&_21) + aIndex) = aVector.y; + *((&_31) + aIndex) = aVector.z; + *((&_41) + aIndex) = aVector.w; + } + + bool Decompose(Point3DTyped<UnknownUnits, T>& translation, + BaseQuaternion<T>& rotation, + Point3DTyped<UnknownUnits, T>& scale) const { + // Ensure matrix can be normalized + if (gfx::FuzzyEqual(_44, 0.0f)) { + return false; + } + Matrix4x4Typed mat = *this; + mat.Normalize(); + if (HasPerspectiveComponent()) { + // We do not support projection matrices + return false; + } + + // Extract translation + translation.x = mat._41; + translation.y = mat._42; + translation.z = mat._43; + + // Remove translation + mat._41 = 0.0f; + mat._42 = 0.0f; + mat._43 = 0.0f; + + // Extract scale + scale.x = sqrtf(_11 * _11 + _21 * _21 + _31 * _31); + scale.y = sqrtf(_12 * _12 + _22 * _22 + _32 * _32); + scale.z = sqrtf(_13 * _13 + _23 * _23 + _33 * _33); + + // Remove scale + if (gfx::FuzzyEqual(scale.x, 0.0f) || gfx::FuzzyEqual(scale.y, 0.0f) || + gfx::FuzzyEqual(scale.z, 0.0f)) { + // We do not support matrices with a zero scale component + return false; + } + + // Extract rotation + rotation.SetFromRotationMatrix(this->ToUnknownMatrix()); + return true; + } + + // Sets this matrix to a rotation matrix given by aQuat. + // This quaternion *MUST* be normalized! + // Implemented in Quaternion.cpp + void SetRotationFromQuaternion(const BaseQuaternion<T>& q) { + const T x2 = q.x + q.x, y2 = q.y + q.y, z2 = q.z + q.z; + const T xx = q.x * x2, xy = q.x * y2, xz = q.x * z2; + const T yy = q.y * y2, yz = q.y * z2, zz = q.z * z2; + const T wx = q.w * x2, wy = q.w * y2, wz = q.w * z2; + + _11 = 1.0f - (yy + zz); + _21 = xy - wz; + _31 = xz + wy; + _41 = 0.0f; + + _12 = xy + wz; + _22 = 1.0f - (xx + zz); + _32 = yz - wx; + _42 = 0.0f; + + _13 = xz - wy; + _23 = yz + wx; + _33 = 1.0f - (xx + yy); + _43 = 0.0f; + + _14 = _42 = _43 = 0.0f; + _44 = 1.0f; + } + + // Set all the members of the matrix to NaN + void SetNAN() { + _11 = UnspecifiedNaN<T>(); + _21 = UnspecifiedNaN<T>(); + _31 = UnspecifiedNaN<T>(); + _41 = UnspecifiedNaN<T>(); + _12 = UnspecifiedNaN<T>(); + _22 = UnspecifiedNaN<T>(); + _32 = UnspecifiedNaN<T>(); + _42 = UnspecifiedNaN<T>(); + _13 = UnspecifiedNaN<T>(); + _23 = UnspecifiedNaN<T>(); + _33 = UnspecifiedNaN<T>(); + _43 = UnspecifiedNaN<T>(); + _14 = UnspecifiedNaN<T>(); + _24 = UnspecifiedNaN<T>(); + _34 = UnspecifiedNaN<T>(); + _44 = UnspecifiedNaN<T>(); + } + + // Verifies that the matrix contains no Infs or NaNs + bool IsFinite() const { + return mozilla::IsFinite(_11) && mozilla::IsFinite(_12) && + mozilla::IsFinite(_13) && mozilla::IsFinite(_14) && + mozilla::IsFinite(_21) && mozilla::IsFinite(_22) && + mozilla::IsFinite(_23) && mozilla::IsFinite(_24) && + mozilla::IsFinite(_31) && mozilla::IsFinite(_32) && + mozilla::IsFinite(_33) && mozilla::IsFinite(_34) && + mozilla::IsFinite(_41) && mozilla::IsFinite(_42) && + mozilla::IsFinite(_43) && mozilla::IsFinite(_44); + } + + void SkewXY(double aXSkew, double aYSkew) { + // XXX Is double precision really necessary here + T tanX = SafeTangent(aXSkew); + T tanY = SafeTangent(aYSkew); + T temp; + + temp = _11; + _11 += tanY * _21; + _21 += tanX * temp; + + temp = _12; + _12 += tanY * _22; + _22 += tanX * temp; + + temp = _13; + _13 += tanY * _23; + _23 += tanX * temp; + + temp = _14; + _14 += tanY * _24; + _24 += tanX * temp; + } + + void RotateX(double aTheta) { + // XXX Is double precision really necessary here + double cosTheta = FlushToZero(cos(aTheta)); + double sinTheta = FlushToZero(sin(aTheta)); + + T temp; + + temp = _21; + _21 = cosTheta * _21 + sinTheta * _31; + _31 = -sinTheta * temp + cosTheta * _31; + + temp = _22; + _22 = cosTheta * _22 + sinTheta * _32; + _32 = -sinTheta * temp + cosTheta * _32; + + temp = _23; + _23 = cosTheta * _23 + sinTheta * _33; + _33 = -sinTheta * temp + cosTheta * _33; + + temp = _24; + _24 = cosTheta * _24 + sinTheta * _34; + _34 = -sinTheta * temp + cosTheta * _34; + } + + void RotateY(double aTheta) { + // XXX Is double precision really necessary here + double cosTheta = FlushToZero(cos(aTheta)); + double sinTheta = FlushToZero(sin(aTheta)); + + T temp; + + temp = _11; + _11 = cosTheta * _11 + -sinTheta * _31; + _31 = sinTheta * temp + cosTheta * _31; + + temp = _12; + _12 = cosTheta * _12 + -sinTheta * _32; + _32 = sinTheta * temp + cosTheta * _32; + + temp = _13; + _13 = cosTheta * _13 + -sinTheta * _33; + _33 = sinTheta * temp + cosTheta * _33; + + temp = _14; + _14 = cosTheta * _14 + -sinTheta * _34; + _34 = sinTheta * temp + cosTheta * _34; + } + + void RotateZ(double aTheta) { + // XXX Is double precision really necessary here + double cosTheta = FlushToZero(cos(aTheta)); + double sinTheta = FlushToZero(sin(aTheta)); + + T temp; + + temp = _11; + _11 = cosTheta * _11 + sinTheta * _21; + _21 = -sinTheta * temp + cosTheta * _21; + + temp = _12; + _12 = cosTheta * _12 + sinTheta * _22; + _22 = -sinTheta * temp + cosTheta * _22; + + temp = _13; + _13 = cosTheta * _13 + sinTheta * _23; + _23 = -sinTheta * temp + cosTheta * _23; + + temp = _14; + _14 = cosTheta * _14 + sinTheta * _24; + _24 = -sinTheta * temp + cosTheta * _24; + } + + // Sets this matrix to a rotation matrix about a + // vector [x,y,z] by angle theta. The vector is normalized + // to a unit vector. + // https://drafts.csswg.org/css-transforms-2/#Rotate3dDefined + void SetRotateAxisAngle(double aX, double aY, double aZ, double aTheta) { + Point3DTyped<UnknownUnits, T> vector(aX, aY, aZ); + if (!vector.Length()) { + return; + } + vector.RobustNormalize(); + + double x = vector.x; + double y = vector.y; + double z = vector.z; + + double cosTheta = FlushToZero(cos(aTheta)); + double sinTheta = FlushToZero(sin(aTheta)); + + // sin(aTheta / 2) * cos(aTheta / 2) + double sc = sinTheta / 2; + // pow(sin(aTheta / 2), 2) + double sq = (1 - cosTheta) / 2; + + _11 = 1 - 2 * (y * y + z * z) * sq; + _12 = 2 * (x * y * sq + z * sc); + _13 = 2 * (x * z * sq - y * sc); + _14 = 0.0f; + _21 = 2 * (x * y * sq - z * sc); + _22 = 1 - 2 * (x * x + z * z) * sq; + _23 = 2 * (y * z * sq + x * sc); + _24 = 0.0f; + _31 = 2 * (x * z * sq + y * sc); + _32 = 2 * (y * z * sq - x * sc); + _33 = 1 - 2 * (x * x + y * y) * sq; + _34 = 0.0f; + _41 = 0.0f; + _42 = 0.0f; + _43 = 0.0f; + _44 = 1.0f; + } + + void Perspective(T aDepth) { + MOZ_ASSERT(aDepth > 0.0f, "Perspective must be positive!"); + _31 += -1.0 / aDepth * _41; + _32 += -1.0 / aDepth * _42; + _33 += -1.0 / aDepth * _43; + _34 += -1.0 / aDepth * _44; + } + + Point3D GetNormalVector() const { + // Define a plane in transformed space as the transformations + // of 3 points on the z=0 screen plane. + Point3DTyped<UnknownUnits, T> a = + TransformPoint(Point3DTyped<UnknownUnits, T>(0, 0, 0)); + Point3DTyped<UnknownUnits, T> b = + TransformPoint(Point3DTyped<UnknownUnits, T>(0, 1, 0)); + Point3DTyped<UnknownUnits, T> c = + TransformPoint(Point3DTyped<UnknownUnits, T>(1, 0, 0)); + + // Convert to two vectors on the surface of the plane. + Point3DTyped<UnknownUnits, T> ab = b - a; + Point3DTyped<UnknownUnits, T> ac = c - a; + + return ac.CrossProduct(ab); + } + + /** + * Returns true if the matrix has any transform other + * than a straight translation. + */ + bool HasNonTranslation() const { + return !gfx::FuzzyEqual(_11, 1.0) || !gfx::FuzzyEqual(_22, 1.0) || + !gfx::FuzzyEqual(_12, 0.0) || !gfx::FuzzyEqual(_21, 0.0) || + !gfx::FuzzyEqual(_13, 0.0) || !gfx::FuzzyEqual(_23, 0.0) || + !gfx::FuzzyEqual(_31, 0.0) || !gfx::FuzzyEqual(_32, 0.0) || + !gfx::FuzzyEqual(_33, 1.0); + } + + /** + * Returns true if the matrix is anything other than a straight + * translation by integers. + */ + bool HasNonIntegerTranslation() const { + return HasNonTranslation() || !gfx::FuzzyEqual(_41, floor(_41 + 0.5)) || + !gfx::FuzzyEqual(_42, floor(_42 + 0.5)) || + !gfx::FuzzyEqual(_43, floor(_43 + 0.5)); + } + + /** + * Return true if the matrix is with perspective (w). + */ + bool HasPerspectiveComponent() const { + return _14 != 0 || _24 != 0 || _34 != 0 || _44 != 1; + } + + /* Returns true if the matrix is a rectilinear transformation (i.e. + * grid-aligned rectangles are transformed to grid-aligned rectangles). + * This should only be called on 2D matrices. + */ + bool IsRectilinear() const { + MOZ_ASSERT(Is2D()); + if (gfx::FuzzyEqual(_12, 0) && gfx::FuzzyEqual(_21, 0)) { + return true; + } else if (gfx::FuzzyEqual(_22, 0) && gfx::FuzzyEqual(_11, 0)) { + return true; + } + return false; + } + + /** + * Convert between typed and untyped matrices. + */ + using UnknownMatrix = Matrix4x4Typed<UnknownUnits, UnknownUnits, T>; + UnknownMatrix ToUnknownMatrix() const { + return UnknownMatrix{_11, _12, _13, _14, _21, _22, _23, _24, + _31, _32, _33, _34, _41, _42, _43, _44}; + } + static Matrix4x4Typed FromUnknownMatrix(const UnknownMatrix& aUnknown) { + return Matrix4x4Typed{ + aUnknown._11, aUnknown._12, aUnknown._13, aUnknown._14, + aUnknown._21, aUnknown._22, aUnknown._23, aUnknown._24, + aUnknown._31, aUnknown._32, aUnknown._33, aUnknown._34, + aUnknown._41, aUnknown._42, aUnknown._43, aUnknown._44}; + } + /** + * For convenience, overload FromUnknownMatrix() for Maybe<Matrix>. + */ + static Maybe<Matrix4x4Typed> FromUnknownMatrix( + const Maybe<UnknownMatrix>& aUnknown) { + if (aUnknown.isSome()) { + return Some(FromUnknownMatrix(*aUnknown)); + } + return Nothing(); + } +}; + +typedef Matrix4x4Typed<UnknownUnits, UnknownUnits> Matrix4x4; +typedef Matrix4x4Typed<UnknownUnits, UnknownUnits, double> Matrix4x4Double; + +class Matrix5x4 { + public: + Matrix5x4() + : _11(1.0f), + _12(0), + _13(0), + _14(0), + _21(0), + _22(1.0f), + _23(0), + _24(0), + _31(0), + _32(0), + _33(1.0f), + _34(0), + _41(0), + _42(0), + _43(0), + _44(1.0f), + _51(0), + _52(0), + _53(0), + _54(0) {} + Matrix5x4(Float a11, Float a12, Float a13, Float a14, Float a21, Float a22, + Float a23, Float a24, Float a31, Float a32, Float a33, Float a34, + Float a41, Float a42, Float a43, Float a44, Float a51, Float a52, + Float a53, Float a54) + : _11(a11), + _12(a12), + _13(a13), + _14(a14), + _21(a21), + _22(a22), + _23(a23), + _24(a24), + _31(a31), + _32(a32), + _33(a33), + _34(a34), + _41(a41), + _42(a42), + _43(a43), + _44(a44), + _51(a51), + _52(a52), + _53(a53), + _54(a54) {} + + bool operator==(const Matrix5x4& o) const { + return _11 == o._11 && _12 == o._12 && _13 == o._13 && _14 == o._14 && + _21 == o._21 && _22 == o._22 && _23 == o._23 && _24 == o._24 && + _31 == o._31 && _32 == o._32 && _33 == o._33 && _34 == o._34 && + _41 == o._41 && _42 == o._42 && _43 == o._43 && _44 == o._44 && + _51 == o._51 && _52 == o._52 && _53 == o._53 && _54 == o._54; + } + + bool operator!=(const Matrix5x4& aMatrix) const { + return !(*this == aMatrix); + } + + Matrix5x4 operator*(const Matrix5x4& aMatrix) const { + Matrix5x4 resultMatrix; + + resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21 + + this->_13 * aMatrix._31 + this->_14 * aMatrix._41; + resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22 + + this->_13 * aMatrix._32 + this->_14 * aMatrix._42; + resultMatrix._13 = this->_11 * aMatrix._13 + this->_12 * aMatrix._23 + + this->_13 * aMatrix._33 + this->_14 * aMatrix._43; + resultMatrix._14 = this->_11 * aMatrix._14 + this->_12 * aMatrix._24 + + this->_13 * aMatrix._34 + this->_14 * aMatrix._44; + resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21 + + this->_23 * aMatrix._31 + this->_24 * aMatrix._41; + resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22 + + this->_23 * aMatrix._32 + this->_24 * aMatrix._42; + resultMatrix._23 = this->_21 * aMatrix._13 + this->_22 * aMatrix._23 + + this->_23 * aMatrix._33 + this->_24 * aMatrix._43; + resultMatrix._24 = this->_21 * aMatrix._14 + this->_22 * aMatrix._24 + + this->_23 * aMatrix._34 + this->_24 * aMatrix._44; + resultMatrix._31 = this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + + this->_33 * aMatrix._31 + this->_34 * aMatrix._41; + resultMatrix._32 = this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + + this->_33 * aMatrix._32 + this->_34 * aMatrix._42; + resultMatrix._33 = this->_31 * aMatrix._13 + this->_32 * aMatrix._23 + + this->_33 * aMatrix._33 + this->_34 * aMatrix._43; + resultMatrix._34 = this->_31 * aMatrix._14 + this->_32 * aMatrix._24 + + this->_33 * aMatrix._34 + this->_34 * aMatrix._44; + resultMatrix._41 = this->_41 * aMatrix._11 + this->_42 * aMatrix._21 + + this->_43 * aMatrix._31 + this->_44 * aMatrix._41; + resultMatrix._42 = this->_41 * aMatrix._12 + this->_42 * aMatrix._22 + + this->_43 * aMatrix._32 + this->_44 * aMatrix._42; + resultMatrix._43 = this->_41 * aMatrix._13 + this->_42 * aMatrix._23 + + this->_43 * aMatrix._33 + this->_44 * aMatrix._43; + resultMatrix._44 = this->_41 * aMatrix._14 + this->_42 * aMatrix._24 + + this->_43 * aMatrix._34 + this->_44 * aMatrix._44; + resultMatrix._51 = this->_51 * aMatrix._11 + this->_52 * aMatrix._21 + + this->_53 * aMatrix._31 + this->_54 * aMatrix._41 + + aMatrix._51; + resultMatrix._52 = this->_51 * aMatrix._12 + this->_52 * aMatrix._22 + + this->_53 * aMatrix._32 + this->_54 * aMatrix._42 + + aMatrix._52; + resultMatrix._53 = this->_51 * aMatrix._13 + this->_52 * aMatrix._23 + + this->_53 * aMatrix._33 + this->_54 * aMatrix._43 + + aMatrix._53; + resultMatrix._54 = this->_51 * aMatrix._14 + this->_52 * aMatrix._24 + + this->_53 * aMatrix._34 + this->_54 * aMatrix._44 + + aMatrix._54; + + return resultMatrix; + } + + Matrix5x4& operator*=(const Matrix5x4& aMatrix) { + *this = *this * aMatrix; + return *this; + } + + friend std::ostream& operator<<(std::ostream& aStream, + const Matrix5x4& aMatrix) { + const Float* f = &aMatrix._11; + aStream << "[ " << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';'; + f += 4; + aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';'; + f += 4; + aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';'; + f += 4; + aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';'; + f += 4; + aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] + << "; ]"; + return aStream; + } + + union { + struct { + Float _11, _12, _13, _14; + Float _21, _22, _23, _24; + Float _31, _32, _33, _34; + Float _41, _42, _43, _44; + Float _51, _52, _53, _54; + }; + Float components[20]; + }; +}; + +/* This Matrix class will carry one additional type field in order to + * track what type of 4x4 matrix we're dealing with, it can then execute + * simplified versions of certain operations when applicable. + * This does not allow access to the parent class directly, as a caller + * could then mutate the parent class without updating the type. + */ +template <typename SourceUnits, typename TargetUnits> +class Matrix4x4TypedFlagged + : protected Matrix4x4Typed<SourceUnits, TargetUnits> { + public: + using Parent = Matrix4x4Typed<SourceUnits, TargetUnits>; + using TargetPoint = PointTyped<TargetUnits>; + using Parent::_11; + using Parent::_12; + using Parent::_13; + using Parent::_14; + using Parent::_21; + using Parent::_22; + using Parent::_23; + using Parent::_24; + using Parent::_31; + using Parent::_32; + using Parent::_33; + using Parent::_34; + using Parent::_41; + using Parent::_42; + using Parent::_43; + using Parent::_44; + + Matrix4x4TypedFlagged() : mType(MatrixType::Identity) {} + + Matrix4x4TypedFlagged(Float a11, Float a12, Float a13, Float a14, Float a21, + Float a22, Float a23, Float a24, Float a31, Float a32, + Float a33, Float a34, Float a41, Float a42, Float a43, + Float a44) + : Parent(a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34, a41, + a42, a43, a44) { + Analyze(); + } + + MOZ_IMPLICIT Matrix4x4TypedFlagged(const Parent& aOther) : Parent(aOther) { + Analyze(); + } + + template <class F> + PointTyped<TargetUnits, F> TransformPoint( + const PointTyped<SourceUnits, F>& aPoint) const { + if (mType == MatrixType::Identity) { + return aPoint; + } + + if (mType == MatrixType::Simple) { + return TransformPointSimple(aPoint); + } + + return Parent::TransformPoint(aPoint); + } + + template <class F> + RectTyped<TargetUnits, F> TransformAndClipBounds( + const RectTyped<SourceUnits, F>& aRect, + const RectTyped<TargetUnits, F>& aClip) const { + if (mType == MatrixType::Identity) { + const RectTyped<SourceUnits, F>& clipped = aRect.Intersect(aClip); + return RectTyped<TargetUnits, F>(clipped.X(), clipped.Y(), + clipped.Width(), clipped.Height()); + } + + if (mType == MatrixType::Simple) { + PointTyped<UnknownUnits, F> p1 = TransformPointSimple(aRect.TopLeft()); + PointTyped<UnknownUnits, F> p2 = TransformPointSimple(aRect.TopRight()); + PointTyped<UnknownUnits, F> p3 = TransformPointSimple(aRect.BottomLeft()); + PointTyped<UnknownUnits, F> p4 = + TransformPointSimple(aRect.BottomRight()); + + F min_x = std::min(std::min(std::min(p1.x, p2.x), p3.x), p4.x); + F max_x = std::max(std::max(std::max(p1.x, p2.x), p3.x), p4.x); + F min_y = std::min(std::min(std::min(p1.y, p2.y), p3.y), p4.y); + F max_y = std::max(std::max(std::max(p1.y, p2.y), p3.y), p4.y); + + TargetPoint topLeft(std::max(min_x, aClip.x), std::max(min_y, aClip.y)); + F width = std::min(max_x, aClip.XMost()) - topLeft.x; + F height = std::min(max_y, aClip.YMost()) - topLeft.y; + + return RectTyped<TargetUnits, F>(topLeft.x, topLeft.y, width, height); + } + return Parent::TransformAndClipBounds(aRect, aClip); + } + + bool FuzzyEqual(const Parent& o) const { return Parent::FuzzyEqual(o); } + + bool FuzzyEqual(const Matrix4x4TypedFlagged& o) const { + if (mType == MatrixType::Identity && o.mType == MatrixType::Identity) { + return true; + } + return Parent::FuzzyEqual(o); + } + + Matrix4x4TypedFlagged& PreTranslate(Float aX, Float aY, Float aZ) { + if (mType == MatrixType::Identity) { + _41 = aX; + _42 = aY; + _43 = aZ; + + if (!aZ) { + mType = MatrixType::Simple; + return *this; + } + mType = MatrixType::Full; + return *this; + } + + Parent::PreTranslate(aX, aY, aZ); + + if (aZ != 0) { + mType = MatrixType::Full; + } + + return *this; + } + + Matrix4x4TypedFlagged& PostTranslate(Float aX, Float aY, Float aZ) { + if (mType == MatrixType::Identity) { + _41 = aX; + _42 = aY; + _43 = aZ; + + if (!aZ) { + mType = MatrixType::Simple; + return *this; + } + mType = MatrixType::Full; + return *this; + } + + Parent::PostTranslate(aX, aY, aZ); + + if (aZ != 0) { + mType = MatrixType::Full; + } + + return *this; + } + + Matrix4x4TypedFlagged& ChangeBasis(Float aX, Float aY, Float aZ) { + // Translate to the origin before applying this matrix + PreTranslate(-aX, -aY, -aZ); + + // Translate back into position after applying this matrix + PostTranslate(aX, aY, aZ); + + return *this; + } + + bool IsIdentity() const { return mType == MatrixType::Identity; } + + template <class F> + Point4DTyped<TargetUnits, F> ProjectPoint( + const PointTyped<SourceUnits, F>& aPoint) const { + if (mType == MatrixType::Identity) { + return Point4DTyped<TargetUnits, F>(aPoint.x, aPoint.y, 0, 1); + } + + if (mType == MatrixType::Simple) { + TargetPoint point = TransformPointSimple(aPoint); + return Point4DTyped<TargetUnits, F>(point.x, point.y, 0, 1); + } + + return Parent::ProjectPoint(aPoint); + } + + Matrix4x4TypedFlagged& ProjectTo2D() { + if (mType == MatrixType::Full) { + Parent::ProjectTo2D(); + } + return *this; + } + + bool IsSingular() const { + if (mType == MatrixType::Identity) { + return false; + } + return Parent::Determinant() == 0.0; + } + + bool Invert() { + if (mType == MatrixType::Identity) { + return true; + } + + return Parent::Invert(); + } + + Matrix4x4TypedFlagged<TargetUnits, SourceUnits> Inverse() const { + typedef Matrix4x4TypedFlagged<TargetUnits, SourceUnits> InvertedMatrix; + InvertedMatrix clone = InvertedMatrix::FromUnknownMatrix(ToUnknownMatrix()); + if (mType == MatrixType::Identity) { + return clone; + } + DebugOnly<bool> inverted = clone.Invert(); + MOZ_ASSERT(inverted, + "Attempted to get the inverse of a non-invertible matrix"); + + // Inverting a 2D Matrix should result in a 2D matrix, ergo mType doesn't + // change. + return clone; + } + + template <typename NewTargetUnits> + bool operator==( + const Matrix4x4TypedFlagged<TargetUnits, NewTargetUnits>& aMatrix) const { + if (mType == MatrixType::Identity && + aMatrix.mType == MatrixType::Identity) { + return true; + } + // Depending on the usage it may make sense to compare more flags. + return Parent::operator==(aMatrix); + } + + template <typename NewTargetUnits> + bool operator!=( + const Matrix4x4TypedFlagged<TargetUnits, NewTargetUnits>& aMatrix) const { + if (mType == MatrixType::Identity && + aMatrix.mType == MatrixType::Identity) { + return false; + } + // Depending on the usage it may make sense to compare more flags. + return Parent::operator!=(aMatrix); + } + + template <typename NewTargetUnits> + Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> operator*( + const Matrix4x4Typed<TargetUnits, NewTargetUnits>& aMatrix) const { + if (mType == MatrixType::Identity) { + return aMatrix; + } + + if (mType == MatrixType::Simple) { + Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix; + matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21; + matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21; + matrix._31 = aMatrix._31; + matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41; + matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22; + matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22; + matrix._32 = aMatrix._32; + matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42; + matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23; + matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23; + matrix._33 = aMatrix._33; + matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + aMatrix._43; + matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24; + matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24; + matrix._34 = aMatrix._34; + matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + aMatrix._44; + matrix.Analyze(); + return matrix; + } + + return Parent::operator*(aMatrix); + } + + template <typename NewTargetUnits> + Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> operator*( + const Matrix4x4TypedFlagged<TargetUnits, NewTargetUnits>& aMatrix) const { + if (mType == MatrixType::Identity) { + return aMatrix; + } + + if (aMatrix.mType == MatrixType::Identity) { + return Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits>:: + FromUnknownMatrix(this->ToUnknownMatrix()); + } + + if (mType == MatrixType::Simple && aMatrix.mType == MatrixType::Simple) { + Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix; + matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21; + matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21; + matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41; + matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22; + matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22; + matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42; + matrix.mType = MatrixType::Simple; + return matrix; + } else if (mType == MatrixType::Simple) { + Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix; + matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21; + matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21; + matrix._31 = aMatrix._31; + matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41; + matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22; + matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22; + matrix._32 = aMatrix._32; + matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42; + matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23; + matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23; + matrix._33 = aMatrix._33; + matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + aMatrix._43; + matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24; + matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24; + matrix._34 = aMatrix._34; + matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + aMatrix._44; + matrix.mType = MatrixType::Full; + return matrix; + } else if (aMatrix.mType == MatrixType::Simple) { + Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix; + matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21 + _14 * aMatrix._41; + matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21 + _24 * aMatrix._41; + matrix._31 = _31 * aMatrix._11 + _32 * aMatrix._21 + _34 * aMatrix._41; + matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + _44 * aMatrix._41; + matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22 + _14 * aMatrix._42; + matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22 + _24 * aMatrix._42; + matrix._32 = _31 * aMatrix._12 + _32 * aMatrix._22 + _34 * aMatrix._42; + matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + _44 * aMatrix._42; + matrix._13 = _13; + matrix._23 = _23; + matrix._33 = _33; + matrix._43 = _43; + matrix._14 = _14; + matrix._24 = _24; + matrix._34 = _34; + matrix._44 = _44; + matrix.mType = MatrixType::Full; + return matrix; + } + + return Parent::operator*(aMatrix); + } + + bool Is2D() const { return mType != MatrixType::Full; } + + bool CanDraw2D(Matrix* aMatrix = nullptr) const { + if (mType != MatrixType::Full) { + if (aMatrix) { + aMatrix->_11 = _11; + aMatrix->_12 = _12; + aMatrix->_21 = _21; + aMatrix->_22 = _22; + aMatrix->_31 = _41; + aMatrix->_32 = _42; + } + return true; + } + return Parent::CanDraw2D(aMatrix); + } + + bool Is2D(Matrix* aMatrix) const { + if (!Is2D()) { + return false; + } + if (aMatrix) { + aMatrix->_11 = _11; + aMatrix->_12 = _12; + aMatrix->_21 = _21; + aMatrix->_22 = _22; + aMatrix->_31 = _41; + aMatrix->_32 = _42; + } + return true; + } + + template <class F> + RectTyped<TargetUnits, F> ProjectRectBounds( + const RectTyped<SourceUnits, F>& aRect, + const RectTyped<TargetUnits, F>& aClip) const { + return Parent::ProjectRectBounds(aRect, aClip); + } + + const Parent& GetMatrix() const { return *this; } + + private: + enum class MatrixType : uint8_t { + Identity, + Simple, // 2x3 Matrix + Full // 4x4 Matrix + }; + + Matrix4x4TypedFlagged(Float a11, Float a12, Float a13, Float a14, Float a21, + Float a22, Float a23, Float a24, Float a31, Float a32, + Float a33, Float a34, Float a41, Float a42, Float a43, + Float a44, + typename Matrix4x4TypedFlagged::MatrixType aType) + : Parent(a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34, a41, + a42, a43, a44) { + mType = aType; + } + static Matrix4x4TypedFlagged FromUnknownMatrix( + const Matrix4x4Flagged& aUnknown) { + return Matrix4x4TypedFlagged{ + aUnknown._11, aUnknown._12, aUnknown._13, aUnknown._14, aUnknown._21, + aUnknown._22, aUnknown._23, aUnknown._24, aUnknown._31, aUnknown._32, + aUnknown._33, aUnknown._34, aUnknown._41, aUnknown._42, aUnknown._43, + aUnknown._44, aUnknown.mType}; + } + Matrix4x4Flagged ToUnknownMatrix() const { + return Matrix4x4Flagged{_11, _12, _13, _14, _21, _22, _23, _24, _31, + _32, _33, _34, _41, _42, _43, _44, mType}; + } + + template <class F> + PointTyped<TargetUnits, F> TransformPointSimple( + const PointTyped<SourceUnits, F>& aPoint) const { + PointTyped<SourceUnits, F> temp; + temp.x = aPoint.x * _11 + aPoint.y * +_21 + _41; + temp.y = aPoint.x * _12 + aPoint.y * +_22 + _42; + return temp; + } + + void Analyze() { + if (Parent::IsIdentity()) { + mType = MatrixType::Identity; + return; + } + + if (Parent::Is2D()) { + mType = MatrixType::Simple; + return; + } + + mType = MatrixType::Full; + } + + MatrixType mType; +}; + +using Matrix4x4Flagged = Matrix4x4TypedFlagged<UnknownUnits, UnknownUnits>; + +} // namespace gfx +} // namespace mozilla + +#endif /* MOZILLA_GFX_MATRIX_H_ */ |