diff options
Diffstat (limited to 'js/src/jit/mips-shared/Lowering-mips-shared.cpp')
-rw-r--r-- | js/src/jit/mips-shared/Lowering-mips-shared.cpp | 1023 |
1 files changed, 1023 insertions, 0 deletions
diff --git a/js/src/jit/mips-shared/Lowering-mips-shared.cpp b/js/src/jit/mips-shared/Lowering-mips-shared.cpp new file mode 100644 index 0000000000..ea9e0ba3dd --- /dev/null +++ b/js/src/jit/mips-shared/Lowering-mips-shared.cpp @@ -0,0 +1,1023 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/mips-shared/Lowering-mips-shared.h" + +#include "mozilla/MathAlgorithms.h" + +#include "jit/Lowering.h" +#include "jit/MIR.h" + +#include "jit/shared/Lowering-shared-inl.h" + +using namespace js; +using namespace js::jit; + +using mozilla::FloorLog2; + +LAllocation LIRGeneratorMIPSShared::useByteOpRegister(MDefinition* mir) { + return useRegister(mir); +} + +LAllocation LIRGeneratorMIPSShared::useByteOpRegisterAtStart(MDefinition* mir) { + return useRegisterAtStart(mir); +} + +LAllocation LIRGeneratorMIPSShared::useByteOpRegisterOrNonDoubleConstant( + MDefinition* mir) { + return useRegisterOrNonDoubleConstant(mir); +} + +LDefinition LIRGeneratorMIPSShared::tempByteOpRegister() { return temp(); } + +// x = !y +void LIRGeneratorMIPSShared::lowerForALU(LInstructionHelper<1, 1, 0>* ins, + MDefinition* mir, MDefinition* input) { + ins->setOperand(0, useRegister(input)); + define( + ins, mir, + LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); +} + +// z = x+y +void LIRGeneratorMIPSShared::lowerForALU(LInstructionHelper<1, 2, 0>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs) { + ins->setOperand(0, useRegister(lhs)); + ins->setOperand(1, useRegisterOrConstant(rhs)); + define( + ins, mir, + LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); +} + +void LIRGeneratorMIPSShared::lowerForALUInt64( + LInstructionHelper<INT64_PIECES, INT64_PIECES, 0>* ins, MDefinition* mir, + MDefinition* input) { + ins->setInt64Operand(0, useInt64RegisterAtStart(input)); + defineInt64ReuseInput(ins, mir, 0); +} + +void LIRGeneratorMIPSShared::lowerForALUInt64( + LInstructionHelper<INT64_PIECES, 2 * INT64_PIECES, 0>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { + ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); + ins->setInt64Operand(INT64_PIECES, willHaveDifferentLIRNodes(lhs, rhs) + ? useInt64OrConstant(rhs) + : useInt64OrConstantAtStart(rhs)); + defineInt64ReuseInput(ins, mir, 0); +} + +void LIRGeneratorMIPSShared::lowerForMulInt64(LMulI64* ins, MMul* mir, + MDefinition* lhs, + MDefinition* rhs) { + bool needsTemp = false; + bool cannotAliasRhs = false; + bool reuseInput = true; + +#ifdef JS_CODEGEN_MIPS32 + needsTemp = true; + cannotAliasRhs = true; + // See the documentation on willHaveDifferentLIRNodes; that test does not + // allow additional constraints. + MOZ_CRASH( + "cannotAliasRhs cannot be used the way it is used in the guard below"); + if (rhs->isConstant()) { + int64_t constant = rhs->toConstant()->toInt64(); + int32_t shift = mozilla::FloorLog2(constant); + // See special cases in CodeGeneratorMIPSShared::visitMulI64 + if (constant >= -1 && constant <= 2) { + needsTemp = false; + } + if (int64_t(1) << shift == constant) { + needsTemp = false; + } + if (mozilla::IsPowerOfTwo(static_cast<uint32_t>(constant + 1)) || + mozilla::IsPowerOfTwo(static_cast<uint32_t>(constant - 1))) + reuseInput = false; + } +#endif + ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); + ins->setInt64Operand(INT64_PIECES, + (willHaveDifferentLIRNodes(lhs, rhs) || cannotAliasRhs) + ? useInt64OrConstant(rhs) + : useInt64OrConstantAtStart(rhs)); + + if (needsTemp) { + ins->setTemp(0, temp()); + } + if (reuseInput) { + defineInt64ReuseInput(ins, mir, 0); + } else { + defineInt64(ins, mir); + } +} + +template <size_t Temps> +void LIRGeneratorMIPSShared::lowerForShiftInt64( + LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, Temps>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { +#ifdef JS_CODEGEN_MIPS32 + if (mir->isRotate()) { + if (!rhs->isConstant()) { + ins->setTemp(0, temp()); + } + ins->setInt64Operand(0, useInt64Register(lhs)); + } else { + ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); + } +#else + ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); +#endif + + static_assert(LShiftI64::Rhs == INT64_PIECES, + "Assume Rhs is located at INT64_PIECES."); + static_assert(LRotateI64::Count == INT64_PIECES, + "Assume Count is located at INT64_PIECES."); + + ins->setOperand(INT64_PIECES, useRegisterOrConstant(rhs)); + +#ifdef JS_CODEGEN_MIPS32 + if (mir->isRotate()) { + defineInt64(ins, mir); + } else { + defineInt64ReuseInput(ins, mir, 0); + } +#else + defineInt64ReuseInput(ins, mir, 0); +#endif +} + +template void LIRGeneratorMIPSShared::lowerForShiftInt64( + LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 0>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs); +template void LIRGeneratorMIPSShared::lowerForShiftInt64( + LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 1>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs); + +void LIRGeneratorMIPSShared::lowerForCompareI64AndBranch( + MTest* mir, MCompare* comp, JSOp op, MDefinition* left, MDefinition* right, + MBasicBlock* ifTrue, MBasicBlock* ifFalse) { + LCompareI64AndBranch* lir = new (alloc()) + LCompareI64AndBranch(comp, op, useInt64Register(left), + useInt64OrConstant(right), ifTrue, ifFalse); + add(lir, mir); +} + +void LIRGeneratorMIPSShared::lowerForFPU(LInstructionHelper<1, 1, 0>* ins, + MDefinition* mir, MDefinition* input) { + ins->setOperand(0, useRegister(input)); + define( + ins, mir, + LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); +} + +template <size_t Temps> +void LIRGeneratorMIPSShared::lowerForFPU(LInstructionHelper<1, 2, Temps>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs) { + ins->setOperand(0, useRegister(lhs)); + ins->setOperand(1, useRegister(rhs)); + define( + ins, mir, + LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); +} + +template void LIRGeneratorMIPSShared::lowerForFPU( + LInstructionHelper<1, 2, 0>* ins, MDefinition* mir, MDefinition* lhs, + MDefinition* rhs); +template void LIRGeneratorMIPSShared::lowerForFPU( + LInstructionHelper<1, 2, 1>* ins, MDefinition* mir, MDefinition* lhs, + MDefinition* rhs); + +void LIRGeneratorMIPSShared::lowerForBitAndAndBranch(LBitAndAndBranch* baab, + MInstruction* mir, + MDefinition* lhs, + MDefinition* rhs) { + baab->setOperand(0, useRegisterAtStart(lhs)); + baab->setOperand(1, useRegisterOrConstantAtStart(rhs)); + add(baab, mir); +} + +void LIRGeneratorMIPSShared::lowerWasmBuiltinTruncateToInt32( + MWasmBuiltinTruncateToInt32* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32); + + if (opd->type() == MIRType::Double) { + define(new (alloc()) LWasmBuiltinTruncateDToInt32( + useRegister(opd), useFixed(ins->instance(), InstanceReg), + LDefinition::BogusTemp()), + ins); + return; + } + + define(new (alloc()) LWasmBuiltinTruncateFToInt32( + useRegister(opd), useFixed(ins->instance(), InstanceReg), + LDefinition::BogusTemp()), + ins); +} + +void LIRGeneratorMIPSShared::lowerForShift(LInstructionHelper<1, 2, 0>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs) { + ins->setOperand(0, useRegister(lhs)); + ins->setOperand(1, useRegisterOrConstant(rhs)); + define(ins, mir); +} + +void LIRGeneratorMIPSShared::lowerDivI(MDiv* div) { + if (div->isUnsigned()) { + lowerUDiv(div); + return; + } + + // Division instructions are slow. Division by constant denominators can be + // rewritten to use other instructions. + if (div->rhs()->isConstant()) { + int32_t rhs = div->rhs()->toConstant()->toInt32(); + // Check for division by a positive power of two, which is an easy and + // important case to optimize. Note that other optimizations are also + // possible; division by negative powers of two can be optimized in a + // similar manner as positive powers of two, and division by other + // constants can be optimized by a reciprocal multiplication technique. + int32_t shift = FloorLog2(rhs); + if (rhs > 0 && 1 << shift == rhs) { + LDivPowTwoI* lir = + new (alloc()) LDivPowTwoI(useRegister(div->lhs()), shift, temp()); + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + define(lir, div); + return; + } + } + + LDivI* lir = new (alloc()) + LDivI(useRegister(div->lhs()), useRegister(div->rhs()), temp()); + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + define(lir, div); +} + +void LIRGeneratorMIPSShared::lowerNegI(MInstruction* ins, MDefinition* input) { + define(new (alloc()) LNegI(useRegisterAtStart(input)), ins); +} + +void LIRGeneratorMIPSShared::lowerNegI64(MInstruction* ins, + MDefinition* input) { + defineInt64ReuseInput(new (alloc()) LNegI64(useInt64RegisterAtStart(input)), + ins, 0); +} + +void LIRGenerator::visitAbs(MAbs* ins) { + define(allocateAbs(ins, useRegisterAtStart(ins->input())), ins); +} + +void LIRGeneratorMIPSShared::lowerMulI(MMul* mul, MDefinition* lhs, + MDefinition* rhs) { + LMulI* lir = new (alloc()) LMulI; + if (mul->fallible()) { + assignSnapshot(lir, mul->bailoutKind()); + } + + lowerForALU(lir, mul, lhs, rhs); +} + +void LIRGeneratorMIPSShared::lowerModI(MMod* mod) { + if (mod->isUnsigned()) { + lowerUMod(mod); + return; + } + + if (mod->rhs()->isConstant()) { + int32_t rhs = mod->rhs()->toConstant()->toInt32(); + int32_t shift = FloorLog2(rhs); + if (rhs > 0 && 1 << shift == rhs) { + LModPowTwoI* lir = + new (alloc()) LModPowTwoI(useRegister(mod->lhs()), shift); + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + define(lir, mod); + return; + } else if (shift < 31 && (1 << (shift + 1)) - 1 == rhs) { + LModMaskI* lir = new (alloc()) + LModMaskI(useRegister(mod->lhs()), temp(LDefinition::GENERAL), + temp(LDefinition::GENERAL), shift + 1); + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + define(lir, mod); + return; + } + } + LModI* lir = + new (alloc()) LModI(useRegister(mod->lhs()), useRegister(mod->rhs()), + temp(LDefinition::GENERAL)); + + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + define(lir, mod); +} + +void LIRGenerator::visitPowHalf(MPowHalf* ins) { + MDefinition* input = ins->input(); + MOZ_ASSERT(input->type() == MIRType::Double); + LPowHalfD* lir = new (alloc()) LPowHalfD(useRegisterAtStart(input)); + defineReuseInput(lir, ins, 0); +} + +void LIRGeneratorMIPSShared::lowerWasmSelectI(MWasmSelect* select) { + auto* lir = new (alloc()) + LWasmSelect(useRegisterAtStart(select->trueExpr()), + useAny(select->falseExpr()), useRegister(select->condExpr())); + defineReuseInput(lir, select, LWasmSelect::TrueExprIndex); +} + +void LIRGeneratorMIPSShared::lowerWasmSelectI64(MWasmSelect* select) { + auto* lir = new (alloc()) LWasmSelectI64( + useInt64RegisterAtStart(select->trueExpr()), + useInt64(select->falseExpr()), useRegister(select->condExpr())); + defineInt64ReuseInput(lir, select, LWasmSelectI64::TrueExprIndex); +} + +LTableSwitch* LIRGeneratorMIPSShared::newLTableSwitch( + const LAllocation& in, const LDefinition& inputCopy, + MTableSwitch* tableswitch) { + return new (alloc()) LTableSwitch(in, inputCopy, temp(), tableswitch); +} + +LTableSwitchV* LIRGeneratorMIPSShared::newLTableSwitchV( + MTableSwitch* tableswitch) { + return new (alloc()) LTableSwitchV(useBox(tableswitch->getOperand(0)), temp(), + tempDouble(), temp(), tableswitch); +} + +void LIRGeneratorMIPSShared::lowerUrshD(MUrsh* mir) { + MDefinition* lhs = mir->lhs(); + MDefinition* rhs = mir->rhs(); + + MOZ_ASSERT(lhs->type() == MIRType::Int32); + MOZ_ASSERT(rhs->type() == MIRType::Int32); + + LUrshD* lir = new (alloc()) + LUrshD(useRegister(lhs), useRegisterOrConstant(rhs), temp()); + define(lir, mir); +} + +void LIRGeneratorMIPSShared::lowerPowOfTwoI(MPow* mir) { + int32_t base = mir->input()->toConstant()->toInt32(); + MDefinition* power = mir->power(); + + auto* lir = new (alloc()) LPowOfTwoI(useRegister(power), base); + assignSnapshot(lir, mir->bailoutKind()); + define(lir, mir); +} + +void LIRGeneratorMIPSShared::lowerBigIntLsh(MBigIntLsh* ins) { + auto* lir = new (alloc()) LBigIntLsh( + useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGeneratorMIPSShared::lowerBigIntRsh(MBigIntRsh* ins) { + auto* lir = new (alloc()) LBigIntRsh( + useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGenerator::visitWasmNeg(MWasmNeg* ins) { + if (ins->type() == MIRType::Int32) { + define(new (alloc()) LNegI(useRegisterAtStart(ins->input())), ins); + } else if (ins->type() == MIRType::Float32) { + define(new (alloc()) LNegF(useRegisterAtStart(ins->input())), ins); + } else { + MOZ_ASSERT(ins->type() == MIRType::Double); + define(new (alloc()) LNegD(useRegisterAtStart(ins->input())), ins); + } +} + +void LIRGenerator::visitWasmHeapBase(MWasmHeapBase* ins) { + auto* lir = new (alloc()) LWasmHeapBase(LAllocation()); + define(lir, ins); +} + +void LIRGenerator::visitWasmLoad(MWasmLoad* ins) { + MDefinition* base = ins->base(); + // 'base' is a GPR but may be of either type. If it is 32-bit, it is + // sign-extended on mips64 platform and we should explicitly promote it to + // 64-bit when use it as an index register in memory accesses. + MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64); + + LAllocation ptr; +#ifdef JS_CODEGEN_MIPS32 + if (ins->type() == MIRType::Int64) { + ptr = useRegister(base); + } else { + ptr = useRegisterAtStart(base); + } +#else + ptr = useRegisterAtStart(base); +#endif + + if (IsUnaligned(ins->access())) { + if (ins->type() == MIRType::Int64) { + auto* lir = new (alloc()) LWasmUnalignedLoadI64(ptr, temp()); + if (ins->access().offset()) { + lir->setTemp(0, tempCopy(base, 0)); + } + + defineInt64(lir, ins); + return; + } + + auto* lir = new (alloc()) LWasmUnalignedLoad(ptr, temp()); + if (ins->access().offset()) { + lir->setTemp(0, tempCopy(base, 0)); + } + + define(lir, ins); + return; + } + + if (ins->type() == MIRType::Int64) { +#ifdef JS_CODEGEN_MIPS32 + if (ins->access().isAtomic()) { + auto* lir = new (alloc()) LWasmAtomicLoadI64(ptr); + defineInt64(lir, ins); + return; + } +#endif + auto* lir = new (alloc()) LWasmLoadI64(ptr); + if (ins->access().offset()) { + lir->setTemp(0, tempCopy(base, 0)); + } + + defineInt64(lir, ins); + return; + } + + auto* lir = new (alloc()) LWasmLoad(ptr); + if (ins->access().offset()) { + lir->setTemp(0, tempCopy(base, 0)); + } + + define(lir, ins); +} + +void LIRGenerator::visitWasmStore(MWasmStore* ins) { + MDefinition* base = ins->base(); + // See comment in visitWasmLoad re the type of 'base'. + MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64); + + MDefinition* value = ins->value(); + + if (IsUnaligned(ins->access())) { + LAllocation baseAlloc = useRegisterAtStart(base); + if (ins->access().type() == Scalar::Int64) { + LInt64Allocation valueAlloc = useInt64RegisterAtStart(value); + auto* lir = + new (alloc()) LWasmUnalignedStoreI64(baseAlloc, valueAlloc, temp()); + if (ins->access().offset()) { + lir->setTemp(0, tempCopy(base, 0)); + } + + add(lir, ins); + return; + } + + LAllocation valueAlloc = useRegisterAtStart(value); + auto* lir = + new (alloc()) LWasmUnalignedStore(baseAlloc, valueAlloc, temp()); + if (ins->access().offset()) { + lir->setTemp(0, tempCopy(base, 0)); + } + + add(lir, ins); + return; + } + + if (ins->access().type() == Scalar::Int64) { +#ifdef JS_CODEGEN_MIPS32 + if (ins->access().isAtomic()) { + auto* lir = new (alloc()) LWasmAtomicStoreI64( + useRegister(base), useInt64Register(value), temp()); + add(lir, ins); + return; + } +#endif + + LAllocation baseAlloc = useRegisterAtStart(base); + LInt64Allocation valueAlloc = useInt64RegisterAtStart(value); + auto* lir = new (alloc()) LWasmStoreI64(baseAlloc, valueAlloc); + if (ins->access().offset()) { + lir->setTemp(0, tempCopy(base, 0)); + } + + add(lir, ins); + return; + } + + LAllocation baseAlloc = useRegisterAtStart(base); + LAllocation valueAlloc = useRegisterAtStart(value); + auto* lir = new (alloc()) LWasmStore(baseAlloc, valueAlloc); + if (ins->access().offset()) { + lir->setTemp(0, tempCopy(base, 0)); + } + + add(lir, ins); +} + +void LIRGeneratorMIPSShared::lowerUDiv(MDiv* div) { + MDefinition* lhs = div->getOperand(0); + MDefinition* rhs = div->getOperand(1); + + LUDivOrMod* lir = new (alloc()) LUDivOrMod; + lir->setOperand(0, useRegister(lhs)); + lir->setOperand(1, useRegister(rhs)); + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + + define(lir, div); +} + +void LIRGeneratorMIPSShared::lowerUMod(MMod* mod) { + MDefinition* lhs = mod->getOperand(0); + MDefinition* rhs = mod->getOperand(1); + + LUDivOrMod* lir = new (alloc()) LUDivOrMod; + lir->setOperand(0, useRegister(lhs)); + lir->setOperand(1, useRegister(rhs)); + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + + define(lir, mod); +} + +void LIRGenerator::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) { + MOZ_ASSERT(ins->input()->type() == MIRType::Int32); + LWasmUint32ToDouble* lir = + new (alloc()) LWasmUint32ToDouble(useRegisterAtStart(ins->input())); + define(lir, ins); +} + +void LIRGenerator::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) { + MOZ_ASSERT(ins->input()->type() == MIRType::Int32); + LWasmUint32ToFloat32* lir = + new (alloc()) LWasmUint32ToFloat32(useRegisterAtStart(ins->input())); + define(lir, ins); +} + +void LIRGenerator::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins) { + MOZ_ASSERT(ins->access().offset() == 0); + + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + LAllocation baseAlloc; + LAllocation limitAlloc; + // For MIPS it is best to keep the 'base' in a register if a bounds check + // is needed. + if (base->isConstant() && !ins->needsBoundsCheck()) { + // A bounds check is only skipped for a positive index. + MOZ_ASSERT(base->toConstant()->toInt32() >= 0); + baseAlloc = LAllocation(base->toConstant()); + } else { + baseAlloc = useRegisterAtStart(base); + if (ins->needsBoundsCheck()) { + MDefinition* boundsCheckLimit = ins->boundsCheckLimit(); + MOZ_ASSERT(boundsCheckLimit->type() == MIRType::Int32); + limitAlloc = useRegisterAtStart(boundsCheckLimit); + } + } + + define(new (alloc()) LAsmJSLoadHeap(baseAlloc, limitAlloc, LAllocation()), + ins); +} + +void LIRGenerator::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins) { + MOZ_ASSERT(ins->access().offset() == 0); + + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + LAllocation baseAlloc; + LAllocation limitAlloc; + if (base->isConstant() && !ins->needsBoundsCheck()) { + MOZ_ASSERT(base->toConstant()->toInt32() >= 0); + baseAlloc = LAllocation(base->toConstant()); + } else { + baseAlloc = useRegisterAtStart(base); + if (ins->needsBoundsCheck()) { + MDefinition* boundsCheckLimit = ins->boundsCheckLimit(); + MOZ_ASSERT(boundsCheckLimit->type() == MIRType::Int32); + limitAlloc = useRegisterAtStart(boundsCheckLimit); + } + } + + add(new (alloc()) LAsmJSStoreHeap(baseAlloc, useRegisterAtStart(ins->value()), + limitAlloc, LAllocation()), + ins); +} + +void LIRGenerator::visitSubstr(MSubstr* ins) { + LSubstr* lir = new (alloc()) + LSubstr(useRegister(ins->string()), useRegister(ins->begin()), + useRegister(ins->length()), temp(), temp(), tempByteOpRegister()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGenerator::visitCompareExchangeTypedArrayElement( + MCompareExchangeTypedArrayElement* ins) { + MOZ_ASSERT(ins->arrayType() != Scalar::Float32); + MOZ_ASSERT(ins->arrayType() != Scalar::Float64); + + MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); + MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); + + const LUse elements = useRegister(ins->elements()); + const LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->arrayType()); + + const LAllocation newval = useRegister(ins->newval()); + const LAllocation oldval = useRegister(ins->oldval()); + + if (Scalar::isBigIntType(ins->arrayType())) { + LInt64Definition temp1 = tempInt64(); + LInt64Definition temp2 = tempInt64(); + + auto* lir = new (alloc()) LCompareExchangeTypedArrayElement64( + elements, index, oldval, newval, temp1, temp2); + define(lir, ins); + assignSafepoint(lir, ins); + return; + } + + // If the target is a floating register then we need a temp at the + // CodeGenerator level for creating the result. + + LDefinition outTemp = LDefinition::BogusTemp(); + LDefinition valueTemp = LDefinition::BogusTemp(); + LDefinition offsetTemp = LDefinition::BogusTemp(); + LDefinition maskTemp = LDefinition::BogusTemp(); + + if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) { + outTemp = temp(); + } + + if (Scalar::byteSize(ins->arrayType()) < 4) { + valueTemp = temp(); + offsetTemp = temp(); + maskTemp = temp(); + } + + LCompareExchangeTypedArrayElement* lir = new (alloc()) + LCompareExchangeTypedArrayElement(elements, index, oldval, newval, + outTemp, valueTemp, offsetTemp, + maskTemp); + + define(lir, ins); +} + +void LIRGenerator::visitAtomicExchangeTypedArrayElement( + MAtomicExchangeTypedArrayElement* ins) { + MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); + MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); + + const LUse elements = useRegister(ins->elements()); + const LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->arrayType()); + + const LAllocation value = useRegister(ins->value()); + + if (Scalar::isBigIntType(ins->arrayType())) { + LInt64Definition temp1 = tempInt64(); + LDefinition temp2 = temp(); + + auto* lir = new (alloc()) LAtomicExchangeTypedArrayElement64( + elements, index, value, temp1, temp2); + define(lir, ins); + assignSafepoint(lir, ins); + return; + } + + // If the target is a floating register then we need a temp at the + // CodeGenerator level for creating the result. + + MOZ_ASSERT(ins->arrayType() <= Scalar::Uint32); + + LDefinition outTemp = LDefinition::BogusTemp(); + LDefinition valueTemp = LDefinition::BogusTemp(); + LDefinition offsetTemp = LDefinition::BogusTemp(); + LDefinition maskTemp = LDefinition::BogusTemp(); + + if (ins->arrayType() == Scalar::Uint32) { + MOZ_ASSERT(ins->type() == MIRType::Double); + outTemp = temp(); + } + + if (Scalar::byteSize(ins->arrayType()) < 4) { + valueTemp = temp(); + offsetTemp = temp(); + maskTemp = temp(); + } + + LAtomicExchangeTypedArrayElement* lir = + new (alloc()) LAtomicExchangeTypedArrayElement( + elements, index, value, outTemp, valueTemp, offsetTemp, maskTemp); + + define(lir, ins); +} + +void LIRGenerator::visitWasmCompareExchangeHeap(MWasmCompareExchangeHeap* ins) { + MDefinition* base = ins->base(); + // See comment in visitWasmLoad re the type of 'base'. + MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64); + + if (ins->access().type() == Scalar::Int64) { + auto* lir = new (alloc()) LWasmCompareExchangeI64( + useRegister(base), useInt64Register(ins->oldValue()), + useInt64Register(ins->newValue())); + defineInt64(lir, ins); + return; + } + + LDefinition valueTemp = LDefinition::BogusTemp(); + LDefinition offsetTemp = LDefinition::BogusTemp(); + LDefinition maskTemp = LDefinition::BogusTemp(); + + if (ins->access().byteSize() < 4) { + valueTemp = temp(); + offsetTemp = temp(); + maskTemp = temp(); + } + + LWasmCompareExchangeHeap* lir = new (alloc()) LWasmCompareExchangeHeap( + useRegister(base), useRegister(ins->oldValue()), + useRegister(ins->newValue()), valueTemp, offsetTemp, maskTemp); + + define(lir, ins); +} + +void LIRGenerator::visitWasmAtomicExchangeHeap(MWasmAtomicExchangeHeap* ins) { + MDefinition* base = ins->base(); + // See comment in visitWasmLoad re the type of 'base'. + MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64); + + if (ins->access().type() == Scalar::Int64) { + auto* lir = new (alloc()) LWasmAtomicExchangeI64( + useRegister(base), useInt64Register(ins->value())); + defineInt64(lir, ins); + return; + } + + LDefinition valueTemp = LDefinition::BogusTemp(); + LDefinition offsetTemp = LDefinition::BogusTemp(); + LDefinition maskTemp = LDefinition::BogusTemp(); + + if (ins->access().byteSize() < 4) { + valueTemp = temp(); + offsetTemp = temp(); + maskTemp = temp(); + } + + LWasmAtomicExchangeHeap* lir = new (alloc()) + LWasmAtomicExchangeHeap(useRegister(base), useRegister(ins->value()), + valueTemp, offsetTemp, maskTemp); + define(lir, ins); +} + +void LIRGenerator::visitWasmAtomicBinopHeap(MWasmAtomicBinopHeap* ins) { + MDefinition* base = ins->base(); + // See comment in visitWasmLoad re the type of 'base'. + MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64); + + if (ins->access().type() == Scalar::Int64) { + auto* lir = new (alloc()) + LWasmAtomicBinopI64(useRegister(base), useInt64Register(ins->value())); + lir->setTemp(0, temp()); +#ifdef JS_CODEGEN_MIPS32 + lir->setTemp(1, temp()); +#endif + defineInt64(lir, ins); + return; + } + + LDefinition valueTemp = LDefinition::BogusTemp(); + LDefinition offsetTemp = LDefinition::BogusTemp(); + LDefinition maskTemp = LDefinition::BogusTemp(); + + if (ins->access().byteSize() < 4) { + valueTemp = temp(); + offsetTemp = temp(); + maskTemp = temp(); + } + + if (!ins->hasUses()) { + LWasmAtomicBinopHeapForEffect* lir = new (alloc()) + LWasmAtomicBinopHeapForEffect(useRegister(base), + useRegister(ins->value()), valueTemp, + offsetTemp, maskTemp); + add(lir, ins); + return; + } + + LWasmAtomicBinopHeap* lir = new (alloc()) + LWasmAtomicBinopHeap(useRegister(base), useRegister(ins->value()), + valueTemp, offsetTemp, maskTemp); + + define(lir, ins); +} + +void LIRGenerator::visitAtomicTypedArrayElementBinop( + MAtomicTypedArrayElementBinop* ins) { + MOZ_ASSERT(ins->arrayType() != Scalar::Uint8Clamped); + MOZ_ASSERT(ins->arrayType() != Scalar::Float32); + MOZ_ASSERT(ins->arrayType() != Scalar::Float64); + + MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); + MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); + + const LUse elements = useRegister(ins->elements()); + const LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->arrayType()); + const LAllocation value = useRegister(ins->value()); + + if (Scalar::isBigIntType(ins->arrayType())) { + LInt64Definition temp1 = tempInt64(); + LInt64Definition temp2 = tempInt64(); + + // Case 1: the result of the operation is not used. + // + // We can omit allocating the result BigInt. + + if (ins->isForEffect()) { + auto* lir = new (alloc()) LAtomicTypedArrayElementBinopForEffect64( + elements, index, value, temp1, temp2); + add(lir, ins); + return; + } + + // Case 2: the result of the operation is used. + + auto* lir = new (alloc()) + LAtomicTypedArrayElementBinop64(elements, index, value, temp1, temp2); + define(lir, ins); + assignSafepoint(lir, ins); + return; + } + + LDefinition valueTemp = LDefinition::BogusTemp(); + LDefinition offsetTemp = LDefinition::BogusTemp(); + LDefinition maskTemp = LDefinition::BogusTemp(); + + if (Scalar::byteSize(ins->arrayType()) < 4) { + valueTemp = temp(); + offsetTemp = temp(); + maskTemp = temp(); + } + + if (ins->isForEffect()) { + LAtomicTypedArrayElementBinopForEffect* lir = + new (alloc()) LAtomicTypedArrayElementBinopForEffect( + elements, index, value, valueTemp, offsetTemp, maskTemp); + add(lir, ins); + return; + } + + // For a Uint32Array with a known double result we need a temp for + // the intermediate output. + + LDefinition outTemp = LDefinition::BogusTemp(); + + if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) { + outTemp = temp(); + } + + LAtomicTypedArrayElementBinop* lir = + new (alloc()) LAtomicTypedArrayElementBinop( + elements, index, value, outTemp, valueTemp, offsetTemp, maskTemp); + define(lir, ins); +} + +void LIRGenerator::visitCopySign(MCopySign* ins) { + MDefinition* lhs = ins->lhs(); + MDefinition* rhs = ins->rhs(); + + MOZ_ASSERT(IsFloatingPointType(lhs->type())); + MOZ_ASSERT(lhs->type() == rhs->type()); + MOZ_ASSERT(lhs->type() == ins->type()); + + LInstructionHelper<1, 2, 2>* lir; + if (lhs->type() == MIRType::Double) { + lir = new (alloc()) LCopySignD(); + } else { + lir = new (alloc()) LCopySignF(); + } + + lir->setTemp(0, temp()); + lir->setTemp(1, temp()); + + lir->setOperand(0, useRegisterAtStart(lhs)); + lir->setOperand(1, useRegister(rhs)); + defineReuseInput(lir, ins, 0); +} + +void LIRGenerator::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) { + defineInt64( + new (alloc()) LExtendInt32ToInt64(useRegisterAtStart(ins->input())), ins); +} + +void LIRGenerator::visitSignExtendInt64(MSignExtendInt64* ins) { + defineInt64(new (alloc()) + LSignExtendInt64(useInt64RegisterAtStart(ins->input())), + ins); +} + +// On mips we specialize the only cases where compare is {U,}Int32 and select +// is {U,}Int32. +bool LIRGeneratorShared::canSpecializeWasmCompareAndSelect( + MCompare::CompareType compTy, MIRType insTy) { + return insTy == MIRType::Int32 && (compTy == MCompare::Compare_Int32 || + compTy == MCompare::Compare_UInt32); +} + +void LIRGeneratorShared::lowerWasmCompareAndSelect(MWasmSelect* ins, + MDefinition* lhs, + MDefinition* rhs, + MCompare::CompareType compTy, + JSOp jsop) { + MOZ_ASSERT(canSpecializeWasmCompareAndSelect(compTy, ins->type())); + auto* lir = new (alloc()) LWasmCompareAndSelect( + useRegister(lhs), useRegister(rhs), compTy, jsop, + useRegisterAtStart(ins->trueExpr()), useRegister(ins->falseExpr())); + defineReuseInput(lir, ins, LWasmCompareAndSelect::IfTrueExprIndex); +} + +void LIRGenerator::visitWasmTernarySimd128(MWasmTernarySimd128* ins) { + MOZ_CRASH("ternary SIMD NYI"); +} + +void LIRGenerator::visitWasmBinarySimd128(MWasmBinarySimd128* ins) { + MOZ_CRASH("binary SIMD NYI"); +} + +#ifdef ENABLE_WASM_SIMD +bool MWasmTernarySimd128::specializeBitselectConstantMaskAsShuffle( + int8_t shuffle[16]) { + return false; +} +bool MWasmTernarySimd128::canRelaxBitselect() { return false; } + +bool MWasmBinarySimd128::canPmaddubsw() { return false; } +#endif + +bool MWasmBinarySimd128::specializeForConstantRhs() { + // Probably many we want to do here + return false; +} + +void LIRGenerator::visitWasmBinarySimd128WithConstant( + MWasmBinarySimd128WithConstant* ins) { + MOZ_CRASH("binary SIMD with constant NYI"); +} + +void LIRGenerator::visitWasmShiftSimd128(MWasmShiftSimd128* ins) { + MOZ_CRASH("shift SIMD NYI"); +} + +void LIRGenerator::visitWasmShuffleSimd128(MWasmShuffleSimd128* ins) { + MOZ_CRASH("shuffle SIMD NYI"); +} + +void LIRGenerator::visitWasmReplaceLaneSimd128(MWasmReplaceLaneSimd128* ins) { + MOZ_CRASH("replace-lane SIMD NYI"); +} + +void LIRGenerator::visitWasmScalarToSimd128(MWasmScalarToSimd128* ins) { + MOZ_CRASH("scalar-to-SIMD NYI"); +} + +void LIRGenerator::visitWasmUnarySimd128(MWasmUnarySimd128* ins) { + MOZ_CRASH("unary SIMD NYI"); +} + +void LIRGenerator::visitWasmReduceSimd128(MWasmReduceSimd128* ins) { + MOZ_CRASH("reduce-SIMD NYI"); +} + +void LIRGenerator::visitWasmLoadLaneSimd128(MWasmLoadLaneSimd128* ins) { + MOZ_CRASH("load-lane SIMD NYI"); +} + +void LIRGenerator::visitWasmStoreLaneSimd128(MWasmStoreLaneSimd128* ins) { + MOZ_CRASH("store-lane SIMD NYI"); +} |