summaryrefslogtreecommitdiffstats
path: root/media/libjpeg/jidctred.c
diff options
context:
space:
mode:
Diffstat (limited to 'media/libjpeg/jidctred.c')
-rw-r--r--media/libjpeg/jidctred.c409
1 files changed, 409 insertions, 0 deletions
diff --git a/media/libjpeg/jidctred.c b/media/libjpeg/jidctred.c
new file mode 100644
index 0000000000..1dd65a94d9
--- /dev/null
+++ b/media/libjpeg/jidctred.c
@@ -0,0 +1,409 @@
+/*
+ * jidctred.c
+ *
+ * This file was part of the Independent JPEG Group's software:
+ * Copyright (C) 1994-1998, Thomas G. Lane.
+ * libjpeg-turbo Modifications:
+ * Copyright (C) 2015, D. R. Commander.
+ * For conditions of distribution and use, see the accompanying README.ijg
+ * file.
+ *
+ * This file contains inverse-DCT routines that produce reduced-size output:
+ * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
+ *
+ * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
+ * algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step
+ * with an 8-to-4 step that produces the four averages of two adjacent outputs
+ * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
+ * These steps were derived by computing the corresponding values at the end
+ * of the normal LL&M code, then simplifying as much as possible.
+ *
+ * 1x1 is trivial: just take the DC coefficient divided by 8.
+ *
+ * See jidctint.c for additional comments.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+#ifdef IDCT_SCALING_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/* Scaling is the same as in jidctint.c. */
+
+#if BITS_IN_JSAMPLE == 8
+#define CONST_BITS 13
+#define PASS1_BITS 2
+#else
+#define CONST_BITS 13
+#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
+#endif
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 13
+#define FIX_0_211164243 ((JLONG)1730) /* FIX(0.211164243) */
+#define FIX_0_509795579 ((JLONG)4176) /* FIX(0.509795579) */
+#define FIX_0_601344887 ((JLONG)4926) /* FIX(0.601344887) */
+#define FIX_0_720959822 ((JLONG)5906) /* FIX(0.720959822) */
+#define FIX_0_765366865 ((JLONG)6270) /* FIX(0.765366865) */
+#define FIX_0_850430095 ((JLONG)6967) /* FIX(0.850430095) */
+#define FIX_0_899976223 ((JLONG)7373) /* FIX(0.899976223) */
+#define FIX_1_061594337 ((JLONG)8697) /* FIX(1.061594337) */
+#define FIX_1_272758580 ((JLONG)10426) /* FIX(1.272758580) */
+#define FIX_1_451774981 ((JLONG)11893) /* FIX(1.451774981) */
+#define FIX_1_847759065 ((JLONG)15137) /* FIX(1.847759065) */
+#define FIX_2_172734803 ((JLONG)17799) /* FIX(2.172734803) */
+#define FIX_2_562915447 ((JLONG)20995) /* FIX(2.562915447) */
+#define FIX_3_624509785 ((JLONG)29692) /* FIX(3.624509785) */
+#else
+#define FIX_0_211164243 FIX(0.211164243)
+#define FIX_0_509795579 FIX(0.509795579)
+#define FIX_0_601344887 FIX(0.601344887)
+#define FIX_0_720959822 FIX(0.720959822)
+#define FIX_0_765366865 FIX(0.765366865)
+#define FIX_0_850430095 FIX(0.850430095)
+#define FIX_0_899976223 FIX(0.899976223)
+#define FIX_1_061594337 FIX(1.061594337)
+#define FIX_1_272758580 FIX(1.272758580)
+#define FIX_1_451774981 FIX(1.451774981)
+#define FIX_1_847759065 FIX(1.847759065)
+#define FIX_2_172734803 FIX(2.172734803)
+#define FIX_2_562915447 FIX(2.562915447)
+#define FIX_3_624509785 FIX(3.624509785)
+#endif
+
+
+/* Multiply a JLONG variable by a JLONG constant to yield a JLONG result.
+ * For 8-bit samples with the recommended scaling, all the variable
+ * and constant values involved are no more than 16 bits wide, so a
+ * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
+ * For 12-bit samples, a full 32-bit multiplication will be needed.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define MULTIPLY(var, const) MULTIPLY16C16(var, const)
+#else
+#define MULTIPLY(var, const) ((var) * (const))
+#endif
+
+
+/* Dequantize a coefficient by multiplying it by the multiplier-table
+ * entry; produce an int result. In this module, both inputs and result
+ * are 16 bits or less, so either int or short multiply will work.
+ */
+
+#define DEQUANTIZE(coef, quantval) (((ISLOW_MULT_TYPE)(coef)) * (quantval))
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 4x4 output block.
+ */
+
+GLOBAL(void)
+jpeg_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf,
+ JDIMENSION output_col)
+{
+ JLONG tmp0, tmp2, tmp10, tmp12;
+ JLONG z1, z2, z3, z4;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE *quantptr;
+ int *wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[DCTSIZE * 4]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
+ /* Don't bother to process column 4, because second pass won't use it */
+ if (ctr == DCTSIZE - 4)
+ continue;
+ if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 &&
+ inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 5] == 0 &&
+ inptr[DCTSIZE * 6] == 0 && inptr[DCTSIZE * 7] == 0) {
+ /* AC terms all zero; we need not examine term 4 for 4x4 output */
+ int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0],
+ quantptr[DCTSIZE * 0]), PASS1_BITS);
+
+ wsptr[DCTSIZE * 0] = dcval;
+ wsptr[DCTSIZE * 1] = dcval;
+ wsptr[DCTSIZE * 2] = dcval;
+ wsptr[DCTSIZE * 3] = dcval;
+
+ continue;
+ }
+
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
+ tmp0 = LEFT_SHIFT(tmp0, CONST_BITS + 1);
+
+ z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
+
+ tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, -FIX_0_765366865);
+
+ tmp10 = tmp0 + tmp2;
+ tmp12 = tmp0 - tmp2;
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
+ z2 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
+ z3 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
+ z4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
+
+ tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */
+ MULTIPLY(z2, FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */
+ MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */
+ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * ( c5+c7) */
+
+ tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */
+ MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */
+ MULTIPLY(z3, FIX_0_899976223) + /* sqrt(2) * (c3-c7) */
+ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
+
+ /* Final output stage */
+
+ wsptr[DCTSIZE * 0] =
+ (int)DESCALE(tmp10 + tmp2, CONST_BITS - PASS1_BITS + 1);
+ wsptr[DCTSIZE * 3] =
+ (int)DESCALE(tmp10 - tmp2, CONST_BITS - PASS1_BITS + 1);
+ wsptr[DCTSIZE * 1] =
+ (int)DESCALE(tmp12 + tmp0, CONST_BITS - PASS1_BITS + 1);
+ wsptr[DCTSIZE * 2] =
+ (int)DESCALE(tmp12 - tmp0, CONST_BITS - PASS1_BITS + 1);
+ }
+
+ /* Pass 2: process 4 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 4; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+ /* It's not clear whether a zero row test is worthwhile here ... */
+
+#ifndef NO_ZERO_ROW_TEST
+ if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
+ wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
+ /* AC terms all zero */
+ JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0],
+ PASS1_BITS + 3) & RANGE_MASK];
+
+ outptr[0] = dcval;
+ outptr[1] = dcval;
+ outptr[2] = dcval;
+ outptr[3] = dcval;
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ continue;
+ }
+#endif
+
+ /* Even part */
+
+ tmp0 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 1);
+
+ tmp2 = MULTIPLY((JLONG)wsptr[2], FIX_1_847759065) +
+ MULTIPLY((JLONG)wsptr[6], -FIX_0_765366865);
+
+ tmp10 = tmp0 + tmp2;
+ tmp12 = tmp0 - tmp2;
+
+ /* Odd part */
+
+ z1 = (JLONG)wsptr[7];
+ z2 = (JLONG)wsptr[5];
+ z3 = (JLONG)wsptr[3];
+ z4 = (JLONG)wsptr[1];
+
+ tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */
+ MULTIPLY(z2, FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */
+ MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */
+ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * ( c5+c7) */
+
+ tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */
+ MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */
+ MULTIPLY(z3, FIX_0_899976223) + /* sqrt(2) * (c3-c7) */
+ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp2,
+ CONST_BITS + PASS1_BITS + 3 + 1) &
+ RANGE_MASK];
+ outptr[3] = range_limit[(int)DESCALE(tmp10 - tmp2,
+ CONST_BITS + PASS1_BITS + 3 + 1) &
+ RANGE_MASK];
+ outptr[1] = range_limit[(int)DESCALE(tmp12 + tmp0,
+ CONST_BITS + PASS1_BITS + 3 + 1) &
+ RANGE_MASK];
+ outptr[2] = range_limit[(int)DESCALE(tmp12 - tmp0,
+ CONST_BITS + PASS1_BITS + 3 + 1) &
+ RANGE_MASK];
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 2x2 output block.
+ */
+
+GLOBAL(void)
+jpeg_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf,
+ JDIMENSION output_col)
+{
+ JLONG tmp0, tmp10, z1;
+ JCOEFPTR inptr;
+ ISLOW_MULT_TYPE *quantptr;
+ int *wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ int workspace[DCTSIZE * 2]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
+ /* Don't bother to process columns 2,4,6 */
+ if (ctr == DCTSIZE - 2 || ctr == DCTSIZE - 4 || ctr == DCTSIZE - 6)
+ continue;
+ if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 3] == 0 &&
+ inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 7] == 0) {
+ /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
+ int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0],
+ quantptr[DCTSIZE * 0]), PASS1_BITS);
+
+ wsptr[DCTSIZE * 0] = dcval;
+ wsptr[DCTSIZE * 1] = dcval;
+
+ continue;
+ }
+
+ /* Even part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
+ tmp10 = LEFT_SHIFT(z1, CONST_BITS + 2);
+
+ /* Odd part */
+
+ z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
+ tmp0 = MULTIPLY(z1, -FIX_0_720959822); /* sqrt(2) * ( c7-c5+c3-c1) */
+ z1 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
+ tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
+ z1 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
+ tmp0 += MULTIPLY(z1, -FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
+ z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
+ tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * ( c1+c3+c5+c7) */
+
+ /* Final output stage */
+
+ wsptr[DCTSIZE * 0] =
+ (int)DESCALE(tmp10 + tmp0, CONST_BITS - PASS1_BITS + 2);
+ wsptr[DCTSIZE * 1] =
+ (int)DESCALE(tmp10 - tmp0, CONST_BITS - PASS1_BITS + 2);
+ }
+
+ /* Pass 2: process 2 rows from work array, store into output array. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < 2; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+ /* It's not clear whether a zero row test is worthwhile here ... */
+
+#ifndef NO_ZERO_ROW_TEST
+ if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
+ /* AC terms all zero */
+ JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0],
+ PASS1_BITS + 3) & RANGE_MASK];
+
+ outptr[0] = dcval;
+ outptr[1] = dcval;
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ continue;
+ }
+#endif
+
+ /* Even part */
+
+ tmp10 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 2);
+
+ /* Odd part */
+
+ tmp0 = MULTIPLY((JLONG)wsptr[7], -FIX_0_720959822) + /* sqrt(2) * ( c7-c5+c3-c1) */
+ MULTIPLY((JLONG)wsptr[5], FIX_0_850430095) + /* sqrt(2) * (-c1+c3+c5+c7) */
+ MULTIPLY((JLONG)wsptr[3], -FIX_1_272758580) + /* sqrt(2) * (-c1+c3-c5-c7) */
+ MULTIPLY((JLONG)wsptr[1], FIX_3_624509785); /* sqrt(2) * ( c1+c3+c5+c7) */
+
+ /* Final output stage */
+
+ outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp0,
+ CONST_BITS + PASS1_BITS + 3 + 2) &
+ RANGE_MASK];
+ outptr[1] = range_limit[(int)DESCALE(tmp10 - tmp0,
+ CONST_BITS + PASS1_BITS + 3 + 2) &
+ RANGE_MASK];
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 1x1 output block.
+ */
+
+GLOBAL(void)
+jpeg_idct_1x1(j_decompress_ptr cinfo, jpeg_component_info *compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf,
+ JDIMENSION output_col)
+{
+ int dcval;
+ ISLOW_MULT_TYPE *quantptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ SHIFT_TEMPS
+
+ /* We hardly need an inverse DCT routine for this: just take the
+ * average pixel value, which is one-eighth of the DC coefficient.
+ */
+ quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
+ dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
+ dcval = (int)DESCALE((JLONG)dcval, 3);
+
+ output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
+}
+
+#endif /* IDCT_SCALING_SUPPORTED */