summaryrefslogtreecommitdiffstats
path: root/media/libopus/src/mlp.c
diff options
context:
space:
mode:
Diffstat (limited to 'media/libopus/src/mlp.c')
-rw-r--r--media/libopus/src/mlp.c144
1 files changed, 144 insertions, 0 deletions
diff --git a/media/libopus/src/mlp.c b/media/libopus/src/mlp.c
new file mode 100644
index 0000000000..964c6a98f6
--- /dev/null
+++ b/media/libopus/src/mlp.c
@@ -0,0 +1,144 @@
+/* Copyright (c) 2008-2011 Octasic Inc.
+ 2012-2017 Jean-Marc Valin */
+/*
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include <math.h>
+#include "opus_types.h"
+#include "opus_defines.h"
+#include "arch.h"
+#include "tansig_table.h"
+#include "mlp.h"
+
+static OPUS_INLINE float tansig_approx(float x)
+{
+ int i;
+ float y, dy;
+ float sign=1;
+ /* Tests are reversed to catch NaNs */
+ if (!(x<8))
+ return 1;
+ if (!(x>-8))
+ return -1;
+#ifndef FIXED_POINT
+ /* Another check in case of -ffast-math */
+ if (celt_isnan(x))
+ return 0;
+#endif
+ if (x<0)
+ {
+ x=-x;
+ sign=-1;
+ }
+ i = (int)floor(.5f+25*x);
+ x -= .04f*i;
+ y = tansig_table[i];
+ dy = 1-y*y;
+ y = y + x*dy*(1 - y*x);
+ return sign*y;
+}
+
+static OPUS_INLINE float sigmoid_approx(float x)
+{
+ return .5f + .5f*tansig_approx(.5f*x);
+}
+
+static void gemm_accum(float *out, const opus_int8 *weights, int rows, int cols, int col_stride, const float *x)
+{
+ int i, j;
+ for (i=0;i<rows;i++)
+ {
+ for (j=0;j<cols;j++)
+ out[i] += weights[j*col_stride + i]*x[j];
+ }
+}
+
+void compute_dense(const DenseLayer *layer, float *output, const float *input)
+{
+ int i;
+ int N, M;
+ int stride;
+ M = layer->nb_inputs;
+ N = layer->nb_neurons;
+ stride = N;
+ for (i=0;i<N;i++)
+ output[i] = layer->bias[i];
+ gemm_accum(output, layer->input_weights, N, M, stride, input);
+ for (i=0;i<N;i++)
+ output[i] *= WEIGHTS_SCALE;
+ if (layer->sigmoid) {
+ for (i=0;i<N;i++)
+ output[i] = sigmoid_approx(output[i]);
+ } else {
+ for (i=0;i<N;i++)
+ output[i] = tansig_approx(output[i]);
+ }
+}
+
+void compute_gru(const GRULayer *gru, float *state, const float *input)
+{
+ int i;
+ int N, M;
+ int stride;
+ float tmp[MAX_NEURONS];
+ float z[MAX_NEURONS];
+ float r[MAX_NEURONS];
+ float h[MAX_NEURONS];
+ M = gru->nb_inputs;
+ N = gru->nb_neurons;
+ stride = 3*N;
+ /* Compute update gate. */
+ for (i=0;i<N;i++)
+ z[i] = gru->bias[i];
+ gemm_accum(z, gru->input_weights, N, M, stride, input);
+ gemm_accum(z, gru->recurrent_weights, N, N, stride, state);
+ for (i=0;i<N;i++)
+ z[i] = sigmoid_approx(WEIGHTS_SCALE*z[i]);
+
+ /* Compute reset gate. */
+ for (i=0;i<N;i++)
+ r[i] = gru->bias[N + i];
+ gemm_accum(r, &gru->input_weights[N], N, M, stride, input);
+ gemm_accum(r, &gru->recurrent_weights[N], N, N, stride, state);
+ for (i=0;i<N;i++)
+ r[i] = sigmoid_approx(WEIGHTS_SCALE*r[i]);
+
+ /* Compute output. */
+ for (i=0;i<N;i++)
+ h[i] = gru->bias[2*N + i];
+ for (i=0;i<N;i++)
+ tmp[i] = state[i] * r[i];
+ gemm_accum(h, &gru->input_weights[2*N], N, M, stride, input);
+ gemm_accum(h, &gru->recurrent_weights[2*N], N, N, stride, tmp);
+ for (i=0;i<N;i++)
+ h[i] = z[i]*state[i] + (1-z[i])*tansig_approx(WEIGHTS_SCALE*h[i]);
+ for (i=0;i<N;i++)
+ state[i] = h[i];
+}
+