summaryrefslogtreecommitdiffstats
path: root/security/sandbox/chromium/base/numerics/clamped_math_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'security/sandbox/chromium/base/numerics/clamped_math_impl.h')
-rw-r--r--security/sandbox/chromium/base/numerics/clamped_math_impl.h341
1 files changed, 341 insertions, 0 deletions
diff --git a/security/sandbox/chromium/base/numerics/clamped_math_impl.h b/security/sandbox/chromium/base/numerics/clamped_math_impl.h
new file mode 100644
index 0000000000..303a7e945a
--- /dev/null
+++ b/security/sandbox/chromium/base/numerics/clamped_math_impl.h
@@ -0,0 +1,341 @@
+// Copyright 2017 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_NUMERICS_CLAMPED_MATH_IMPL_H_
+#define BASE_NUMERICS_CLAMPED_MATH_IMPL_H_
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include <climits>
+#include <cmath>
+#include <cstdlib>
+#include <limits>
+#include <type_traits>
+
+#include "base/numerics/checked_math.h"
+#include "base/numerics/safe_conversions.h"
+#include "base/numerics/safe_math_shared_impl.h"
+
+namespace base {
+namespace internal {
+
+template <typename T,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_signed<T>::value>::type* = nullptr>
+constexpr T SaturatedNegWrapper(T value) {
+ return MustTreatAsConstexpr(value) || !ClampedNegFastOp<T>::is_supported
+ ? (NegateWrapper(value) != std::numeric_limits<T>::lowest()
+ ? NegateWrapper(value)
+ : std::numeric_limits<T>::max())
+ : ClampedNegFastOp<T>::Do(value);
+}
+
+template <typename T,
+ typename std::enable_if<std::is_integral<T>::value &&
+ !std::is_signed<T>::value>::type* = nullptr>
+constexpr T SaturatedNegWrapper(T value) {
+ return T(0);
+}
+
+template <
+ typename T,
+ typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
+constexpr T SaturatedNegWrapper(T value) {
+ return -value;
+}
+
+template <typename T,
+ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+constexpr T SaturatedAbsWrapper(T value) {
+ // The calculation below is a static identity for unsigned types, but for
+ // signed integer types it provides a non-branching, saturated absolute value.
+ // This works because SafeUnsignedAbs() returns an unsigned type, which can
+ // represent the absolute value of all negative numbers of an equal-width
+ // integer type. The call to IsValueNegative() then detects overflow in the
+ // special case of numeric_limits<T>::min(), by evaluating the bit pattern as
+ // a signed integer value. If it is the overflow case, we end up subtracting
+ // one from the unsigned result, thus saturating to numeric_limits<T>::max().
+ return static_cast<T>(SafeUnsignedAbs(value) -
+ IsValueNegative<T>(SafeUnsignedAbs(value)));
+}
+
+template <
+ typename T,
+ typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
+constexpr T SaturatedAbsWrapper(T value) {
+ return value < 0 ? -value : value;
+}
+
+template <typename T, typename U, class Enable = void>
+struct ClampedAddOp {};
+
+template <typename T, typename U>
+struct ClampedAddOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U y) {
+ if (ClampedAddFastOp<T, U>::is_supported)
+ return ClampedAddFastOp<T, U>::template Do<V>(x, y);
+
+ static_assert(std::is_same<V, result_type>::value ||
+ IsTypeInRangeForNumericType<U, V>::value,
+ "The saturation result cannot be determined from the "
+ "provided types.");
+ const V saturated = CommonMaxOrMin<V>(IsValueNegative(y));
+ V result = {};
+ return BASE_NUMERICS_LIKELY((CheckedAddOp<T, U>::Do(x, y, &result)))
+ ? result
+ : saturated;
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedSubOp {};
+
+template <typename T, typename U>
+struct ClampedSubOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U y) {
+ // TODO(jschuh) Make this "constexpr if" once we're C++17.
+ if (ClampedSubFastOp<T, U>::is_supported)
+ return ClampedSubFastOp<T, U>::template Do<V>(x, y);
+
+ static_assert(std::is_same<V, result_type>::value ||
+ IsTypeInRangeForNumericType<U, V>::value,
+ "The saturation result cannot be determined from the "
+ "provided types.");
+ const V saturated = CommonMaxOrMin<V>(!IsValueNegative(y));
+ V result = {};
+ return BASE_NUMERICS_LIKELY((CheckedSubOp<T, U>::Do(x, y, &result)))
+ ? result
+ : saturated;
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedMulOp {};
+
+template <typename T, typename U>
+struct ClampedMulOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U y) {
+ // TODO(jschuh) Make this "constexpr if" once we're C++17.
+ if (ClampedMulFastOp<T, U>::is_supported)
+ return ClampedMulFastOp<T, U>::template Do<V>(x, y);
+
+ V result = {};
+ const V saturated =
+ CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y));
+ return BASE_NUMERICS_LIKELY((CheckedMulOp<T, U>::Do(x, y, &result)))
+ ? result
+ : saturated;
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedDivOp {};
+
+template <typename T, typename U>
+struct ClampedDivOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U y) {
+ V result = {};
+ if (BASE_NUMERICS_LIKELY((CheckedDivOp<T, U>::Do(x, y, &result))))
+ return result;
+ // Saturation goes to max, min, or NaN (if x is zero).
+ return x ? CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y))
+ : SaturationDefaultLimits<V>::NaN();
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedModOp {};
+
+template <typename T, typename U>
+struct ClampedModOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U y) {
+ V result = {};
+ return BASE_NUMERICS_LIKELY((CheckedModOp<T, U>::Do(x, y, &result)))
+ ? result
+ : x;
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedLshOp {};
+
+// Left shift. Non-zero values saturate in the direction of the sign. A zero
+// shifted by any value always results in zero.
+template <typename T, typename U>
+struct ClampedLshOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = T;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U shift) {
+ static_assert(!std::is_signed<U>::value, "Shift value must be unsigned.");
+ if (BASE_NUMERICS_LIKELY(shift < std::numeric_limits<T>::digits)) {
+ // Shift as unsigned to avoid undefined behavior.
+ V result = static_cast<V>(as_unsigned(x) << shift);
+ // If the shift can be reversed, we know it was valid.
+ if (BASE_NUMERICS_LIKELY(result >> shift == x))
+ return result;
+ }
+ return x ? CommonMaxOrMin<V>(IsValueNegative(x)) : 0;
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedRshOp {};
+
+// Right shift. Negative values saturate to -1. Positive or 0 saturates to 0.
+template <typename T, typename U>
+struct ClampedRshOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = T;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U shift) {
+ static_assert(!std::is_signed<U>::value, "Shift value must be unsigned.");
+ // Signed right shift is odd, because it saturates to -1 or 0.
+ const V saturated = as_unsigned(V(0)) - IsValueNegative(x);
+ return BASE_NUMERICS_LIKELY(shift < IntegerBitsPlusSign<T>::value)
+ ? saturated_cast<V>(x >> shift)
+ : saturated;
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedAndOp {};
+
+template <typename T, typename U>
+struct ClampedAndOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename std::make_unsigned<
+ typename MaxExponentPromotion<T, U>::type>::type;
+ template <typename V>
+ static constexpr V Do(T x, U y) {
+ return static_cast<result_type>(x) & static_cast<result_type>(y);
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedOrOp {};
+
+// For simplicity we promote to unsigned integers.
+template <typename T, typename U>
+struct ClampedOrOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename std::make_unsigned<
+ typename MaxExponentPromotion<T, U>::type>::type;
+ template <typename V>
+ static constexpr V Do(T x, U y) {
+ return static_cast<result_type>(x) | static_cast<result_type>(y);
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedXorOp {};
+
+// For simplicity we support only unsigned integers.
+template <typename T, typename U>
+struct ClampedXorOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename std::make_unsigned<
+ typename MaxExponentPromotion<T, U>::type>::type;
+ template <typename V>
+ static constexpr V Do(T x, U y) {
+ return static_cast<result_type>(x) ^ static_cast<result_type>(y);
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedMaxOp {};
+
+template <typename T, typename U>
+struct ClampedMaxOp<
+ T,
+ U,
+ typename std::enable_if<std::is_arithmetic<T>::value &&
+ std::is_arithmetic<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U y) {
+ return IsGreater<T, U>::Test(x, y) ? saturated_cast<V>(x)
+ : saturated_cast<V>(y);
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedMinOp {};
+
+template <typename T, typename U>
+struct ClampedMinOp<
+ T,
+ U,
+ typename std::enable_if<std::is_arithmetic<T>::value &&
+ std::is_arithmetic<U>::value>::type> {
+ using result_type = typename LowestValuePromotion<T, U>::type;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U y) {
+ return IsLess<T, U>::Test(x, y) ? saturated_cast<V>(x)
+ : saturated_cast<V>(y);
+ }
+};
+
+// This is just boilerplate that wraps the standard floating point arithmetic.
+// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
+#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
+ template <typename T, typename U> \
+ struct Clamped##NAME##Op< \
+ T, U, \
+ typename std::enable_if<std::is_floating_point<T>::value || \
+ std::is_floating_point<U>::value>::type> { \
+ using result_type = typename MaxExponentPromotion<T, U>::type; \
+ template <typename V = result_type> \
+ static constexpr V Do(T x, U y) { \
+ return saturated_cast<V>(x OP y); \
+ } \
+ };
+
+BASE_FLOAT_ARITHMETIC_OPS(Add, +)
+BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
+BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
+BASE_FLOAT_ARITHMETIC_OPS(Div, /)
+
+#undef BASE_FLOAT_ARITHMETIC_OPS
+
+} // namespace internal
+} // namespace base
+
+#endif // BASE_NUMERICS_CLAMPED_MATH_IMPL_H_