summaryrefslogtreecommitdiffstats
path: root/security/sandbox/chromium/base/synchronization/waitable_event_posix.cc
diff options
context:
space:
mode:
Diffstat (limited to 'security/sandbox/chromium/base/synchronization/waitable_event_posix.cc')
-rw-r--r--security/sandbox/chromium/base/synchronization/waitable_event_posix.cc445
1 files changed, 445 insertions, 0 deletions
diff --git a/security/sandbox/chromium/base/synchronization/waitable_event_posix.cc b/security/sandbox/chromium/base/synchronization/waitable_event_posix.cc
new file mode 100644
index 0000000000..effa899191
--- /dev/null
+++ b/security/sandbox/chromium/base/synchronization/waitable_event_posix.cc
@@ -0,0 +1,445 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <stddef.h>
+
+#include <algorithm>
+#include <limits>
+#include <vector>
+
+#include "base/debug/activity_tracker.h"
+#include "base/logging.h"
+#include "base/optional.h"
+#include "base/synchronization/condition_variable.h"
+#include "base/synchronization/lock.h"
+#include "base/synchronization/waitable_event.h"
+#include "base/threading/scoped_blocking_call.h"
+#include "base/threading/thread_restrictions.h"
+#include "base/time/time.h"
+#include "base/time/time_override.h"
+
+// -----------------------------------------------------------------------------
+// A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
+// support cross-process events (where one process can signal an event which
+// others are waiting on). Because of this, we can avoid having one thread per
+// listener in several cases.
+//
+// The WaitableEvent maintains a list of waiters, protected by a lock. Each
+// waiter is either an async wait, in which case we have a Task and the
+// MessageLoop to run it on, or a blocking wait, in which case we have the
+// condition variable to signal.
+//
+// Waiting involves grabbing the lock and adding oneself to the wait list. Async
+// waits can be canceled, which means grabbing the lock and removing oneself
+// from the list.
+//
+// Waiting on multiple events is handled by adding a single, synchronous wait to
+// the wait-list of many events. An event passes a pointer to itself when
+// firing a waiter and so we can store that pointer to find out which event
+// triggered.
+// -----------------------------------------------------------------------------
+
+namespace base {
+
+// -----------------------------------------------------------------------------
+// This is just an abstract base class for waking the two types of waiters
+// -----------------------------------------------------------------------------
+WaitableEvent::WaitableEvent(ResetPolicy reset_policy,
+ InitialState initial_state)
+ : kernel_(new WaitableEventKernel(reset_policy, initial_state)) {}
+
+WaitableEvent::~WaitableEvent() = default;
+
+void WaitableEvent::Reset() {
+ base::AutoLock locked(kernel_->lock_);
+ kernel_->signaled_ = false;
+}
+
+void WaitableEvent::Signal() {
+ base::AutoLock locked(kernel_->lock_);
+
+ if (kernel_->signaled_)
+ return;
+
+ if (kernel_->manual_reset_) {
+ SignalAll();
+ kernel_->signaled_ = true;
+ } else {
+ // In the case of auto reset, if no waiters were woken, we remain
+ // signaled.
+ if (!SignalOne())
+ kernel_->signaled_ = true;
+ }
+}
+
+bool WaitableEvent::IsSignaled() {
+ base::AutoLock locked(kernel_->lock_);
+
+ const bool result = kernel_->signaled_;
+ if (result && !kernel_->manual_reset_)
+ kernel_->signaled_ = false;
+ return result;
+}
+
+// -----------------------------------------------------------------------------
+// Synchronous waits
+
+// -----------------------------------------------------------------------------
+// This is a synchronous waiter. The thread is waiting on the given condition
+// variable and the fired flag in this object.
+// -----------------------------------------------------------------------------
+class SyncWaiter : public WaitableEvent::Waiter {
+ public:
+ SyncWaiter()
+ : fired_(false), signaling_event_(nullptr), lock_(), cv_(&lock_) {}
+
+ bool Fire(WaitableEvent* signaling_event) override {
+ base::AutoLock locked(lock_);
+
+ if (fired_)
+ return false;
+
+ fired_ = true;
+ signaling_event_ = signaling_event;
+
+ cv_.Broadcast();
+
+ // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
+ // the blocking thread's stack. There is no |delete this;| in Fire. The
+ // SyncWaiter object is destroyed when it goes out of scope.
+
+ return true;
+ }
+
+ WaitableEvent* signaling_event() const {
+ return signaling_event_;
+ }
+
+ // ---------------------------------------------------------------------------
+ // These waiters are always stack allocated and don't delete themselves. Thus
+ // there's no problem and the ABA tag is the same as the object pointer.
+ // ---------------------------------------------------------------------------
+ bool Compare(void* tag) override { return this == tag; }
+
+ // ---------------------------------------------------------------------------
+ // Called with lock held.
+ // ---------------------------------------------------------------------------
+ bool fired() const {
+ return fired_;
+ }
+
+ // ---------------------------------------------------------------------------
+ // During a TimedWait, we need a way to make sure that an auto-reset
+ // WaitableEvent doesn't think that this event has been signaled between
+ // unlocking it and removing it from the wait-list. Called with lock held.
+ // ---------------------------------------------------------------------------
+ void Disable() {
+ fired_ = true;
+ }
+
+ base::Lock* lock() {
+ return &lock_;
+ }
+
+ base::ConditionVariable* cv() {
+ return &cv_;
+ }
+
+ private:
+ bool fired_;
+ WaitableEvent* signaling_event_; // The WaitableEvent which woke us
+ base::Lock lock_;
+ base::ConditionVariable cv_;
+};
+
+void WaitableEvent::Wait() {
+ bool result = TimedWait(TimeDelta::Max());
+ DCHECK(result) << "TimedWait() should never fail with infinite timeout";
+}
+
+bool WaitableEvent::TimedWait(const TimeDelta& wait_delta) {
+ if (wait_delta <= TimeDelta())
+ return IsSignaled();
+
+ // Record the event that this thread is blocking upon (for hang diagnosis) and
+ // consider it blocked for scheduling purposes. Ignore this for non-blocking
+ // WaitableEvents.
+ Optional<debug::ScopedEventWaitActivity> event_activity;
+ Optional<internal::ScopedBlockingCallWithBaseSyncPrimitives>
+ scoped_blocking_call;
+ if (waiting_is_blocking_) {
+ event_activity.emplace(this);
+ scoped_blocking_call.emplace(FROM_HERE, BlockingType::MAY_BLOCK);
+ }
+
+ kernel_->lock_.Acquire();
+ if (kernel_->signaled_) {
+ if (!kernel_->manual_reset_) {
+ // In this case we were signaled when we had no waiters. Now that
+ // someone has waited upon us, we can automatically reset.
+ kernel_->signaled_ = false;
+ }
+
+ kernel_->lock_.Release();
+ return true;
+ }
+
+ SyncWaiter sw;
+ if (!waiting_is_blocking_)
+ sw.cv()->declare_only_used_while_idle();
+ sw.lock()->Acquire();
+
+ Enqueue(&sw);
+ kernel_->lock_.Release();
+ // We are violating locking order here by holding the SyncWaiter lock but not
+ // the WaitableEvent lock. However, this is safe because we don't lock |lock_|
+ // again before unlocking it.
+
+ // TimeTicks takes care of overflow but we special case is_max() nonetheless
+ // to avoid invoking TimeTicksNowIgnoringOverride() unnecessarily (same for
+ // the increment step of the for loop if the condition variable returns
+ // early). Ref: https://crbug.com/910524#c7
+ const TimeTicks end_time =
+ wait_delta.is_max() ? TimeTicks::Max()
+ : subtle::TimeTicksNowIgnoringOverride() + wait_delta;
+ for (TimeDelta remaining = wait_delta; remaining > TimeDelta() && !sw.fired();
+ remaining = end_time.is_max()
+ ? TimeDelta::Max()
+ : end_time - subtle::TimeTicksNowIgnoringOverride()) {
+ if (end_time.is_max())
+ sw.cv()->Wait();
+ else
+ sw.cv()->TimedWait(remaining);
+ }
+
+ // Get the SyncWaiter signaled state before releasing the lock.
+ const bool return_value = sw.fired();
+
+ // We can't acquire |lock_| before releasing the SyncWaiter lock (because of
+ // locking order), however, in between the two a signal could be fired and
+ // |sw| would accept it, however we will still return false, so the signal
+ // would be lost on an auto-reset WaitableEvent. Thus we call Disable which
+ // makes sw::Fire return false.
+ sw.Disable();
+ sw.lock()->Release();
+
+ // This is a bug that has been enshrined in the interface of WaitableEvent
+ // now: |Dequeue| is called even when |sw.fired()| is true, even though it'll
+ // always return false in that case. However, taking the lock ensures that
+ // |Signal| has completed before we return and means that a WaitableEvent can
+ // synchronise its own destruction.
+ kernel_->lock_.Acquire();
+ kernel_->Dequeue(&sw, &sw);
+ kernel_->lock_.Release();
+
+ return return_value;
+}
+
+// -----------------------------------------------------------------------------
+// Synchronous waiting on multiple objects.
+
+static bool // StrictWeakOrdering
+cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
+ const std::pair<WaitableEvent*, unsigned> &b) {
+ return a.first < b.first;
+}
+
+// static
+size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
+ size_t count) {
+ DCHECK(count) << "Cannot wait on no events";
+ internal::ScopedBlockingCallWithBaseSyncPrimitives scoped_blocking_call(
+ FROM_HERE, BlockingType::MAY_BLOCK);
+ // Record an event (the first) that this thread is blocking upon.
+ debug::ScopedEventWaitActivity event_activity(raw_waitables[0]);
+
+ // We need to acquire the locks in a globally consistent order. Thus we sort
+ // the array of waitables by address. We actually sort a pairs so that we can
+ // map back to the original index values later.
+ std::vector<std::pair<WaitableEvent*, size_t> > waitables;
+ waitables.reserve(count);
+ for (size_t i = 0; i < count; ++i)
+ waitables.push_back(std::make_pair(raw_waitables[i], i));
+
+ DCHECK_EQ(count, waitables.size());
+
+ sort(waitables.begin(), waitables.end(), cmp_fst_addr);
+
+ // The set of waitables must be distinct. Since we have just sorted by
+ // address, we can check this cheaply by comparing pairs of consecutive
+ // elements.
+ for (size_t i = 0; i < waitables.size() - 1; ++i) {
+ DCHECK(waitables[i].first != waitables[i+1].first);
+ }
+
+ SyncWaiter sw;
+
+ const size_t r = EnqueueMany(&waitables[0], count, &sw);
+ if (r < count) {
+ // One of the events is already signaled. The SyncWaiter has not been
+ // enqueued anywhere.
+ return waitables[r].second;
+ }
+
+ // At this point, we hold the locks on all the WaitableEvents and we have
+ // enqueued our waiter in them all.
+ sw.lock()->Acquire();
+ // Release the WaitableEvent locks in the reverse order
+ for (size_t i = 0; i < count; ++i) {
+ waitables[count - (1 + i)].first->kernel_->lock_.Release();
+ }
+
+ for (;;) {
+ if (sw.fired())
+ break;
+
+ sw.cv()->Wait();
+ }
+ sw.lock()->Release();
+
+ // The address of the WaitableEvent which fired is stored in the SyncWaiter.
+ WaitableEvent *const signaled_event = sw.signaling_event();
+ // This will store the index of the raw_waitables which fired.
+ size_t signaled_index = 0;
+
+ // Take the locks of each WaitableEvent in turn (except the signaled one) and
+ // remove our SyncWaiter from the wait-list
+ for (size_t i = 0; i < count; ++i) {
+ if (raw_waitables[i] != signaled_event) {
+ raw_waitables[i]->kernel_->lock_.Acquire();
+ // There's no possible ABA issue with the address of the SyncWaiter here
+ // because it lives on the stack. Thus the tag value is just the pointer
+ // value again.
+ raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
+ raw_waitables[i]->kernel_->lock_.Release();
+ } else {
+ // By taking this lock here we ensure that |Signal| has completed by the
+ // time we return, because |Signal| holds this lock. This matches the
+ // behaviour of |Wait| and |TimedWait|.
+ raw_waitables[i]->kernel_->lock_.Acquire();
+ raw_waitables[i]->kernel_->lock_.Release();
+ signaled_index = i;
+ }
+ }
+
+ return signaled_index;
+}
+
+// -----------------------------------------------------------------------------
+// If return value == count:
+// The locks of the WaitableEvents have been taken in order and the Waiter has
+// been enqueued in the wait-list of each. None of the WaitableEvents are
+// currently signaled
+// else:
+// None of the WaitableEvent locks are held. The Waiter has not been enqueued
+// in any of them and the return value is the index of the WaitableEvent which
+// was signaled with the lowest input index from the original WaitMany call.
+// -----------------------------------------------------------------------------
+// static
+size_t WaitableEvent::EnqueueMany(std::pair<WaitableEvent*, size_t>* waitables,
+ size_t count,
+ Waiter* waiter) {
+ size_t winner = count;
+ size_t winner_index = count;
+ for (size_t i = 0; i < count; ++i) {
+ auto& kernel = waitables[i].first->kernel_;
+ kernel->lock_.Acquire();
+ if (kernel->signaled_ && waitables[i].second < winner) {
+ winner = waitables[i].second;
+ winner_index = i;
+ }
+ }
+
+ // No events signaled. All locks acquired. Enqueue the Waiter on all of them
+ // and return.
+ if (winner == count) {
+ for (size_t i = 0; i < count; ++i)
+ waitables[i].first->Enqueue(waiter);
+ return count;
+ }
+
+ // Unlock in reverse order and possibly clear the chosen winner's signal
+ // before returning its index.
+ for (auto* w = waitables + count - 1; w >= waitables; --w) {
+ auto& kernel = w->first->kernel_;
+ if (w->second == winner) {
+ if (!kernel->manual_reset_)
+ kernel->signaled_ = false;
+ }
+ kernel->lock_.Release();
+ }
+
+ return winner_index;
+}
+
+// -----------------------------------------------------------------------------
+
+
+// -----------------------------------------------------------------------------
+// Private functions...
+
+WaitableEvent::WaitableEventKernel::WaitableEventKernel(
+ ResetPolicy reset_policy,
+ InitialState initial_state)
+ : manual_reset_(reset_policy == ResetPolicy::MANUAL),
+ signaled_(initial_state == InitialState::SIGNALED) {}
+
+WaitableEvent::WaitableEventKernel::~WaitableEventKernel() = default;
+
+// -----------------------------------------------------------------------------
+// Wake all waiting waiters. Called with lock held.
+// -----------------------------------------------------------------------------
+bool WaitableEvent::SignalAll() {
+ bool signaled_at_least_one = false;
+
+ for (auto* i : kernel_->waiters_) {
+ if (i->Fire(this))
+ signaled_at_least_one = true;
+ }
+
+ kernel_->waiters_.clear();
+ return signaled_at_least_one;
+}
+
+// ---------------------------------------------------------------------------
+// Try to wake a single waiter. Return true if one was woken. Called with lock
+// held.
+// ---------------------------------------------------------------------------
+bool WaitableEvent::SignalOne() {
+ for (;;) {
+ if (kernel_->waiters_.empty())
+ return false;
+
+ const bool r = (*kernel_->waiters_.begin())->Fire(this);
+ kernel_->waiters_.pop_front();
+ if (r)
+ return true;
+ }
+}
+
+// -----------------------------------------------------------------------------
+// Add a waiter to the list of those waiting. Called with lock held.
+// -----------------------------------------------------------------------------
+void WaitableEvent::Enqueue(Waiter* waiter) {
+ kernel_->waiters_.push_back(waiter);
+}
+
+// -----------------------------------------------------------------------------
+// Remove a waiter from the list of those waiting. Return true if the waiter was
+// actually removed. Called with lock held.
+// -----------------------------------------------------------------------------
+bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
+ for (auto i = waiters_.begin(); i != waiters_.end(); ++i) {
+ if (*i == waiter && (*i)->Compare(tag)) {
+ waiters_.erase(i);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// -----------------------------------------------------------------------------
+
+} // namespace base