summaryrefslogtreecommitdiffstats
path: root/testing/web-platform/tests/webaudio/the-audio-api/the-pannernode-interface/panner-automation-position.html
diff options
context:
space:
mode:
Diffstat (limited to 'testing/web-platform/tests/webaudio/the-audio-api/the-pannernode-interface/panner-automation-position.html')
-rw-r--r--testing/web-platform/tests/webaudio/the-audio-api/the-pannernode-interface/panner-automation-position.html265
1 files changed, 265 insertions, 0 deletions
diff --git a/testing/web-platform/tests/webaudio/the-audio-api/the-pannernode-interface/panner-automation-position.html b/testing/web-platform/tests/webaudio/the-audio-api/the-pannernode-interface/panner-automation-position.html
new file mode 100644
index 0000000000..8e09e869ac
--- /dev/null
+++ b/testing/web-platform/tests/webaudio/the-audio-api/the-pannernode-interface/panner-automation-position.html
@@ -0,0 +1,265 @@
+<!DOCTYPE html>
+<html>
+ <head>
+ <title>
+ Test Automation of PannerNode Positions
+ </title>
+ <script src="/resources/testharness.js"></script>
+ <script src="/resources/testharnessreport.js"></script>
+ <script src="../../resources/audit-util.js"></script>
+ <script src="../../resources/audit.js"></script>
+ <script src="../../resources/panner-formulas.js"></script>
+ </head>
+ <body>
+ <script id="layout-test-code">
+ let sampleRate = 48000;
+ // These tests are quite slow, so don't run for many frames. 256 frames
+ // should be enough to demonstrate that automations are working.
+ let renderFrames = 256;
+ let renderDuration = renderFrames / sampleRate;
+
+ let context;
+ let panner;
+
+ let audit = Audit.createTaskRunner();
+
+ // Set of tests for the panner node with automations applied to the
+ // position of the source.
+ let testConfigs = [
+ {
+ // Distance model parameters for the panner
+ distanceModel: {model: 'inverse', rolloff: 1},
+ // Initial location of the source
+ startPosition: [0, 0, 1],
+ // Final position of the source. For this test, we only want to move
+ // on the z axis which
+ // doesn't change the azimuth angle.
+ endPosition: [0, 0, 10000],
+ },
+ {
+ distanceModel: {model: 'inverse', rolloff: 1},
+ startPosition: [0, 0, 1],
+ // An essentially random end position, but it should be such that
+ // azimuth angle changes as
+ // we move from the start to the end.
+ endPosition: [20000, 30000, 10000],
+ errorThreshold: [
+ {
+ // Error threshold for 1-channel case
+ relativeThreshold: 4.8124e-7
+ },
+ {
+ // Error threshold for 2-channel case
+ relativeThreshold: 4.3267e-7
+ }
+ ],
+ },
+ {
+ distanceModel: {model: 'exponential', rolloff: 1.5},
+ startPosition: [0, 0, 1],
+ endPosition: [20000, 30000, 10000],
+ errorThreshold:
+ [{relativeThreshold: 5.0783e-7}, {relativeThreshold: 5.2180e-7}]
+ },
+ {
+ distanceModel: {model: 'linear', rolloff: 1},
+ startPosition: [0, 0, 1],
+ endPosition: [20000, 30000, 10000],
+ errorThreshold: [
+ {relativeThreshold: 6.5324e-6}, {relativeThreshold: 6.5756e-6}
+ ]
+ }
+ ];
+
+ for (let k = 0; k < testConfigs.length; ++k) {
+ let config = testConfigs[k];
+ let tester = function(c, channelCount) {
+ return (task, should) => {
+ runTest(should, c, channelCount).then(() => task.done());
+ }
+ };
+
+ let baseTestName = config.distanceModel.model +
+ ' rolloff: ' + config.distanceModel.rolloff;
+
+ // Define tasks for both 1-channel and 2-channel
+ audit.define(k + ': 1-channel ' + baseTestName, tester(config, 1));
+ audit.define(k + ': 2-channel ' + baseTestName, tester(config, 2));
+ }
+
+ audit.run();
+
+ function runTest(should, options, channelCount) {
+ // Output has 5 channels: channels 0 and 1 are for the stereo output of
+ // the panner node. Channels 2-5 are the for automation of the x,y,z
+ // coordinate so that we have actual coordinates used for the panner
+ // automation.
+ context = new OfflineAudioContext(5, renderFrames, sampleRate);
+
+ // Stereo source for the panner.
+ let source = context.createBufferSource();
+ source.buffer = createConstantBuffer(
+ context, renderFrames, channelCount == 1 ? 1 : [1, 2]);
+
+ panner = context.createPanner();
+ panner.distanceModel = options.distanceModel.model;
+ panner.rolloffFactor = options.distanceModel.rolloff;
+ panner.panningModel = 'equalpower';
+
+ // Source and gain node for the z-coordinate calculation.
+ let dist = context.createBufferSource();
+ dist.buffer = createConstantBuffer(context, 1, 1);
+ dist.loop = true;
+ let gainX = context.createGain();
+ let gainY = context.createGain();
+ let gainZ = context.createGain();
+ dist.connect(gainX);
+ dist.connect(gainY);
+ dist.connect(gainZ);
+
+ // Set the gain automation to match the z-coordinate automation of the
+ // panner.
+
+ // End the automation some time before the end of the rendering so we
+ // can verify that automation has the correct end time and value.
+ let endAutomationTime = 0.75 * renderDuration;
+
+ gainX.gain.setValueAtTime(options.startPosition[0], 0);
+ gainX.gain.linearRampToValueAtTime(
+ options.endPosition[0], endAutomationTime);
+ gainY.gain.setValueAtTime(options.startPosition[1], 0);
+ gainY.gain.linearRampToValueAtTime(
+ options.endPosition[1], endAutomationTime);
+ gainZ.gain.setValueAtTime(options.startPosition[2], 0);
+ gainZ.gain.linearRampToValueAtTime(
+ options.endPosition[2], endAutomationTime);
+
+ dist.start();
+
+ // Splitter and merger to map the panner output and the z-coordinate
+ // automation to the correct channels in the destination.
+ let splitter = context.createChannelSplitter(2);
+ let merger = context.createChannelMerger(5);
+
+ source.connect(panner);
+ // Split the output of the panner to separate channels
+ panner.connect(splitter);
+
+ // Merge the panner outputs and the z-coordinate output to the correct
+ // destination channels.
+ splitter.connect(merger, 0, 0);
+ splitter.connect(merger, 1, 1);
+ gainX.connect(merger, 0, 2);
+ gainY.connect(merger, 0, 3);
+ gainZ.connect(merger, 0, 4);
+
+ merger.connect(context.destination);
+
+ // Initialize starting point of the panner.
+ panner.positionX.setValueAtTime(options.startPosition[0], 0);
+ panner.positionY.setValueAtTime(options.startPosition[1], 0);
+ panner.positionZ.setValueAtTime(options.startPosition[2], 0);
+
+ // Automate z coordinate to move away from the listener
+ panner.positionX.linearRampToValueAtTime(
+ options.endPosition[0], 0.75 * renderDuration);
+ panner.positionY.linearRampToValueAtTime(
+ options.endPosition[1], 0.75 * renderDuration);
+ panner.positionZ.linearRampToValueAtTime(
+ options.endPosition[2], 0.75 * renderDuration);
+
+ source.start();
+
+ // Go!
+ return context.startRendering().then(function(renderedBuffer) {
+ // Get the panner outputs
+ let data0 = renderedBuffer.getChannelData(0);
+ let data1 = renderedBuffer.getChannelData(1);
+ let xcoord = renderedBuffer.getChannelData(2);
+ let ycoord = renderedBuffer.getChannelData(3);
+ let zcoord = renderedBuffer.getChannelData(4);
+
+ // We're doing a linear ramp on the Z axis with the equalpower panner,
+ // so the equalpower panning gain remains constant. We only need to
+ // model the distance effect.
+
+ // Compute the distance gain
+ let distanceGain = new Float32Array(xcoord.length);
+ ;
+
+ if (panner.distanceModel === 'inverse') {
+ for (let k = 0; k < distanceGain.length; ++k) {
+ distanceGain[k] =
+ inverseDistance(panner, xcoord[k], ycoord[k], zcoord[k])
+ }
+ } else if (panner.distanceModel === 'linear') {
+ for (let k = 0; k < distanceGain.length; ++k) {
+ distanceGain[k] =
+ linearDistance(panner, xcoord[k], ycoord[k], zcoord[k])
+ }
+ } else if (panner.distanceModel === 'exponential') {
+ for (let k = 0; k < distanceGain.length; ++k) {
+ distanceGain[k] =
+ exponentialDistance(panner, xcoord[k], ycoord[k], zcoord[k])
+ }
+ }
+
+ // Compute the expected result. Since we're on the z-axis, the left
+ // and right channels pass through the equalpower panner unchanged.
+ // Only need to apply the distance gain.
+ let buffer0 = source.buffer.getChannelData(0);
+ let buffer1 =
+ channelCount == 2 ? source.buffer.getChannelData(1) : buffer0;
+
+ let azimuth = new Float32Array(buffer0.length);
+
+ for (let k = 0; k < data0.length; ++k) {
+ azimuth[k] = calculateAzimuth(
+ [xcoord[k], ycoord[k], zcoord[k]],
+ [
+ context.listener.positionX.value,
+ context.listener.positionY.value,
+ context.listener.positionZ.value
+ ],
+ [
+ context.listener.forwardX.value,
+ context.listener.forwardY.value,
+ context.listener.forwardZ.value
+ ],
+ [
+ context.listener.upX.value, context.listener.upY.value,
+ context.listener.upZ.value
+ ]);
+ }
+
+ let expected = applyPanner(azimuth, buffer0, buffer1, channelCount);
+ let expected0 = expected.left;
+ let expected1 = expected.right;
+
+ for (let k = 0; k < expected0.length; ++k) {
+ expected0[k] *= distanceGain[k];
+ expected1[k] *= distanceGain[k];
+ }
+
+ let info = options.distanceModel.model +
+ ', rolloff: ' + options.distanceModel.rolloff;
+ let prefix = channelCount + '-channel ' +
+ '[' + options.startPosition[0] + ', ' + options.startPosition[1] +
+ ', ' + options.startPosition[2] + '] -> [' +
+ options.endPosition[0] + ', ' + options.endPosition[1] + ', ' +
+ options.endPosition[2] + ']: ';
+
+ let errorThreshold = 0;
+
+ if (options.errorThreshold)
+ errorThreshold = options.errorThreshold[channelCount - 1]
+
+ should(data0, prefix + 'distanceModel: ' + info + ', left channel')
+ .beCloseToArray(expected0, {absoluteThreshold: errorThreshold});
+ should(data1, prefix + 'distanceModel: ' + info + ', right channel')
+ .beCloseToArray(expected1, {absoluteThreshold: errorThreshold});
+ });
+ }
+ </script>
+ </body>
+</html>