diff options
Diffstat (limited to 'third_party/intgemm/benchmarks')
-rw-r--r-- | third_party/intgemm/benchmarks/benchmark.cc | 214 | ||||
-rw-r--r-- | third_party/intgemm/benchmarks/benchmark_quantizer.cc | 74 | ||||
-rw-r--r-- | third_party/intgemm/benchmarks/biasmultiply.cc | 278 |
3 files changed, 566 insertions, 0 deletions
diff --git a/third_party/intgemm/benchmarks/benchmark.cc b/third_party/intgemm/benchmarks/benchmark.cc new file mode 100644 index 0000000000..512d3ec39e --- /dev/null +++ b/third_party/intgemm/benchmarks/benchmark.cc @@ -0,0 +1,214 @@ +#include "../intgemm/aligned.h" +#include "intgemm/intgemm_config.h" +#include "../intgemm/avx512_gemm.h" +#include "../intgemm/sse2_gemm.h" +#include "../intgemm/avx2_gemm.h" +#include "../intgemm/ssse3_gemm.h" +#include "../intgemm/intgemm.h" +#include "../intgemm/stats.h" +#include "../intgemm/callbacks.h" + +#include <algorithm> +#include <cassert> +#include <chrono> +#include <cmath> +#include <cstdio> +#include <cstdlib> +#include <cstring> +#include <iomanip> +#include <iostream> +#include <random> + +namespace intgemm { +namespace { + +struct RandomMatrices { + RandomMatrices(Index A_rows_in, Index width_in, Index B_cols_in) : + A_rows(A_rows_in), width(width_in), B_cols(B_cols_in), + A(A_rows * width), B(width * B_cols) { + std::mt19937 gen; + std::uniform_real_distribution<float> dist(-1.f, 1.f); + gen.seed(45678); + + for (auto& it : A) { + it = dist(gen); + } + for (auto& it : B) { + it = dist(gen); + } + } + + const Index A_rows, width, B_cols; + AlignedVector<float> A, B; +}; + +template <class Backend> double Run(const RandomMatrices &m) { + using Integer = typename Backend::Integer; + float quant_mult = 127.0f / 2.0f; + float unquant_mult = 1.0f / (quant_mult * quant_mult); + AlignedVector<Integer> A_prepared(m.A_rows * m.width); + Backend::PrepareA(m.A.begin(), A_prepared.begin(), quant_mult, m.A_rows, m.width); + AlignedVector<Integer> B_prepared(m.width * m.B_cols); + Backend::PrepareB(m.B.begin(), B_prepared.begin(), quant_mult, m.width, m.B_cols); + AlignedVector<float> output(m.A_rows * m.B_cols); + // Burn in + Backend::Multiply(A_prepared.begin(), B_prepared.begin(), m.A_rows, m.width, m.B_cols, callbacks::UnquantizeAndWrite(unquant_mult, output.begin())); + auto start = std::chrono::steady_clock::now(); + Backend::Multiply(A_prepared.begin(), B_prepared.begin(), m.A_rows, m.width, m.B_cols, callbacks::UnquantizeAndWrite(unquant_mult, output.begin())); + return std::chrono::duration<double>(std::chrono::steady_clock::now() - start).count(); +} + +template <class Backend> void RunAll(RandomMatrices *matrices, RandomMatrices *matrices_end, std::vector<std::vector<double>> &stats) { + if (Backend::kUses > kCPU) return; + std::size_t size = matrices_end - matrices; + if (stats.size() < size) + stats.resize(size); + for (std::size_t i = 0; i < size; ++i) { + stats[i].push_back(Run<Backend>(matrices[i])); + } +} + +struct BackendStats { + std::vector<std::vector<double>> ssse3_8bit; + std::vector<std::vector<double>> avx2_8bit; + std::vector<std::vector<double>> avx512_8bit; + std::vector<std::vector<double>> avx512vnni_8bit; + std::vector<std::vector<double>> sse2_16bit; + std::vector<std::vector<double>> avx2_16bit; + std::vector<std::vector<double>> avx512_16bit; +}; + +const float kOutlierThreshold = 0.75; +void Summarize(std::vector<double> &stats) { + // Throw out outliers. + std::vector<double>::iterator keep = stats.begin() + static_cast<std::size_t>(static_cast<float>(stats.size()) * kOutlierThreshold); + std::nth_element(stats.begin(), keep, stats.end()); + double avg = 0.0; + for (std::vector<double>::const_iterator i = stats.begin(); i != keep; ++i) { + avg += *i; + } + avg /= (keep - stats.begin()); + double stddev = 0.0; + for (std::vector<double>::const_iterator i = stats.begin(); i != keep; ++i) { + double off = (double)*i - avg; + stddev += off * off; + } + stddev = sqrt(stddev / (keep - stats.begin() - 1)); + std::cout << std::setw(10) << *std::min_element(stats.begin(), stats.end()) << '\t' << std::setw(8) << avg << '\t' << std::setw(8) << stddev; +} + +template <class Backend> void Print(std::vector<std::vector<double>> &stats, std::size_t index) { + if (stats.empty()) return; + std::cout << std::setw(16) << Backend::kName << '\t'; + Summarize(stats[index]); + std::cout << '\n'; +} + +} // namespace intgemm +} // namespace + +// Program takes no input +int main(int, char ** argv) { + std::cerr << "Remember to run this on a specific core:\ntaskset --cpu-list 0 " << argv[0] << std::endl; + + using namespace intgemm; + RandomMatrices matrices[] = { + {1, 64, 8}, + {8, 256, 256}, + {8, 2048, 256}, + {8, 256, 2048}, + {320, 256, 256}, + {472, 256, 256}, + {248, 256, 256}, + {200, 256, 256}, + // Additional stuff + {256, 256, 256}, + {512, 512, 512}, + {1024, 1024, 1024}, +/* {4096, 4096, 4096}, + {4096, 4096, 2048}, + {4096, 4096, 1024}, + {4096, 4096, 512}, + {4096, 4096, 256},*/ + {4096, 4096, 128} + }; + RandomMatrices *matrices_end = (RandomMatrices*)matrices + sizeof(matrices) / sizeof(RandomMatrices); + // Only do full sampling for <1024 rows. + RandomMatrices *full_sample; + for (full_sample = matrices_end - 1; full_sample >= matrices && full_sample->A_rows >= 1024; --full_sample) {} + ++full_sample; + + BackendStats stats; + const int kSamples = 100; + // Realistically, we don't expect different architectures or different precisions to run in the + // same run of an application. Benchmark per architecture and per precision level. + std::cerr << "SSSE3 8bit, 100 samples..." << std::endl; + for (int samples = 0; samples < kSamples; ++samples) { + RandomMatrices *end = (samples < 4) ? matrices_end : full_sample; + RunAll<SSSE3::Kernels8>(matrices, end, stats.ssse3_8bit); + } + + std::cerr << "SSE2 16bit, 100 samples..." << std::endl; + for (int samples = 0; samples < kSamples; ++samples) { + RandomMatrices *end = (samples < 4) ? matrices_end : full_sample; + RunAll<SSE2::Kernels16>(matrices, end, stats.sse2_16bit); + } + +#ifdef INTGEMM_COMPILER_SUPPORTS_AVX2 + std::cerr << "AVX2 8bit, 100 samples..." << std::endl; + for (int samples = 0; samples < kSamples; ++samples) { + RandomMatrices *end = (samples < 4) ? matrices_end : full_sample; + RunAll<AVX2::Kernels8>(matrices, end, stats.avx2_8bit); + } + + std::cerr << "AVX2 16bit, 100 samples..." << std::endl; + for (int samples = 0; samples < kSamples; ++samples) { + RandomMatrices *end = (samples < 4) ? matrices_end : full_sample; + RunAll<AVX2::Kernels16>(matrices, end, stats.avx2_16bit); + } +#endif +#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512BW + std::cerr << "AVX512 8bit, 100 samples..." << std::endl; + for (int samples = 0; samples < kSamples; ++samples) { + RandomMatrices *end = (samples < 4) ? matrices_end : full_sample; + RunAll<AVX512BW::Kernels8>(matrices, end, stats.avx512_8bit); + } + + std::cerr << "AVX512 16bit, 100 samples..." << std::endl; + for (int samples = 0; samples < kSamples; ++samples) { + RandomMatrices *end = (samples < 4) ? matrices_end : full_sample; + RunAll<AVX512BW::Kernels16>(matrices, end, stats.avx512_16bit); + } +#endif +#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512VNNI + std::cerr << "AVX512VNNI 8bit, 100 samples..." << std::endl; + for (int samples = 0; samples < kSamples; ++samples) { + RandomMatrices *end = (samples < 4) ? matrices_end : full_sample; + RunAll<AVX512VNNI::Kernels8>(matrices, end, stats.avx512vnni_8bit); + } +#endif + + if (stats.sse2_16bit.empty()) { + std::cerr << "No CPU support." << std::endl; + return 1; + } + for (std::size_t i = 0; i < sizeof(matrices) / sizeof(RandomMatrices); ++i) { + std::cout << "Multiply\t" << matrices[i].A_rows << '\t' << matrices[i].width << '\t' << matrices[i].B_cols << '\t' << "Samples=" << (kOutlierThreshold * stats.sse2_16bit[i].size()) << '\n'; + Print<SSSE3::Kernels8>(stats.ssse3_8bit, i); + Print<AVX2::Kernels8>(stats.avx2_8bit, i); +#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512BW + Print<AVX512BW::Kernels8>(stats.avx512_8bit, i); +#endif +#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512VNNI + Print<AVX512VNNI::Kernels8>(stats.avx512vnni_8bit, i); +#endif + Print<SSE2::Kernels16>(stats.sse2_16bit, i); + Print<AVX2::Kernels16>(stats.avx2_16bit, i); +#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512BW + Print<AVX512BW::Kernels16>(stats.avx512_16bit, i); +#endif + } + return 0; +} + + diff --git a/third_party/intgemm/benchmarks/benchmark_quantizer.cc b/third_party/intgemm/benchmarks/benchmark_quantizer.cc new file mode 100644 index 0000000000..5235b1ea0d --- /dev/null +++ b/third_party/intgemm/benchmarks/benchmark_quantizer.cc @@ -0,0 +1,74 @@ +#include "../intgemm/intgemm.h" +#include "../intgemm/aligned.h" +#include "../intgemm/ssse3_gemm.h" +#include "../intgemm/avx2_gemm.h" +#include "../intgemm/avx512_gemm.h" + +#include <chrono> +#include <iomanip> +#include <iostream> +#include <random> +#include <vector> + +namespace { + +float MaxAbsoluteBaseline(const float *begin, const float *end) { + auto res = std::minmax_element(begin, end); + return std::max(std::fabs(*res.first), std::fabs(*res.second)); +} + +void BenchmarkMaxAbsolute() { + std::mt19937 gen; + std::uniform_real_distribution<float> dist(0.f, 1.f); + gen.seed(45678); + + intgemm::AlignedVector<float> v(4096 * 4096); + for (auto& it : v) { + it = dist(gen); + } + + // Hopefully these don't get optimized out... + MaxAbsoluteBaseline(v.begin(), v.end()); + auto start = std::chrono::steady_clock::now(); + MaxAbsoluteBaseline(v.begin(), v.end()); + double baseline = std::chrono::duration<double>(std::chrono::steady_clock::now() - start).count(); + intgemm::MaxAbsolute(v.begin(), v.end()); + start = std::chrono::steady_clock::now(); + intgemm::MaxAbsolute(v.begin(), v.end()); + double optimized = std::chrono::duration<double>(std::chrono::steady_clock::now() - start).count(); + std::cout << "MaxAbsolute baseline = " << baseline << " optimized = " << optimized << " speedup = " << (optimized / baseline) << '\n'; +} + +template <class Backend> void QuantizerBench(const float *in, int8_t *out, intgemm::Index count) { + if (intgemm::kCPU < Backend::kUses) return; + Backend::Quantize(in, out, 1.0, count); + const std::size_t kTries = 60; + auto start = std::chrono::steady_clock::now(); + for (std::size_t t = 0; t < kTries; ++t) { + Backend::Quantize(in, out, 1.0, count); + } + auto end = std::chrono::steady_clock::now(); + double took = std::chrono::duration<double>(end - start).count() / kTries; + std::cout << std::setw(9) << count << ' ' << std::fixed << std::setw(9) << std::setprecision(7) << took << ' ' << Backend::kName << std::endl; +} +} // namespace + +int main() { + BenchmarkMaxAbsolute(); + for (std::size_t count = 1; count < (1ULL<<30); count *= 2) { + intgemm::AlignedVector<float> in(count); + intgemm::AlignedVector<int8_t> out(count); + std::mt19937 gen; + std::uniform_real_distribution<float> dist(-129.0, 129.0); + for (float &element : in) { + element = dist(gen); + } + QuantizerBench<intgemm::SSSE3::Kernels8>(in.begin(), out.begin(), static_cast<intgemm::Index>(count)); +#ifdef INTGEMM_COMPILER_SUPPORTS_AVX2 + QuantizerBench<intgemm::AVX2::Kernels8>(in.begin(), out.begin(), static_cast<intgemm::Index>(count)); +#endif +#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512BW + QuantizerBench<intgemm::AVX512BW::Kernels8>(in.begin(), out.begin(), static_cast<intgemm::Index>(count)); +#endif + } +} diff --git a/third_party/intgemm/benchmarks/biasmultiply.cc b/third_party/intgemm/benchmarks/biasmultiply.cc new file mode 100644 index 0000000000..c835b61649 --- /dev/null +++ b/third_party/intgemm/benchmarks/biasmultiply.cc @@ -0,0 +1,278 @@ +#include "../intgemm/intgemm.h" +#include "../intgemm/aligned.h" +#include <chrono> +#include <random> +#include <iostream> + +using namespace intgemm; + +template <class Routine> +void testOld(Index /*rows*/, Index /*cols*/) { +} + +template <class Routine> +std::chrono::duration<double> testNew(Index A_rows, Index width, Index B_cols) { + AlignedVector<float> A(A_rows * width); + AlignedVector<float> B(width * B_cols); + AlignedVector<float> bias(B_cols); + std::mt19937 gen; + std::uniform_real_distribution<float> dist(-1.0f, 1.0f); + for (auto& it : A) { + it = dist(gen); + } + for (auto& it : B) { + it = dist(gen); + } + for (auto& it : bias) { + it = dist(gen); + } + + float alpha = 2.0f; + float quant_mult = 127.0f / alpha; + float unquant_mult = 1.0f / (quant_mult*quant_mult); + + AlignedVector<uint8_t> A_prep(A.size()); + AlignedVector<int8_t> B_prep(B.size()); + Routine::PrepareA(A.begin(), A_prep.begin(), quant_mult, A_rows, width); + Routine::PrepareB(B.begin(), B_prep.begin(), quant_mult, width, B_cols); + + AlignedVector<float> test_C(A_rows * B_cols); + + float unquant_mult_forprep = (-1)*(alpha)*(alpha)/(127.0f); //Minus one to invert add_ps later on + Routine::PrepareBias(B_prep.begin(), width, B_cols, callbacks::UnquantizeAndAddBiasAndWrite(unquant_mult_forprep, bias.begin(), bias.begin())); + auto start = std::chrono::system_clock::now(); + Routine::Multiply8Shift(A_prep.begin(), B_prep.begin(), A_rows, width, B_cols, callbacks::UnquantizeAndAddBiasAndWrite(unquant_mult, bias.begin(), test_C.begin())); + auto end = std::chrono::system_clock::now(); + + std::chrono::duration<double> elapsed_seconds = end-start; + return elapsed_seconds; + +} + +template <class Routine> +std::chrono::duration<double> testOld(Index A_rows, Index width, Index B_cols) { + AlignedVector<float> A(A_rows * width); + AlignedVector<float> B(width * B_cols); + AlignedVector<float> bias(B_cols); + std::mt19937 gen; + std::uniform_real_distribution<float> dist(-1.0f, 1.0f); + for (auto& it : A) { + it = dist(gen); + } + for (auto& it : B) { + it = dist(gen); + } + for (auto& it : bias) { + it = dist(gen); + } + + float alpha = 2.0f; + float quant_mult = 127.0f / alpha; + float unquant_mult = 1.0f / (quant_mult*quant_mult); + + AlignedVector<int8_t> A_prep(A.size()); + AlignedVector<int8_t> B_prep(B.size()); + Routine::PrepareA(A.begin(), A_prep.begin(), quant_mult, A_rows, width); + Routine::PrepareB(B.begin(), B_prep.begin(), quant_mult, width, B_cols); + + AlignedVector<float> test_C(A_rows * B_cols); + + auto start = std::chrono::system_clock::now(); + Routine::Multiply(A_prep.begin(), B_prep.begin(), A_rows, width, B_cols, callbacks::UnquantizeAndAddBiasAndWrite(unquant_mult, bias.begin(), test_C.begin())); + auto end = std::chrono::system_clock::now(); + + std::chrono::duration<double> elapsed_seconds = end-start; + return elapsed_seconds; + +} + +template <class Routine> +std::chrono::duration<double> testOld_nobias(Index A_rows, Index width, Index B_cols) { + AlignedVector<float> A(A_rows * width); + AlignedVector<float> B(width * B_cols); + std::mt19937 gen; + std::uniform_real_distribution<float> dist(-1.0f, 1.0f); + for (auto& it : A) { + it = dist(gen); + } + for (auto& it : B) { + it = dist(gen); + } + + float alpha = 2.0f; + float quant_mult = 127.0f / alpha; + float unquant_mult = 1.0f / (quant_mult*quant_mult); + + AlignedVector<int8_t> A_prep(A.size()); + AlignedVector<int8_t> B_prep(B.size()); + Routine::PrepareA(A.begin(), A_prep.begin(), quant_mult, A_rows, width); + Routine::PrepareB(B.begin(), B_prep.begin(), quant_mult, width, B_cols); + + AlignedVector<float> test_C(A_rows * B_cols); + + auto start = std::chrono::system_clock::now(); + Routine::Multiply(A_prep.begin(), B_prep.begin(), A_rows, width, B_cols, callbacks::UnquantizeAndWrite(unquant_mult, test_C.begin())); + auto end = std::chrono::system_clock::now(); + + std::chrono::duration<double> elapsed_seconds = end-start; + return elapsed_seconds; + +} + +int main(int argc, char ** argv) { + int repeat = 1000; + if (argc > 1) { + repeat = atoi(argv[1]); + } + + std::chrono::duration<double> oldSSSE3_nobias = testOld_nobias<SSSE3::Kernels8>(1, 64, 8); + for (int i = 0; i<repeat; i++) { + oldSSSE3_nobias += testOld_nobias<SSSE3::Kernels8>(8, 256, 256); + oldSSSE3_nobias += testOld_nobias<SSSE3::Kernels8>(8, 2048, 256); + oldSSSE3_nobias += testOld_nobias<SSSE3::Kernels8>(320, 256, 256); + oldSSSE3_nobias += testOld_nobias<SSSE3::Kernels8>(472, 256, 256); + oldSSSE3_nobias += testOld_nobias<SSSE3::Kernels8>(248, 256, 256); + oldSSSE3_nobias += testOld_nobias<SSSE3::Kernels8>(200, 256, 256); + } + + std::cout << repeat << " iterations of SSSE3 without bias took: " << oldSSSE3_nobias.count() << " seconds." << std::endl; + + std::chrono::duration<double> oldSSSE3 = testOld<SSSE3::Kernels8>(1, 64, 8); + for (int i = 0; i<repeat; i++) { + oldSSSE3 += testOld<SSSE3::Kernels8>(8, 256, 256); + oldSSSE3 += testOld<SSSE3::Kernels8>(8, 2048, 256); + oldSSSE3 += testOld<SSSE3::Kernels8>(320, 256, 256); + oldSSSE3 += testOld<SSSE3::Kernels8>(472, 256, 256); + oldSSSE3 += testOld<SSSE3::Kernels8>(248, 256, 256); + oldSSSE3 += testOld<SSSE3::Kernels8>(200, 256, 256); + } + + std::cout << repeat << " iterations of SSSE3 took: " << oldSSSE3.count() << " seconds." << std::endl; + + std::chrono::duration<double> newTimeSSSE3 = testOld<SSSE3::Kernels8>(1, 64, 8); + for (int i = 0; i<repeat; i++) { + newTimeSSSE3 += testNew<SSSE3::Kernels8>(8, 256, 256); + newTimeSSSE3 += testNew<SSSE3::Kernels8>(8, 2048, 256); + newTimeSSSE3 += testNew<SSSE3::Kernels8>(320, 256, 256); + newTimeSSSE3 += testNew<SSSE3::Kernels8>(472, 256, 256); + newTimeSSSE3 += testNew<SSSE3::Kernels8>(248, 256, 256); + newTimeSSSE3 += testNew<SSSE3::Kernels8>(200, 256, 256); + } + + std::cout << repeat << " iterations of Shifted SSSE3 took: " << newTimeSSSE3.count() << " seconds." << std::endl; + +#ifdef INTGEMM_COMPILER_SUPPORTS_AVX2 + std::chrono::duration<double> oldAVX2_nobias = testOld_nobias<AVX2::Kernels8>(1, 64, 8); + for (int i = 0; i<repeat; i++) { + oldAVX2_nobias += testOld_nobias<AVX2::Kernels8>(8, 256, 256); + oldAVX2_nobias += testOld_nobias<AVX2::Kernels8>(8, 2048, 256); + oldAVX2_nobias += testOld_nobias<AVX2::Kernels8>(320, 256, 256); + oldAVX2_nobias += testOld_nobias<AVX2::Kernels8>(472, 256, 256); + oldAVX2_nobias += testOld_nobias<AVX2::Kernels8>(248, 256, 256); + oldAVX2_nobias += testOld_nobias<AVX2::Kernels8>(200, 256, 256); + } + + std::cout << repeat << " iterations of AVX2 without bias took: " << oldAVX2_nobias.count() << " seconds." << std::endl; + + std::chrono::duration<double> oldAVX2 = testOld<AVX2::Kernels8>(1, 64, 8); + for (int i = 0; i<repeat; i++) { + oldAVX2 += testOld<AVX2::Kernels8>(8, 256, 256); + oldAVX2 += testOld<AVX2::Kernels8>(8, 2048, 256); + oldAVX2 += testOld<AVX2::Kernels8>(320, 256, 256); + oldAVX2 += testOld<AVX2::Kernels8>(472, 256, 256); + oldAVX2 += testOld<AVX2::Kernels8>(248, 256, 256); + oldAVX2 += testOld<AVX2::Kernels8>(200, 256, 256); + } + + std::cout << repeat << " iterations of AVX2 took: " << oldAVX2.count() << " seconds." << std::endl; + + std::chrono::duration<double> newTimeAVX2 = testOld<AVX2::Kernels8>(1, 64, 8); + for (int i = 0; i<repeat; i++) { + newTimeAVX2 += testNew<AVX2::Kernels8>(8, 256, 256); + newTimeAVX2 += testNew<AVX2::Kernels8>(8, 2048, 256); + newTimeAVX2 += testNew<AVX2::Kernels8>(320, 256, 256); + newTimeAVX2 += testNew<AVX2::Kernels8>(472, 256, 256); + newTimeAVX2 += testNew<AVX2::Kernels8>(248, 256, 256); + newTimeAVX2 += testNew<AVX2::Kernels8>(200, 256, 256); + } + + std::cout << repeat << " iterations of Shifted AVX2 took: " << newTimeAVX2.count() << " seconds." << std::endl; +#endif +#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512BW + if (kCPU < CPUType::AVX512BW) return 0; + std::chrono::duration<double> oldAVX512_nobias = testOld_nobias<AVX512BW::Kernels8>(1, 64, 8); + for (int i = 0; i<repeat; i++) { + oldAVX512_nobias += testOld_nobias<AVX512BW::Kernels8>(8, 256, 256); + oldAVX512_nobias += testOld_nobias<AVX512BW::Kernels8>(8, 2048, 256); + oldAVX512_nobias += testOld_nobias<AVX512BW::Kernels8>(320, 256, 256); + oldAVX512_nobias += testOld_nobias<AVX512BW::Kernels8>(472, 256, 256); + oldAVX512_nobias += testOld_nobias<AVX512BW::Kernels8>(248, 256, 256); + oldAVX512_nobias += testOld_nobias<AVX512BW::Kernels8>(200, 256, 256); + } + + std::cout << repeat << " iterations of AVX512 without bias took: " << oldAVX512_nobias.count() << " seconds." << std::endl; + + std::chrono::duration<double> oldAVX512 = testOld<AVX512BW::Kernels8>(1, 64, 8); + for (int i = 0; i<repeat; i++) { + oldAVX512 += testOld<AVX512BW::Kernels8>(8, 256, 256); + oldAVX512 += testOld<AVX512BW::Kernels8>(8, 2048, 256); + oldAVX512 += testOld<AVX512BW::Kernels8>(320, 256, 256); + oldAVX512 += testOld<AVX512BW::Kernels8>(472, 256, 256); + oldAVX512 += testOld<AVX512BW::Kernels8>(248, 256, 256); + oldAVX512 += testOld<AVX512BW::Kernels8>(200, 256, 256); + } + + std::cout << repeat << " iterations of AVX512 took: " << oldAVX512.count() << " seconds." << std::endl; + + std::chrono::duration<double> newTimeAVX512 = testOld<AVX512BW::Kernels8>(1, 64, 8); + for (int i = 0; i<repeat; i++) { + newTimeAVX512 += testNew<AVX512BW::Kernels8>(8, 256, 256); + newTimeAVX512 += testNew<AVX512BW::Kernels8>(8, 2048, 256); + newTimeAVX512 += testNew<AVX512BW::Kernels8>(320, 256, 256); + newTimeAVX512 += testNew<AVX512BW::Kernels8>(472, 256, 256); + newTimeAVX512 += testNew<AVX512BW::Kernels8>(248, 256, 256); + newTimeAVX512 += testNew<AVX512BW::Kernels8>(200, 256, 256); + } + + std::cout << repeat << " iterations of Shifted AVX512 took: " << newTimeAVX512.count() << " seconds." << std::endl; +#endif +#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512VNNI + if (kCPU < CPUType::AVX512VNNI) return 0; + std::chrono::duration<double> oldAVX512VNNI_nobias = testOld_nobias<AVX512BW::Kernels8>(1, 64, 8); + for (int i = 0; i<repeat; i++) { + oldAVX512VNNI_nobias += testOld_nobias<AVX512VNNI::Kernels8>(8, 256, 256); + oldAVX512VNNI_nobias += testOld_nobias<AVX512VNNI::Kernels8>(8, 2048, 256); + oldAVX512VNNI_nobias += testOld_nobias<AVX512VNNI::Kernels8>(320, 256, 256); + oldAVX512VNNI_nobias += testOld_nobias<AVX512VNNI::Kernels8>(472, 256, 256); + oldAVX512VNNI_nobias += testOld_nobias<AVX512VNNI::Kernels8>(248, 256, 256); + oldAVX512VNNI_nobias += testOld_nobias<AVX512VNNI::Kernels8>(200, 256, 256); + } + + std::cout << repeat << " iterations of AVX512VNNI without bias took: " << oldAVX512VNNI_nobias.count() << " seconds." << std::endl; + + std::chrono::duration<double> oldAVX512VNNI = testOld<AVX512BW::Kernels8>(1, 64, 8); + for (int i = 0; i<repeat; i++) { + oldAVX512VNNI += testOld<AVX512VNNI::Kernels8>(8, 256, 256); + oldAVX512VNNI += testOld<AVX512VNNI::Kernels8>(8, 2048, 256); + oldAVX512VNNI += testOld<AVX512VNNI::Kernels8>(320, 256, 256); + oldAVX512VNNI += testOld<AVX512VNNI::Kernels8>(472, 256, 256); + oldAVX512VNNI += testOld<AVX512VNNI::Kernels8>(248, 256, 256); + oldAVX512VNNI += testOld<AVX512VNNI::Kernels8>(200, 256, 256); + } + + std::cout << repeat << " iterations of AVX512VNNI took: " << oldAVX512VNNI.count() << " seconds." << std::endl; + + std::chrono::duration<double> newTimeAVX512VNNI = testOld<AVX512BW::Kernels8>(1, 64, 8); + for (int i = 0; i<repeat; i++) { + newTimeAVX512VNNI += testNew<AVX512VNNI::Kernels8>(8, 256, 256); + newTimeAVX512VNNI += testNew<AVX512VNNI::Kernels8>(8, 2048, 256); + newTimeAVX512VNNI += testNew<AVX512VNNI::Kernels8>(320, 256, 256); + newTimeAVX512VNNI += testNew<AVX512VNNI::Kernels8>(472, 256, 256); + newTimeAVX512VNNI += testNew<AVX512VNNI::Kernels8>(248, 256, 256); + newTimeAVX512VNNI += testNew<AVX512VNNI::Kernels8>(200, 256, 256); + } + + std::cout << repeat << " iterations of Shifted AVX512VNNI took: " << newTimeAVX512VNNI.count() << " seconds." << std::endl; +#endif + +} |