summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/rtc_base/containers/flat_tree.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/libwebrtc/rtc_base/containers/flat_tree.h')
-rw-r--r--third_party/libwebrtc/rtc_base/containers/flat_tree.h1099
1 files changed, 1099 insertions, 0 deletions
diff --git a/third_party/libwebrtc/rtc_base/containers/flat_tree.h b/third_party/libwebrtc/rtc_base/containers/flat_tree.h
new file mode 100644
index 0000000000..480784ced4
--- /dev/null
+++ b/third_party/libwebrtc/rtc_base/containers/flat_tree.h
@@ -0,0 +1,1099 @@
+/*
+ * Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+// This implementation is borrowed from Chromium.
+
+#ifndef RTC_BASE_CONTAINERS_FLAT_TREE_H_
+#define RTC_BASE_CONTAINERS_FLAT_TREE_H_
+
+#include <algorithm>
+#include <iterator>
+#include <type_traits>
+#include <utility>
+#include <vector>
+
+#include "absl/algorithm/container.h"
+#include "rtc_base/checks.h"
+#include "rtc_base/system/no_unique_address.h"
+
+namespace webrtc {
+// Tag type that allows skipping the sort_and_unique step when constructing a
+// flat_tree in case the underlying container is already sorted and has no
+// duplicate elements.
+struct sorted_unique_t {
+ constexpr sorted_unique_t() = default;
+};
+extern sorted_unique_t sorted_unique;
+
+namespace flat_containers_internal {
+
+// Helper functions used in RTC_DCHECKs below to make sure that inputs tagged
+// with sorted_unique are indeed sorted and unique.
+template <typename Range, typename Comp>
+constexpr bool is_sorted_and_unique(const Range& range, Comp comp) {
+ // Being unique implies that there are no adjacent elements that
+ // compare equal. So this checks that each element is strictly less
+ // than the element after it.
+ return absl::c_adjacent_find(range, std::not_fn(comp)) == std::end(range);
+}
+
+// This is a convenience trait inheriting from std::true_type if Iterator is at
+// least a ForwardIterator and thus supports multiple passes over a range.
+template <class Iterator>
+using is_multipass =
+ std::is_base_of<std::forward_iterator_tag,
+ typename std::iterator_traits<Iterator>::iterator_category>;
+
+// Uses SFINAE to detect whether type has is_transparent member.
+template <typename T, typename = void>
+struct IsTransparentCompare : std::false_type {};
+template <typename T>
+struct IsTransparentCompare<T, std::void_t<typename T::is_transparent>>
+ : std::true_type {};
+
+// Helper inspired by C++20's std::to_array to convert a C-style array to a
+// std::array. As opposed to the C++20 version this implementation does not
+// provide an overload for rvalues and does not strip cv qualifers from the
+// returned std::array::value_type. The returned value_type needs to be
+// specified explicitly, allowing the construction of std::arrays with const
+// elements.
+//
+// Reference: https://en.cppreference.com/w/cpp/container/array/to_array
+template <typename U, typename T, size_t N, size_t... I>
+constexpr std::array<U, N> ToArrayImpl(const T (&data)[N],
+ std::index_sequence<I...>) {
+ return {{data[I]...}};
+}
+
+template <typename U, typename T, size_t N>
+constexpr std::array<U, N> ToArray(const T (&data)[N]) {
+ return ToArrayImpl<U>(data, std::make_index_sequence<N>());
+}
+
+// std::pair's operator= is not constexpr prior to C++20. Thus we need this
+// small helper to invoke operator= on the .first and .second member explicitly.
+template <typename T>
+constexpr void Assign(T& lhs, T&& rhs) {
+ lhs = std::move(rhs);
+}
+
+template <typename T, typename U>
+constexpr void Assign(std::pair<T, U>& lhs, std::pair<T, U>&& rhs) {
+ Assign(lhs.first, std::move(rhs.first));
+ Assign(lhs.second, std::move(rhs.second));
+}
+
+// constexpr swap implementation. std::swap is not constexpr prior to C++20.
+template <typename T>
+constexpr void Swap(T& lhs, T& rhs) {
+ T tmp = std::move(lhs);
+ Assign(lhs, std::move(rhs));
+ Assign(rhs, std::move(tmp));
+}
+
+// constexpr prev implementation. std::prev is not constexpr prior to C++17.
+template <typename BidirIt>
+constexpr BidirIt Prev(BidirIt it) {
+ return --it;
+}
+
+// constexpr next implementation. std::next is not constexpr prior to C++17.
+template <typename InputIt>
+constexpr InputIt Next(InputIt it) {
+ return ++it;
+}
+
+// constexpr sort implementation. std::sort is not constexpr prior to C++20.
+// While insertion sort has a quadratic worst case complexity, it was chosen
+// because it has linear complexity for nearly sorted data, is stable, and
+// simple to implement.
+template <typename BidirIt, typename Compare>
+constexpr void InsertionSort(BidirIt first, BidirIt last, const Compare& comp) {
+ if (first == last)
+ return;
+
+ for (auto it = Next(first); it != last; ++it) {
+ for (auto curr = it; curr != first && comp(*curr, *Prev(curr)); --curr)
+ Swap(*curr, *Prev(curr));
+ }
+}
+
+// Implementation -------------------------------------------------------------
+
+// Implementation for the sorted associative flat_set and flat_map using a
+// sorted vector as the backing store. Do not use directly.
+//
+// The use of "value" in this is like std::map uses, meaning it's the thing
+// contained (in the case of map it's a <Kay, Mapped> pair). The Key is how
+// things are looked up. In the case of a set, Key == Value. In the case of
+// a map, the Key is a component of a Value.
+//
+// The helper class GetKeyFromValue provides the means to extract a key from a
+// value for comparison purposes. It should implement:
+// const Key& operator()(const Value&).
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+class flat_tree {
+ public:
+ // --------------------------------------------------------------------------
+ // Types.
+ //
+ using key_type = Key;
+ using key_compare = KeyCompare;
+ using value_type = typename Container::value_type;
+
+ // Wraps the templated key comparison to compare values.
+ struct value_compare {
+ constexpr bool operator()(const value_type& left,
+ const value_type& right) const {
+ GetKeyFromValue extractor;
+ return comp(extractor(left), extractor(right));
+ }
+
+ RTC_NO_UNIQUE_ADDRESS key_compare comp;
+ };
+
+ using pointer = typename Container::pointer;
+ using const_pointer = typename Container::const_pointer;
+ using reference = typename Container::reference;
+ using const_reference = typename Container::const_reference;
+ using size_type = typename Container::size_type;
+ using difference_type = typename Container::difference_type;
+ using iterator = typename Container::iterator;
+ using const_iterator = typename Container::const_iterator;
+ using reverse_iterator = typename Container::reverse_iterator;
+ using const_reverse_iterator = typename Container::const_reverse_iterator;
+ using container_type = Container;
+
+ // --------------------------------------------------------------------------
+ // Lifetime.
+ //
+ // Constructors that take range guarantee O(N * log^2(N)) + O(N) complexity
+ // and take O(N * log(N)) + O(N) if extra memory is available (N is a range
+ // length).
+ //
+ // Assume that move constructors invalidate iterators and references.
+ //
+ // The constructors that take ranges, lists, and vectors do not require that
+ // the input be sorted.
+ //
+ // When passing the webrtc::sorted_unique tag as the first argument no sort
+ // and unique step takes places. This is useful if the underlying container
+ // already has the required properties.
+
+ flat_tree() = default;
+ flat_tree(const flat_tree&) = default;
+ flat_tree(flat_tree&&) = default;
+
+ explicit flat_tree(const key_compare& comp);
+
+ template <class InputIterator>
+ flat_tree(InputIterator first,
+ InputIterator last,
+ const key_compare& comp = key_compare());
+
+ flat_tree(const container_type& items,
+ const key_compare& comp = key_compare());
+
+ explicit flat_tree(container_type&& items,
+ const key_compare& comp = key_compare());
+
+ flat_tree(std::initializer_list<value_type> ilist,
+ const key_compare& comp = key_compare());
+
+ template <class InputIterator>
+ flat_tree(sorted_unique_t,
+ InputIterator first,
+ InputIterator last,
+ const key_compare& comp = key_compare());
+
+ flat_tree(sorted_unique_t,
+ const container_type& items,
+ const key_compare& comp = key_compare());
+
+ constexpr flat_tree(sorted_unique_t,
+ container_type&& items,
+ const key_compare& comp = key_compare());
+
+ flat_tree(sorted_unique_t,
+ std::initializer_list<value_type> ilist,
+ const key_compare& comp = key_compare());
+
+ ~flat_tree() = default;
+
+ // --------------------------------------------------------------------------
+ // Assignments.
+ //
+ // Assume that move assignment invalidates iterators and references.
+
+ flat_tree& operator=(const flat_tree&) = default;
+ flat_tree& operator=(flat_tree&&) = default;
+ // Takes the first if there are duplicates in the initializer list.
+ flat_tree& operator=(std::initializer_list<value_type> ilist);
+
+ // --------------------------------------------------------------------------
+ // Memory management.
+ //
+ // Beware that shrink_to_fit() simply forwards the request to the
+ // container_type and its implementation is free to optimize otherwise and
+ // leave capacity() to be greater that its size.
+ //
+ // reserve() and shrink_to_fit() invalidate iterators and references.
+
+ void reserve(size_type new_capacity);
+ size_type capacity() const;
+ void shrink_to_fit();
+
+ // --------------------------------------------------------------------------
+ // Size management.
+ //
+ // clear() leaves the capacity() of the flat_tree unchanged.
+
+ void clear();
+
+ constexpr size_type size() const;
+ constexpr size_type max_size() const;
+ constexpr bool empty() const;
+
+ // --------------------------------------------------------------------------
+ // Iterators.
+ //
+ // Iterators follow the ordering defined by the key comparator used in
+ // construction of the flat_tree.
+
+ iterator begin();
+ constexpr const_iterator begin() const;
+ const_iterator cbegin() const;
+
+ iterator end();
+ constexpr const_iterator end() const;
+ const_iterator cend() const;
+
+ reverse_iterator rbegin();
+ const_reverse_iterator rbegin() const;
+ const_reverse_iterator crbegin() const;
+
+ reverse_iterator rend();
+ const_reverse_iterator rend() const;
+ const_reverse_iterator crend() const;
+
+ // --------------------------------------------------------------------------
+ // Insert operations.
+ //
+ // Assume that every operation invalidates iterators and references.
+ // Insertion of one element can take O(size). Capacity of flat_tree grows in
+ // an implementation-defined manner.
+ //
+ // NOTE: Prefer to build a new flat_tree from a std::vector (or similar)
+ // instead of calling insert() repeatedly.
+
+ std::pair<iterator, bool> insert(const value_type& val);
+ std::pair<iterator, bool> insert(value_type&& val);
+
+ iterator insert(const_iterator position_hint, const value_type& x);
+ iterator insert(const_iterator position_hint, value_type&& x);
+
+ // This method inserts the values from the range [first, last) into the
+ // current tree.
+ template <class InputIterator>
+ void insert(InputIterator first, InputIterator last);
+
+ template <class... Args>
+ std::pair<iterator, bool> emplace(Args&&... args);
+
+ template <class... Args>
+ iterator emplace_hint(const_iterator position_hint, Args&&... args);
+
+ // --------------------------------------------------------------------------
+ // Underlying type operations.
+ //
+ // Assume that either operation invalidates iterators and references.
+
+ // Extracts the container_type and returns it to the caller. Ensures that
+ // `this` is `empty()` afterwards.
+ container_type extract() &&;
+
+ // Replaces the container_type with `body`. Expects that `body` is sorted
+ // and has no repeated elements with regard to value_comp().
+ void replace(container_type&& body);
+
+ // --------------------------------------------------------------------------
+ // Erase operations.
+ //
+ // Assume that every operation invalidates iterators and references.
+ //
+ // erase(position), erase(first, last) can take O(size).
+ // erase(key) may take O(size) + O(log(size)).
+ //
+ // Prefer webrtc::EraseIf() or some other variation on erase(remove(), end())
+ // idiom when deleting multiple non-consecutive elements.
+
+ iterator erase(iterator position);
+ // Artificially templatized to break ambiguity if `iterator` and
+ // `const_iterator` are the same type.
+ template <typename DummyT = void>
+ iterator erase(const_iterator position);
+ iterator erase(const_iterator first, const_iterator last);
+ template <typename K>
+ size_type erase(const K& key);
+
+ // --------------------------------------------------------------------------
+ // Comparators.
+
+ constexpr key_compare key_comp() const;
+ constexpr value_compare value_comp() const;
+
+ // --------------------------------------------------------------------------
+ // Search operations.
+ //
+ // Search operations have O(log(size)) complexity.
+
+ template <typename K>
+ size_type count(const K& key) const;
+
+ template <typename K>
+ iterator find(const K& key);
+
+ template <typename K>
+ const_iterator find(const K& key) const;
+
+ template <typename K>
+ bool contains(const K& key) const;
+
+ template <typename K>
+ std::pair<iterator, iterator> equal_range(const K& key);
+
+ template <typename K>
+ std::pair<const_iterator, const_iterator> equal_range(const K& key) const;
+
+ template <typename K>
+ iterator lower_bound(const K& key);
+
+ template <typename K>
+ const_iterator lower_bound(const K& key) const;
+
+ template <typename K>
+ iterator upper_bound(const K& key);
+
+ template <typename K>
+ const_iterator upper_bound(const K& key) const;
+
+ // --------------------------------------------------------------------------
+ // General operations.
+ //
+ // Assume that swap invalidates iterators and references.
+ //
+ // Implementation note: currently we use operator==() and operator<() on
+ // std::vector, because they have the same contract we need, so we use them
+ // directly for brevity and in case it is more optimal than calling equal()
+ // and lexicograhpical_compare(). If the underlying container type is changed,
+ // this code may need to be modified.
+
+ void swap(flat_tree& other) noexcept;
+
+ friend bool operator==(const flat_tree& lhs, const flat_tree& rhs) {
+ return lhs.body_ == rhs.body_;
+ }
+
+ friend bool operator!=(const flat_tree& lhs, const flat_tree& rhs) {
+ return !(lhs == rhs);
+ }
+
+ friend bool operator<(const flat_tree& lhs, const flat_tree& rhs) {
+ return lhs.body_ < rhs.body_;
+ }
+
+ friend bool operator>(const flat_tree& lhs, const flat_tree& rhs) {
+ return rhs < lhs;
+ }
+
+ friend bool operator>=(const flat_tree& lhs, const flat_tree& rhs) {
+ return !(lhs < rhs);
+ }
+
+ friend bool operator<=(const flat_tree& lhs, const flat_tree& rhs) {
+ return !(lhs > rhs);
+ }
+
+ friend void swap(flat_tree& lhs, flat_tree& rhs) noexcept { lhs.swap(rhs); }
+
+ protected:
+ // Emplaces a new item into the tree that is known not to be in it. This
+ // is for implementing map operator[].
+ template <class... Args>
+ iterator unsafe_emplace(const_iterator position, Args&&... args);
+
+ // Attempts to emplace a new element with key `key`. Only if `key` is not yet
+ // present, construct value_type from `args` and insert it. Returns an
+ // iterator to the element with key `key` and a bool indicating whether an
+ // insertion happened.
+ template <class K, class... Args>
+ std::pair<iterator, bool> emplace_key_args(const K& key, Args&&... args);
+
+ // Similar to `emplace_key_args`, but checks `hint` first as a possible
+ // insertion position.
+ template <class K, class... Args>
+ std::pair<iterator, bool> emplace_hint_key_args(const_iterator hint,
+ const K& key,
+ Args&&... args);
+
+ private:
+ // Helper class for e.g. lower_bound that can compare a value on the left
+ // to a key on the right.
+ struct KeyValueCompare {
+ // The key comparison object must outlive this class.
+ explicit KeyValueCompare(const key_compare& comp) : comp_(comp) {}
+
+ template <typename T, typename U>
+ bool operator()(const T& lhs, const U& rhs) const {
+ return comp_(extract_if_value_type(lhs), extract_if_value_type(rhs));
+ }
+
+ private:
+ const key_type& extract_if_value_type(const value_type& v) const {
+ GetKeyFromValue extractor;
+ return extractor(v);
+ }
+
+ template <typename K>
+ const K& extract_if_value_type(const K& k) const {
+ return k;
+ }
+
+ const key_compare& comp_;
+ };
+
+ iterator const_cast_it(const_iterator c_it) {
+ auto distance = std::distance(cbegin(), c_it);
+ return std::next(begin(), distance);
+ }
+
+ // This method is inspired by both std::map::insert(P&&) and
+ // std::map::insert_or_assign(const K&, V&&). It inserts val if an equivalent
+ // element is not present yet, otherwise it overwrites. It returns an iterator
+ // to the modified element and a flag indicating whether insertion or
+ // assignment happened.
+ template <class V>
+ std::pair<iterator, bool> insert_or_assign(V&& val) {
+ auto position = lower_bound(GetKeyFromValue()(val));
+
+ if (position == end() || value_comp()(val, *position))
+ return {body_.emplace(position, std::forward<V>(val)), true};
+
+ *position = std::forward<V>(val);
+ return {position, false};
+ }
+
+ // This method is similar to insert_or_assign, with the following differences:
+ // - Instead of searching [begin(), end()) it only searches [first, last).
+ // - In case no equivalent element is found, val is appended to the end of the
+ // underlying body and an iterator to the next bigger element in [first,
+ // last) is returned.
+ template <class V>
+ std::pair<iterator, bool> append_or_assign(iterator first,
+ iterator last,
+ V&& val) {
+ auto position = std::lower_bound(first, last, val, value_comp());
+
+ if (position == last || value_comp()(val, *position)) {
+ // emplace_back might invalidate position, which is why distance needs to
+ // be cached.
+ const difference_type distance = std::distance(begin(), position);
+ body_.emplace_back(std::forward<V>(val));
+ return {std::next(begin(), distance), true};
+ }
+
+ *position = std::forward<V>(val);
+ return {position, false};
+ }
+
+ // This method is similar to insert, with the following differences:
+ // - Instead of searching [begin(), end()) it only searches [first, last).
+ // - In case no equivalent element is found, val is appended to the end of the
+ // underlying body and an iterator to the next bigger element in [first,
+ // last) is returned.
+ template <class V>
+ std::pair<iterator, bool> append_unique(iterator first,
+ iterator last,
+ V&& val) {
+ auto position = std::lower_bound(first, last, val, value_comp());
+
+ if (position == last || value_comp()(val, *position)) {
+ // emplace_back might invalidate position, which is why distance needs to
+ // be cached.
+ const difference_type distance = std::distance(begin(), position);
+ body_.emplace_back(std::forward<V>(val));
+ return {std::next(begin(), distance), true};
+ }
+
+ return {position, false};
+ }
+
+ void sort_and_unique(iterator first, iterator last) {
+ // Preserve stability for the unique code below.
+ std::stable_sort(first, last, value_comp());
+
+ // lhs is already <= rhs due to sort, therefore !(lhs < rhs) <=> lhs == rhs.
+ auto equal_comp = std::not_fn(value_comp());
+ erase(std::unique(first, last, equal_comp), last);
+ }
+
+ void sort_and_unique() { sort_and_unique(begin(), end()); }
+
+ // To support comparators that may not be possible to default-construct, we
+ // have to store an instance of Compare. Since Compare commonly is stateless,
+ // we use the RTC_NO_UNIQUE_ADDRESS attribute to save space.
+ RTC_NO_UNIQUE_ADDRESS key_compare comp_;
+ // Declare after `key_compare_comp_` to workaround GCC ICE. For details
+ // see https://crbug.com/1156268
+ container_type body_;
+
+ // If the compare is not transparent we want to construct key_type once.
+ template <typename K>
+ using KeyTypeOrK = typename std::
+ conditional<IsTransparentCompare<key_compare>::value, K, key_type>::type;
+};
+
+// ----------------------------------------------------------------------------
+// Lifetime.
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
+ const KeyCompare& comp)
+ : comp_(comp) {}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <class InputIterator>
+flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
+ InputIterator first,
+ InputIterator last,
+ const KeyCompare& comp)
+ : comp_(comp), body_(first, last) {
+ sort_and_unique();
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
+ const container_type& items,
+ const KeyCompare& comp)
+ : comp_(comp), body_(items) {
+ sort_and_unique();
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
+ container_type&& items,
+ const KeyCompare& comp)
+ : comp_(comp), body_(std::move(items)) {
+ sort_and_unique();
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
+ std::initializer_list<value_type> ilist,
+ const KeyCompare& comp)
+ : flat_tree(std::begin(ilist), std::end(ilist), comp) {}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <class InputIterator>
+flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
+ sorted_unique_t,
+ InputIterator first,
+ InputIterator last,
+ const KeyCompare& comp)
+ : comp_(comp), body_(first, last) {
+ RTC_DCHECK(is_sorted_and_unique(*this, value_comp()));
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
+ sorted_unique_t,
+ const container_type& items,
+ const KeyCompare& comp)
+ : comp_(comp), body_(items) {
+ RTC_DCHECK(is_sorted_and_unique(*this, value_comp()));
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+constexpr flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
+ sorted_unique_t,
+ container_type&& items,
+ const KeyCompare& comp)
+ : comp_(comp), body_(std::move(items)) {
+ RTC_DCHECK(is_sorted_and_unique(*this, value_comp()));
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree(
+ sorted_unique_t,
+ std::initializer_list<value_type> ilist,
+ const KeyCompare& comp)
+ : flat_tree(sorted_unique, std::begin(ilist), std::end(ilist), comp) {}
+
+// ----------------------------------------------------------------------------
+// Assignments.
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::operator=(
+ std::initializer_list<value_type> ilist) -> flat_tree& {
+ body_ = ilist;
+ sort_and_unique();
+ return *this;
+}
+
+// ----------------------------------------------------------------------------
+// Memory management.
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::reserve(
+ size_type new_capacity) {
+ body_.reserve(new_capacity);
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::capacity() const
+ -> size_type {
+ return body_.capacity();
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::shrink_to_fit() {
+ body_.shrink_to_fit();
+}
+
+// ----------------------------------------------------------------------------
+// Size management.
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::clear() {
+ body_.clear();
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::size()
+ const -> size_type {
+ return body_.size();
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+constexpr auto
+flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::max_size() const
+ -> size_type {
+ return body_.max_size();
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+constexpr bool flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::empty()
+ const {
+ return body_.empty();
+}
+
+// ----------------------------------------------------------------------------
+// Iterators.
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::begin()
+ -> iterator {
+ return body_.begin();
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::begin()
+ const -> const_iterator {
+ return std::begin(body_);
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::cbegin() const
+ -> const_iterator {
+ return body_.cbegin();
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::end() -> iterator {
+ return body_.end();
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::end()
+ const -> const_iterator {
+ return std::end(body_);
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::cend() const
+ -> const_iterator {
+ return body_.cend();
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rbegin()
+ -> reverse_iterator {
+ return body_.rbegin();
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rbegin() const
+ -> const_reverse_iterator {
+ return body_.rbegin();
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::crbegin() const
+ -> const_reverse_iterator {
+ return body_.crbegin();
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rend()
+ -> reverse_iterator {
+ return body_.rend();
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rend() const
+ -> const_reverse_iterator {
+ return body_.rend();
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::crend() const
+ -> const_reverse_iterator {
+ return body_.crend();
+}
+
+// ----------------------------------------------------------------------------
+// Insert operations.
+//
+// Currently we use position_hint the same way as eastl or boost:
+// https://github.com/electronicarts/EASTL/blob/master/include/EASTL/vector_set.h#L493
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
+ const value_type& val) -> std::pair<iterator, bool> {
+ return emplace_key_args(GetKeyFromValue()(val), val);
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
+ value_type&& val) -> std::pair<iterator, bool> {
+ return emplace_key_args(GetKeyFromValue()(val), std::move(val));
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
+ const_iterator position_hint,
+ const value_type& val) -> iterator {
+ return emplace_hint_key_args(position_hint, GetKeyFromValue()(val), val)
+ .first;
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
+ const_iterator position_hint,
+ value_type&& val) -> iterator {
+ return emplace_hint_key_args(position_hint, GetKeyFromValue()(val),
+ std::move(val))
+ .first;
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <class InputIterator>
+void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert(
+ InputIterator first,
+ InputIterator last) {
+ if (first == last)
+ return;
+
+ // Dispatch to single element insert if the input range contains a single
+ // element.
+ if (is_multipass<InputIterator>() && std::next(first) == last) {
+ insert(end(), *first);
+ return;
+ }
+
+ // Provide a convenience lambda to obtain an iterator pointing past the last
+ // old element. This needs to be dymanic due to possible re-allocations.
+ auto middle = [this, size = size()] { return std::next(begin(), size); };
+
+ // For batch updates initialize the first insertion point.
+ difference_type pos_first_new = size();
+
+ // Loop over the input range while appending new values and overwriting
+ // existing ones, if applicable. Keep track of the first insertion point.
+ for (; first != last; ++first) {
+ std::pair<iterator, bool> result = append_unique(begin(), middle(), *first);
+ if (result.second) {
+ pos_first_new =
+ std::min(pos_first_new, std::distance(begin(), result.first));
+ }
+ }
+
+ // The new elements might be unordered and contain duplicates, so post-process
+ // the just inserted elements and merge them with the rest, inserting them at
+ // the previously found spot.
+ sort_and_unique(middle(), end());
+ std::inplace_merge(std::next(begin(), pos_first_new), middle(), end(),
+ value_comp());
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <class... Args>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace(
+ Args&&... args) -> std::pair<iterator, bool> {
+ return insert(value_type(std::forward<Args>(args)...));
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <class... Args>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace_hint(
+ const_iterator position_hint,
+ Args&&... args) -> iterator {
+ return insert(position_hint, value_type(std::forward<Args>(args)...));
+}
+
+// ----------------------------------------------------------------------------
+// Underlying type operations.
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::
+ extract() && -> container_type {
+ return std::exchange(body_, container_type());
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::replace(
+ container_type&& body) {
+ // Ensure that `body` is sorted and has no repeated elements according to
+ // `value_comp()`.
+ RTC_DCHECK(is_sorted_and_unique(body, value_comp()));
+ body_ = std::move(body);
+}
+
+// ----------------------------------------------------------------------------
+// Erase operations.
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(
+ iterator position) -> iterator {
+ RTC_CHECK(position != body_.end());
+ return body_.erase(position);
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <typename DummyT>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(
+ const_iterator position) -> iterator {
+ RTC_CHECK(position != body_.end());
+ return body_.erase(position);
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <typename K>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(const K& val)
+ -> size_type {
+ auto eq_range = equal_range(val);
+ auto res = std::distance(eq_range.first, eq_range.second);
+ erase(eq_range.first, eq_range.second);
+ return res;
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(
+ const_iterator first,
+ const_iterator last) -> iterator {
+ return body_.erase(first, last);
+}
+
+// ----------------------------------------------------------------------------
+// Comparators.
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+constexpr auto
+flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::key_comp() const
+ -> key_compare {
+ return comp_;
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+constexpr auto
+flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::value_comp() const
+ -> value_compare {
+ return value_compare{comp_};
+}
+
+// ----------------------------------------------------------------------------
+// Search operations.
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <typename K>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::count(
+ const K& key) const -> size_type {
+ auto eq_range = equal_range(key);
+ return std::distance(eq_range.first, eq_range.second);
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <typename K>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find(const K& key)
+ -> iterator {
+ return const_cast_it(std::as_const(*this).find(key));
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <typename K>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find(
+ const K& key) const -> const_iterator {
+ auto eq_range = equal_range(key);
+ return (eq_range.first == eq_range.second) ? end() : eq_range.first;
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <typename K>
+bool flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::contains(
+ const K& key) const {
+ auto lower = lower_bound(key);
+ return lower != end() && !comp_(key, GetKeyFromValue()(*lower));
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <typename K>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range(
+ const K& key) -> std::pair<iterator, iterator> {
+ auto res = std::as_const(*this).equal_range(key);
+ return {const_cast_it(res.first), const_cast_it(res.second)};
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <typename K>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range(
+ const K& key) const -> std::pair<const_iterator, const_iterator> {
+ auto lower = lower_bound(key);
+
+ KeyValueCompare comp(comp_);
+ if (lower == end() || comp(key, *lower))
+ return {lower, lower};
+
+ return {lower, std::next(lower)};
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <typename K>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound(
+ const K& key) -> iterator {
+ return const_cast_it(std::as_const(*this).lower_bound(key));
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <typename K>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound(
+ const K& key) const -> const_iterator {
+ static_assert(std::is_convertible<const KeyTypeOrK<K>&, const K&>::value,
+ "Requested type cannot be bound to the container's key_type "
+ "which is required for a non-transparent compare.");
+
+ const KeyTypeOrK<K>& key_ref = key;
+
+ KeyValueCompare comp(comp_);
+ return absl::c_lower_bound(*this, key_ref, comp);
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <typename K>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound(
+ const K& key) -> iterator {
+ return const_cast_it(std::as_const(*this).upper_bound(key));
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <typename K>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound(
+ const K& key) const -> const_iterator {
+ static_assert(std::is_convertible<const KeyTypeOrK<K>&, const K&>::value,
+ "Requested type cannot be bound to the container's key_type "
+ "which is required for a non-transparent compare.");
+
+ const KeyTypeOrK<K>& key_ref = key;
+
+ KeyValueCompare comp(comp_);
+ return absl::c_upper_bound(*this, key_ref, comp);
+}
+
+// ----------------------------------------------------------------------------
+// General operations.
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::swap(
+ flat_tree& other) noexcept {
+ std::swap(*this, other);
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <class... Args>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::unsafe_emplace(
+ const_iterator position,
+ Args&&... args) -> iterator {
+ return body_.emplace(position, std::forward<Args>(args)...);
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <class K, class... Args>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace_key_args(
+ const K& key,
+ Args&&... args) -> std::pair<iterator, bool> {
+ auto lower = lower_bound(key);
+ if (lower == end() || comp_(key, GetKeyFromValue()(*lower)))
+ return {unsafe_emplace(lower, std::forward<Args>(args)...), true};
+ return {lower, false};
+}
+
+template <class Key, class GetKeyFromValue, class KeyCompare, class Container>
+template <class K, class... Args>
+auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::
+ emplace_hint_key_args(const_iterator hint, const K& key, Args&&... args)
+ -> std::pair<iterator, bool> {
+ KeyValueCompare comp(comp_);
+ if ((hint == begin() || comp(*std::prev(hint), key))) {
+ if (hint == end() || comp(key, *hint)) {
+ // *(hint - 1) < key < *hint => key did not exist and hint is correct.
+ return {unsafe_emplace(hint, std::forward<Args>(args)...), true};
+ }
+ if (!comp(*hint, key)) {
+ // key == *hint => no-op, return correct hint.
+ return {const_cast_it(hint), false};
+ }
+ }
+ // hint was not helpful, dispatch to hintless version.
+ return emplace_key_args(key, std::forward<Args>(args)...);
+}
+
+// ----------------------------------------------------------------------------
+// Free functions.
+
+// Erases all elements that match predicate. It has O(size) complexity.
+template <class Key,
+ class GetKeyFromValue,
+ class KeyCompare,
+ class Container,
+ typename Predicate>
+size_t EraseIf(
+ webrtc::flat_containers_internal::
+ flat_tree<Key, GetKeyFromValue, KeyCompare, Container>& container,
+ Predicate pred) {
+ auto it = std::remove_if(container.begin(), container.end(),
+ std::forward<Predicate>(pred));
+ size_t removed = std::distance(it, container.end());
+ container.erase(it, container.end());
+ return removed;
+}
+
+} // namespace flat_containers_internal
+} // namespace webrtc
+
+#endif // RTC_BASE_CONTAINERS_FLAT_TREE_H_