diff options
Diffstat (limited to 'third_party/libwebrtc/rtc_base/containers/flat_tree.h')
-rw-r--r-- | third_party/libwebrtc/rtc_base/containers/flat_tree.h | 1099 |
1 files changed, 1099 insertions, 0 deletions
diff --git a/third_party/libwebrtc/rtc_base/containers/flat_tree.h b/third_party/libwebrtc/rtc_base/containers/flat_tree.h new file mode 100644 index 0000000000..480784ced4 --- /dev/null +++ b/third_party/libwebrtc/rtc_base/containers/flat_tree.h @@ -0,0 +1,1099 @@ +/* + * Copyright (c) 2021 The WebRTC project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +// This implementation is borrowed from Chromium. + +#ifndef RTC_BASE_CONTAINERS_FLAT_TREE_H_ +#define RTC_BASE_CONTAINERS_FLAT_TREE_H_ + +#include <algorithm> +#include <iterator> +#include <type_traits> +#include <utility> +#include <vector> + +#include "absl/algorithm/container.h" +#include "rtc_base/checks.h" +#include "rtc_base/system/no_unique_address.h" + +namespace webrtc { +// Tag type that allows skipping the sort_and_unique step when constructing a +// flat_tree in case the underlying container is already sorted and has no +// duplicate elements. +struct sorted_unique_t { + constexpr sorted_unique_t() = default; +}; +extern sorted_unique_t sorted_unique; + +namespace flat_containers_internal { + +// Helper functions used in RTC_DCHECKs below to make sure that inputs tagged +// with sorted_unique are indeed sorted and unique. +template <typename Range, typename Comp> +constexpr bool is_sorted_and_unique(const Range& range, Comp comp) { + // Being unique implies that there are no adjacent elements that + // compare equal. So this checks that each element is strictly less + // than the element after it. + return absl::c_adjacent_find(range, std::not_fn(comp)) == std::end(range); +} + +// This is a convenience trait inheriting from std::true_type if Iterator is at +// least a ForwardIterator and thus supports multiple passes over a range. +template <class Iterator> +using is_multipass = + std::is_base_of<std::forward_iterator_tag, + typename std::iterator_traits<Iterator>::iterator_category>; + +// Uses SFINAE to detect whether type has is_transparent member. +template <typename T, typename = void> +struct IsTransparentCompare : std::false_type {}; +template <typename T> +struct IsTransparentCompare<T, std::void_t<typename T::is_transparent>> + : std::true_type {}; + +// Helper inspired by C++20's std::to_array to convert a C-style array to a +// std::array. As opposed to the C++20 version this implementation does not +// provide an overload for rvalues and does not strip cv qualifers from the +// returned std::array::value_type. The returned value_type needs to be +// specified explicitly, allowing the construction of std::arrays with const +// elements. +// +// Reference: https://en.cppreference.com/w/cpp/container/array/to_array +template <typename U, typename T, size_t N, size_t... I> +constexpr std::array<U, N> ToArrayImpl(const T (&data)[N], + std::index_sequence<I...>) { + return {{data[I]...}}; +} + +template <typename U, typename T, size_t N> +constexpr std::array<U, N> ToArray(const T (&data)[N]) { + return ToArrayImpl<U>(data, std::make_index_sequence<N>()); +} + +// std::pair's operator= is not constexpr prior to C++20. Thus we need this +// small helper to invoke operator= on the .first and .second member explicitly. +template <typename T> +constexpr void Assign(T& lhs, T&& rhs) { + lhs = std::move(rhs); +} + +template <typename T, typename U> +constexpr void Assign(std::pair<T, U>& lhs, std::pair<T, U>&& rhs) { + Assign(lhs.first, std::move(rhs.first)); + Assign(lhs.second, std::move(rhs.second)); +} + +// constexpr swap implementation. std::swap is not constexpr prior to C++20. +template <typename T> +constexpr void Swap(T& lhs, T& rhs) { + T tmp = std::move(lhs); + Assign(lhs, std::move(rhs)); + Assign(rhs, std::move(tmp)); +} + +// constexpr prev implementation. std::prev is not constexpr prior to C++17. +template <typename BidirIt> +constexpr BidirIt Prev(BidirIt it) { + return --it; +} + +// constexpr next implementation. std::next is not constexpr prior to C++17. +template <typename InputIt> +constexpr InputIt Next(InputIt it) { + return ++it; +} + +// constexpr sort implementation. std::sort is not constexpr prior to C++20. +// While insertion sort has a quadratic worst case complexity, it was chosen +// because it has linear complexity for nearly sorted data, is stable, and +// simple to implement. +template <typename BidirIt, typename Compare> +constexpr void InsertionSort(BidirIt first, BidirIt last, const Compare& comp) { + if (first == last) + return; + + for (auto it = Next(first); it != last; ++it) { + for (auto curr = it; curr != first && comp(*curr, *Prev(curr)); --curr) + Swap(*curr, *Prev(curr)); + } +} + +// Implementation ------------------------------------------------------------- + +// Implementation for the sorted associative flat_set and flat_map using a +// sorted vector as the backing store. Do not use directly. +// +// The use of "value" in this is like std::map uses, meaning it's the thing +// contained (in the case of map it's a <Kay, Mapped> pair). The Key is how +// things are looked up. In the case of a set, Key == Value. In the case of +// a map, the Key is a component of a Value. +// +// The helper class GetKeyFromValue provides the means to extract a key from a +// value for comparison purposes. It should implement: +// const Key& operator()(const Value&). +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +class flat_tree { + public: + // -------------------------------------------------------------------------- + // Types. + // + using key_type = Key; + using key_compare = KeyCompare; + using value_type = typename Container::value_type; + + // Wraps the templated key comparison to compare values. + struct value_compare { + constexpr bool operator()(const value_type& left, + const value_type& right) const { + GetKeyFromValue extractor; + return comp(extractor(left), extractor(right)); + } + + RTC_NO_UNIQUE_ADDRESS key_compare comp; + }; + + using pointer = typename Container::pointer; + using const_pointer = typename Container::const_pointer; + using reference = typename Container::reference; + using const_reference = typename Container::const_reference; + using size_type = typename Container::size_type; + using difference_type = typename Container::difference_type; + using iterator = typename Container::iterator; + using const_iterator = typename Container::const_iterator; + using reverse_iterator = typename Container::reverse_iterator; + using const_reverse_iterator = typename Container::const_reverse_iterator; + using container_type = Container; + + // -------------------------------------------------------------------------- + // Lifetime. + // + // Constructors that take range guarantee O(N * log^2(N)) + O(N) complexity + // and take O(N * log(N)) + O(N) if extra memory is available (N is a range + // length). + // + // Assume that move constructors invalidate iterators and references. + // + // The constructors that take ranges, lists, and vectors do not require that + // the input be sorted. + // + // When passing the webrtc::sorted_unique tag as the first argument no sort + // and unique step takes places. This is useful if the underlying container + // already has the required properties. + + flat_tree() = default; + flat_tree(const flat_tree&) = default; + flat_tree(flat_tree&&) = default; + + explicit flat_tree(const key_compare& comp); + + template <class InputIterator> + flat_tree(InputIterator first, + InputIterator last, + const key_compare& comp = key_compare()); + + flat_tree(const container_type& items, + const key_compare& comp = key_compare()); + + explicit flat_tree(container_type&& items, + const key_compare& comp = key_compare()); + + flat_tree(std::initializer_list<value_type> ilist, + const key_compare& comp = key_compare()); + + template <class InputIterator> + flat_tree(sorted_unique_t, + InputIterator first, + InputIterator last, + const key_compare& comp = key_compare()); + + flat_tree(sorted_unique_t, + const container_type& items, + const key_compare& comp = key_compare()); + + constexpr flat_tree(sorted_unique_t, + container_type&& items, + const key_compare& comp = key_compare()); + + flat_tree(sorted_unique_t, + std::initializer_list<value_type> ilist, + const key_compare& comp = key_compare()); + + ~flat_tree() = default; + + // -------------------------------------------------------------------------- + // Assignments. + // + // Assume that move assignment invalidates iterators and references. + + flat_tree& operator=(const flat_tree&) = default; + flat_tree& operator=(flat_tree&&) = default; + // Takes the first if there are duplicates in the initializer list. + flat_tree& operator=(std::initializer_list<value_type> ilist); + + // -------------------------------------------------------------------------- + // Memory management. + // + // Beware that shrink_to_fit() simply forwards the request to the + // container_type and its implementation is free to optimize otherwise and + // leave capacity() to be greater that its size. + // + // reserve() and shrink_to_fit() invalidate iterators and references. + + void reserve(size_type new_capacity); + size_type capacity() const; + void shrink_to_fit(); + + // -------------------------------------------------------------------------- + // Size management. + // + // clear() leaves the capacity() of the flat_tree unchanged. + + void clear(); + + constexpr size_type size() const; + constexpr size_type max_size() const; + constexpr bool empty() const; + + // -------------------------------------------------------------------------- + // Iterators. + // + // Iterators follow the ordering defined by the key comparator used in + // construction of the flat_tree. + + iterator begin(); + constexpr const_iterator begin() const; + const_iterator cbegin() const; + + iterator end(); + constexpr const_iterator end() const; + const_iterator cend() const; + + reverse_iterator rbegin(); + const_reverse_iterator rbegin() const; + const_reverse_iterator crbegin() const; + + reverse_iterator rend(); + const_reverse_iterator rend() const; + const_reverse_iterator crend() const; + + // -------------------------------------------------------------------------- + // Insert operations. + // + // Assume that every operation invalidates iterators and references. + // Insertion of one element can take O(size). Capacity of flat_tree grows in + // an implementation-defined manner. + // + // NOTE: Prefer to build a new flat_tree from a std::vector (or similar) + // instead of calling insert() repeatedly. + + std::pair<iterator, bool> insert(const value_type& val); + std::pair<iterator, bool> insert(value_type&& val); + + iterator insert(const_iterator position_hint, const value_type& x); + iterator insert(const_iterator position_hint, value_type&& x); + + // This method inserts the values from the range [first, last) into the + // current tree. + template <class InputIterator> + void insert(InputIterator first, InputIterator last); + + template <class... Args> + std::pair<iterator, bool> emplace(Args&&... args); + + template <class... Args> + iterator emplace_hint(const_iterator position_hint, Args&&... args); + + // -------------------------------------------------------------------------- + // Underlying type operations. + // + // Assume that either operation invalidates iterators and references. + + // Extracts the container_type and returns it to the caller. Ensures that + // `this` is `empty()` afterwards. + container_type extract() &&; + + // Replaces the container_type with `body`. Expects that `body` is sorted + // and has no repeated elements with regard to value_comp(). + void replace(container_type&& body); + + // -------------------------------------------------------------------------- + // Erase operations. + // + // Assume that every operation invalidates iterators and references. + // + // erase(position), erase(first, last) can take O(size). + // erase(key) may take O(size) + O(log(size)). + // + // Prefer webrtc::EraseIf() or some other variation on erase(remove(), end()) + // idiom when deleting multiple non-consecutive elements. + + iterator erase(iterator position); + // Artificially templatized to break ambiguity if `iterator` and + // `const_iterator` are the same type. + template <typename DummyT = void> + iterator erase(const_iterator position); + iterator erase(const_iterator first, const_iterator last); + template <typename K> + size_type erase(const K& key); + + // -------------------------------------------------------------------------- + // Comparators. + + constexpr key_compare key_comp() const; + constexpr value_compare value_comp() const; + + // -------------------------------------------------------------------------- + // Search operations. + // + // Search operations have O(log(size)) complexity. + + template <typename K> + size_type count(const K& key) const; + + template <typename K> + iterator find(const K& key); + + template <typename K> + const_iterator find(const K& key) const; + + template <typename K> + bool contains(const K& key) const; + + template <typename K> + std::pair<iterator, iterator> equal_range(const K& key); + + template <typename K> + std::pair<const_iterator, const_iterator> equal_range(const K& key) const; + + template <typename K> + iterator lower_bound(const K& key); + + template <typename K> + const_iterator lower_bound(const K& key) const; + + template <typename K> + iterator upper_bound(const K& key); + + template <typename K> + const_iterator upper_bound(const K& key) const; + + // -------------------------------------------------------------------------- + // General operations. + // + // Assume that swap invalidates iterators and references. + // + // Implementation note: currently we use operator==() and operator<() on + // std::vector, because they have the same contract we need, so we use them + // directly for brevity and in case it is more optimal than calling equal() + // and lexicograhpical_compare(). If the underlying container type is changed, + // this code may need to be modified. + + void swap(flat_tree& other) noexcept; + + friend bool operator==(const flat_tree& lhs, const flat_tree& rhs) { + return lhs.body_ == rhs.body_; + } + + friend bool operator!=(const flat_tree& lhs, const flat_tree& rhs) { + return !(lhs == rhs); + } + + friend bool operator<(const flat_tree& lhs, const flat_tree& rhs) { + return lhs.body_ < rhs.body_; + } + + friend bool operator>(const flat_tree& lhs, const flat_tree& rhs) { + return rhs < lhs; + } + + friend bool operator>=(const flat_tree& lhs, const flat_tree& rhs) { + return !(lhs < rhs); + } + + friend bool operator<=(const flat_tree& lhs, const flat_tree& rhs) { + return !(lhs > rhs); + } + + friend void swap(flat_tree& lhs, flat_tree& rhs) noexcept { lhs.swap(rhs); } + + protected: + // Emplaces a new item into the tree that is known not to be in it. This + // is for implementing map operator[]. + template <class... Args> + iterator unsafe_emplace(const_iterator position, Args&&... args); + + // Attempts to emplace a new element with key `key`. Only if `key` is not yet + // present, construct value_type from `args` and insert it. Returns an + // iterator to the element with key `key` and a bool indicating whether an + // insertion happened. + template <class K, class... Args> + std::pair<iterator, bool> emplace_key_args(const K& key, Args&&... args); + + // Similar to `emplace_key_args`, but checks `hint` first as a possible + // insertion position. + template <class K, class... Args> + std::pair<iterator, bool> emplace_hint_key_args(const_iterator hint, + const K& key, + Args&&... args); + + private: + // Helper class for e.g. lower_bound that can compare a value on the left + // to a key on the right. + struct KeyValueCompare { + // The key comparison object must outlive this class. + explicit KeyValueCompare(const key_compare& comp) : comp_(comp) {} + + template <typename T, typename U> + bool operator()(const T& lhs, const U& rhs) const { + return comp_(extract_if_value_type(lhs), extract_if_value_type(rhs)); + } + + private: + const key_type& extract_if_value_type(const value_type& v) const { + GetKeyFromValue extractor; + return extractor(v); + } + + template <typename K> + const K& extract_if_value_type(const K& k) const { + return k; + } + + const key_compare& comp_; + }; + + iterator const_cast_it(const_iterator c_it) { + auto distance = std::distance(cbegin(), c_it); + return std::next(begin(), distance); + } + + // This method is inspired by both std::map::insert(P&&) and + // std::map::insert_or_assign(const K&, V&&). It inserts val if an equivalent + // element is not present yet, otherwise it overwrites. It returns an iterator + // to the modified element and a flag indicating whether insertion or + // assignment happened. + template <class V> + std::pair<iterator, bool> insert_or_assign(V&& val) { + auto position = lower_bound(GetKeyFromValue()(val)); + + if (position == end() || value_comp()(val, *position)) + return {body_.emplace(position, std::forward<V>(val)), true}; + + *position = std::forward<V>(val); + return {position, false}; + } + + // This method is similar to insert_or_assign, with the following differences: + // - Instead of searching [begin(), end()) it only searches [first, last). + // - In case no equivalent element is found, val is appended to the end of the + // underlying body and an iterator to the next bigger element in [first, + // last) is returned. + template <class V> + std::pair<iterator, bool> append_or_assign(iterator first, + iterator last, + V&& val) { + auto position = std::lower_bound(first, last, val, value_comp()); + + if (position == last || value_comp()(val, *position)) { + // emplace_back might invalidate position, which is why distance needs to + // be cached. + const difference_type distance = std::distance(begin(), position); + body_.emplace_back(std::forward<V>(val)); + return {std::next(begin(), distance), true}; + } + + *position = std::forward<V>(val); + return {position, false}; + } + + // This method is similar to insert, with the following differences: + // - Instead of searching [begin(), end()) it only searches [first, last). + // - In case no equivalent element is found, val is appended to the end of the + // underlying body and an iterator to the next bigger element in [first, + // last) is returned. + template <class V> + std::pair<iterator, bool> append_unique(iterator first, + iterator last, + V&& val) { + auto position = std::lower_bound(first, last, val, value_comp()); + + if (position == last || value_comp()(val, *position)) { + // emplace_back might invalidate position, which is why distance needs to + // be cached. + const difference_type distance = std::distance(begin(), position); + body_.emplace_back(std::forward<V>(val)); + return {std::next(begin(), distance), true}; + } + + return {position, false}; + } + + void sort_and_unique(iterator first, iterator last) { + // Preserve stability for the unique code below. + std::stable_sort(first, last, value_comp()); + + // lhs is already <= rhs due to sort, therefore !(lhs < rhs) <=> lhs == rhs. + auto equal_comp = std::not_fn(value_comp()); + erase(std::unique(first, last, equal_comp), last); + } + + void sort_and_unique() { sort_and_unique(begin(), end()); } + + // To support comparators that may not be possible to default-construct, we + // have to store an instance of Compare. Since Compare commonly is stateless, + // we use the RTC_NO_UNIQUE_ADDRESS attribute to save space. + RTC_NO_UNIQUE_ADDRESS key_compare comp_; + // Declare after `key_compare_comp_` to workaround GCC ICE. For details + // see https://crbug.com/1156268 + container_type body_; + + // If the compare is not transparent we want to construct key_type once. + template <typename K> + using KeyTypeOrK = typename std:: + conditional<IsTransparentCompare<key_compare>::value, K, key_type>::type; +}; + +// ---------------------------------------------------------------------------- +// Lifetime. + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( + const KeyCompare& comp) + : comp_(comp) {} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <class InputIterator> +flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( + InputIterator first, + InputIterator last, + const KeyCompare& comp) + : comp_(comp), body_(first, last) { + sort_and_unique(); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( + const container_type& items, + const KeyCompare& comp) + : comp_(comp), body_(items) { + sort_and_unique(); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( + container_type&& items, + const KeyCompare& comp) + : comp_(comp), body_(std::move(items)) { + sort_and_unique(); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( + std::initializer_list<value_type> ilist, + const KeyCompare& comp) + : flat_tree(std::begin(ilist), std::end(ilist), comp) {} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <class InputIterator> +flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( + sorted_unique_t, + InputIterator first, + InputIterator last, + const KeyCompare& comp) + : comp_(comp), body_(first, last) { + RTC_DCHECK(is_sorted_and_unique(*this, value_comp())); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( + sorted_unique_t, + const container_type& items, + const KeyCompare& comp) + : comp_(comp), body_(items) { + RTC_DCHECK(is_sorted_and_unique(*this, value_comp())); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +constexpr flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( + sorted_unique_t, + container_type&& items, + const KeyCompare& comp) + : comp_(comp), body_(std::move(items)) { + RTC_DCHECK(is_sorted_and_unique(*this, value_comp())); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( + sorted_unique_t, + std::initializer_list<value_type> ilist, + const KeyCompare& comp) + : flat_tree(sorted_unique, std::begin(ilist), std::end(ilist), comp) {} + +// ---------------------------------------------------------------------------- +// Assignments. + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::operator=( + std::initializer_list<value_type> ilist) -> flat_tree& { + body_ = ilist; + sort_and_unique(); + return *this; +} + +// ---------------------------------------------------------------------------- +// Memory management. + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::reserve( + size_type new_capacity) { + body_.reserve(new_capacity); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::capacity() const + -> size_type { + return body_.capacity(); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::shrink_to_fit() { + body_.shrink_to_fit(); +} + +// ---------------------------------------------------------------------------- +// Size management. + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::clear() { + body_.clear(); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::size() + const -> size_type { + return body_.size(); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +constexpr auto +flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::max_size() const + -> size_type { + return body_.max_size(); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +constexpr bool flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::empty() + const { + return body_.empty(); +} + +// ---------------------------------------------------------------------------- +// Iterators. + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::begin() + -> iterator { + return body_.begin(); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::begin() + const -> const_iterator { + return std::begin(body_); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::cbegin() const + -> const_iterator { + return body_.cbegin(); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::end() -> iterator { + return body_.end(); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::end() + const -> const_iterator { + return std::end(body_); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::cend() const + -> const_iterator { + return body_.cend(); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rbegin() + -> reverse_iterator { + return body_.rbegin(); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rbegin() const + -> const_reverse_iterator { + return body_.rbegin(); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::crbegin() const + -> const_reverse_iterator { + return body_.crbegin(); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rend() + -> reverse_iterator { + return body_.rend(); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rend() const + -> const_reverse_iterator { + return body_.rend(); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::crend() const + -> const_reverse_iterator { + return body_.crend(); +} + +// ---------------------------------------------------------------------------- +// Insert operations. +// +// Currently we use position_hint the same way as eastl or boost: +// https://github.com/electronicarts/EASTL/blob/master/include/EASTL/vector_set.h#L493 + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert( + const value_type& val) -> std::pair<iterator, bool> { + return emplace_key_args(GetKeyFromValue()(val), val); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert( + value_type&& val) -> std::pair<iterator, bool> { + return emplace_key_args(GetKeyFromValue()(val), std::move(val)); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert( + const_iterator position_hint, + const value_type& val) -> iterator { + return emplace_hint_key_args(position_hint, GetKeyFromValue()(val), val) + .first; +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert( + const_iterator position_hint, + value_type&& val) -> iterator { + return emplace_hint_key_args(position_hint, GetKeyFromValue()(val), + std::move(val)) + .first; +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <class InputIterator> +void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert( + InputIterator first, + InputIterator last) { + if (first == last) + return; + + // Dispatch to single element insert if the input range contains a single + // element. + if (is_multipass<InputIterator>() && std::next(first) == last) { + insert(end(), *first); + return; + } + + // Provide a convenience lambda to obtain an iterator pointing past the last + // old element. This needs to be dymanic due to possible re-allocations. + auto middle = [this, size = size()] { return std::next(begin(), size); }; + + // For batch updates initialize the first insertion point. + difference_type pos_first_new = size(); + + // Loop over the input range while appending new values and overwriting + // existing ones, if applicable. Keep track of the first insertion point. + for (; first != last; ++first) { + std::pair<iterator, bool> result = append_unique(begin(), middle(), *first); + if (result.second) { + pos_first_new = + std::min(pos_first_new, std::distance(begin(), result.first)); + } + } + + // The new elements might be unordered and contain duplicates, so post-process + // the just inserted elements and merge them with the rest, inserting them at + // the previously found spot. + sort_and_unique(middle(), end()); + std::inplace_merge(std::next(begin(), pos_first_new), middle(), end(), + value_comp()); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <class... Args> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace( + Args&&... args) -> std::pair<iterator, bool> { + return insert(value_type(std::forward<Args>(args)...)); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <class... Args> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace_hint( + const_iterator position_hint, + Args&&... args) -> iterator { + return insert(position_hint, value_type(std::forward<Args>(args)...)); +} + +// ---------------------------------------------------------------------------- +// Underlying type operations. + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>:: + extract() && -> container_type { + return std::exchange(body_, container_type()); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::replace( + container_type&& body) { + // Ensure that `body` is sorted and has no repeated elements according to + // `value_comp()`. + RTC_DCHECK(is_sorted_and_unique(body, value_comp())); + body_ = std::move(body); +} + +// ---------------------------------------------------------------------------- +// Erase operations. + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase( + iterator position) -> iterator { + RTC_CHECK(position != body_.end()); + return body_.erase(position); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <typename DummyT> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase( + const_iterator position) -> iterator { + RTC_CHECK(position != body_.end()); + return body_.erase(position); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <typename K> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(const K& val) + -> size_type { + auto eq_range = equal_range(val); + auto res = std::distance(eq_range.first, eq_range.second); + erase(eq_range.first, eq_range.second); + return res; +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase( + const_iterator first, + const_iterator last) -> iterator { + return body_.erase(first, last); +} + +// ---------------------------------------------------------------------------- +// Comparators. + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +constexpr auto +flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::key_comp() const + -> key_compare { + return comp_; +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +constexpr auto +flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::value_comp() const + -> value_compare { + return value_compare{comp_}; +} + +// ---------------------------------------------------------------------------- +// Search operations. + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <typename K> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::count( + const K& key) const -> size_type { + auto eq_range = equal_range(key); + return std::distance(eq_range.first, eq_range.second); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <typename K> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find(const K& key) + -> iterator { + return const_cast_it(std::as_const(*this).find(key)); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <typename K> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find( + const K& key) const -> const_iterator { + auto eq_range = equal_range(key); + return (eq_range.first == eq_range.second) ? end() : eq_range.first; +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <typename K> +bool flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::contains( + const K& key) const { + auto lower = lower_bound(key); + return lower != end() && !comp_(key, GetKeyFromValue()(*lower)); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <typename K> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range( + const K& key) -> std::pair<iterator, iterator> { + auto res = std::as_const(*this).equal_range(key); + return {const_cast_it(res.first), const_cast_it(res.second)}; +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <typename K> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range( + const K& key) const -> std::pair<const_iterator, const_iterator> { + auto lower = lower_bound(key); + + KeyValueCompare comp(comp_); + if (lower == end() || comp(key, *lower)) + return {lower, lower}; + + return {lower, std::next(lower)}; +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <typename K> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound( + const K& key) -> iterator { + return const_cast_it(std::as_const(*this).lower_bound(key)); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <typename K> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound( + const K& key) const -> const_iterator { + static_assert(std::is_convertible<const KeyTypeOrK<K>&, const K&>::value, + "Requested type cannot be bound to the container's key_type " + "which is required for a non-transparent compare."); + + const KeyTypeOrK<K>& key_ref = key; + + KeyValueCompare comp(comp_); + return absl::c_lower_bound(*this, key_ref, comp); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <typename K> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound( + const K& key) -> iterator { + return const_cast_it(std::as_const(*this).upper_bound(key)); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <typename K> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound( + const K& key) const -> const_iterator { + static_assert(std::is_convertible<const KeyTypeOrK<K>&, const K&>::value, + "Requested type cannot be bound to the container's key_type " + "which is required for a non-transparent compare."); + + const KeyTypeOrK<K>& key_ref = key; + + KeyValueCompare comp(comp_); + return absl::c_upper_bound(*this, key_ref, comp); +} + +// ---------------------------------------------------------------------------- +// General operations. + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::swap( + flat_tree& other) noexcept { + std::swap(*this, other); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <class... Args> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::unsafe_emplace( + const_iterator position, + Args&&... args) -> iterator { + return body_.emplace(position, std::forward<Args>(args)...); +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <class K, class... Args> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace_key_args( + const K& key, + Args&&... args) -> std::pair<iterator, bool> { + auto lower = lower_bound(key); + if (lower == end() || comp_(key, GetKeyFromValue()(*lower))) + return {unsafe_emplace(lower, std::forward<Args>(args)...), true}; + return {lower, false}; +} + +template <class Key, class GetKeyFromValue, class KeyCompare, class Container> +template <class K, class... Args> +auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>:: + emplace_hint_key_args(const_iterator hint, const K& key, Args&&... args) + -> std::pair<iterator, bool> { + KeyValueCompare comp(comp_); + if ((hint == begin() || comp(*std::prev(hint), key))) { + if (hint == end() || comp(key, *hint)) { + // *(hint - 1) < key < *hint => key did not exist and hint is correct. + return {unsafe_emplace(hint, std::forward<Args>(args)...), true}; + } + if (!comp(*hint, key)) { + // key == *hint => no-op, return correct hint. + return {const_cast_it(hint), false}; + } + } + // hint was not helpful, dispatch to hintless version. + return emplace_key_args(key, std::forward<Args>(args)...); +} + +// ---------------------------------------------------------------------------- +// Free functions. + +// Erases all elements that match predicate. It has O(size) complexity. +template <class Key, + class GetKeyFromValue, + class KeyCompare, + class Container, + typename Predicate> +size_t EraseIf( + webrtc::flat_containers_internal:: + flat_tree<Key, GetKeyFromValue, KeyCompare, Container>& container, + Predicate pred) { + auto it = std::remove_if(container.begin(), container.end(), + std::forward<Predicate>(pred)); + size_t removed = std::distance(it, container.end()); + container.erase(it, container.end()); + return removed; +} + +} // namespace flat_containers_internal +} // namespace webrtc + +#endif // RTC_BASE_CONTAINERS_FLAT_TREE_H_ |