diff options
Diffstat (limited to 'third_party/libwebrtc/rtc_base/timestamp_aligner_unittest.cc')
-rw-r--r-- | third_party/libwebrtc/rtc_base/timestamp_aligner_unittest.cc | 207 |
1 files changed, 207 insertions, 0 deletions
diff --git a/third_party/libwebrtc/rtc_base/timestamp_aligner_unittest.cc b/third_party/libwebrtc/rtc_base/timestamp_aligner_unittest.cc new file mode 100644 index 0000000000..ca91b62625 --- /dev/null +++ b/third_party/libwebrtc/rtc_base/timestamp_aligner_unittest.cc @@ -0,0 +1,207 @@ +/* + * Copyright 2016 The WebRTC Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "rtc_base/timestamp_aligner.h" + +#include <math.h> + +#include <algorithm> +#include <limits> + +#include "rtc_base/random.h" +#include "rtc_base/time_utils.h" +#include "test/gtest.h" + +namespace rtc { + +namespace { +// Computes the difference x_k - mean(x), when x_k is the linear sequence x_k = +// k, and the "mean" is plain mean for the first `window_size` samples, followed +// by exponential averaging with weight 1 / `window_size` for each new sample. +// This is needed to predict the effect of camera clock drift on the timestamp +// translation. See the comment on TimestampAligner::UpdateOffset for more +// context. +double MeanTimeDifference(int nsamples, int window_size) { + if (nsamples <= window_size) { + // Plain averaging. + return nsamples / 2.0; + } else { + // Exponential convergence towards + // interval_error * (window_size - 1) + double alpha = 1.0 - 1.0 / window_size; + + return ((window_size - 1) - + (window_size / 2.0 - 1) * pow(alpha, nsamples - window_size)); + } +} + +class TimestampAlignerForTest : public TimestampAligner { + // Make internal methods accessible to testing. + public: + using TimestampAligner::ClipTimestamp; + using TimestampAligner::UpdateOffset; +}; + +void TestTimestampFilter(double rel_freq_error) { + TimestampAlignerForTest timestamp_aligner_for_test; + TimestampAligner timestamp_aligner; + const int64_t kEpoch = 10000; + const int64_t kJitterUs = 5000; + const int64_t kIntervalUs = 33333; // 30 FPS + const int kWindowSize = 100; + const int kNumFrames = 3 * kWindowSize; + + int64_t interval_error_us = kIntervalUs * rel_freq_error; + int64_t system_start_us = rtc::TimeMicros(); + webrtc::Random random(17); + + int64_t prev_translated_time_us = system_start_us; + + for (int i = 0; i < kNumFrames; i++) { + // Camera time subject to drift. + int64_t camera_time_us = kEpoch + i * (kIntervalUs + interval_error_us); + int64_t system_time_us = system_start_us + i * kIntervalUs; + // And system time readings are subject to jitter. + int64_t system_measured_us = system_time_us + random.Rand(kJitterUs); + + int64_t offset_us = timestamp_aligner_for_test.UpdateOffset( + camera_time_us, system_measured_us); + + int64_t filtered_time_us = camera_time_us + offset_us; + int64_t translated_time_us = timestamp_aligner_for_test.ClipTimestamp( + filtered_time_us, system_measured_us); + + // Check that we get identical result from the all-in-one helper method. + ASSERT_EQ(translated_time_us, timestamp_aligner.TranslateTimestamp( + camera_time_us, system_measured_us)); + + EXPECT_LE(translated_time_us, system_measured_us); + EXPECT_GE(translated_time_us, + prev_translated_time_us + rtc::kNumMicrosecsPerMillisec); + + // The relative frequency error contributes to the expected error + // by a factor which is the difference between the current time + // and the average of earlier sample times. + int64_t expected_error_us = + kJitterUs / 2 + + rel_freq_error * kIntervalUs * MeanTimeDifference(i, kWindowSize); + + int64_t bias_us = filtered_time_us - translated_time_us; + EXPECT_GE(bias_us, 0); + + if (i == 0) { + EXPECT_EQ(translated_time_us, system_measured_us); + } else { + EXPECT_NEAR(filtered_time_us, system_time_us + expected_error_us, + 2.0 * kJitterUs / sqrt(std::max(i, kWindowSize))); + } + // If the camera clock runs too fast (rel_freq_error > 0.0), The + // bias is expected to roughly cancel the expected error from the + // clock drift, as this grows. Otherwise, it reflects the + // measurement noise. The tolerances here were selected after some + // trial and error. + if (i < 10 || rel_freq_error <= 0.0) { + EXPECT_LE(bias_us, 3000); + } else { + EXPECT_NEAR(bias_us, expected_error_us, 1500); + } + prev_translated_time_us = translated_time_us; + } +} + +} // Anonymous namespace + +TEST(TimestampAlignerTest, AttenuateTimestampJitterNoDrift) { + TestTimestampFilter(0.0); +} + +// 100 ppm is a worst case for a reasonable crystal. +TEST(TimestampAlignerTest, AttenuateTimestampJitterSmallPosDrift) { + TestTimestampFilter(0.0001); +} + +TEST(TimestampAlignerTest, AttenuateTimestampJitterSmallNegDrift) { + TestTimestampFilter(-0.0001); +} + +// 3000 ppm, 3 ms / s, is the worst observed drift, see +// https://bugs.chromium.org/p/webrtc/issues/detail?id=5456 +TEST(TimestampAlignerTest, AttenuateTimestampJitterLargePosDrift) { + TestTimestampFilter(0.003); +} + +TEST(TimestampAlignerTest, AttenuateTimestampJitterLargeNegDrift) { + TestTimestampFilter(-0.003); +} + +// Exhibits a mostly hypothetical problem, where certain inputs to the +// TimestampAligner.UpdateOffset filter result in non-monotonous +// translated timestamps. This test verifies that the ClipTimestamp +// logic handles this case correctly. +TEST(TimestampAlignerTest, ClipToMonotonous) { + TimestampAlignerForTest timestamp_aligner; + + // For system time stamps { 0, s1, s1 + s2 }, and camera timestamps + // {0, c1, c1 + c2}, we exhibit non-monotonous behaviour if and only + // if c1 > s1 + 2 s2 + 4 c2. + const int kNumSamples = 3; + const int64_t kCaptureTimeUs[kNumSamples] = {0, 80000, 90001}; + const int64_t kSystemTimeUs[kNumSamples] = {0, 10000, 20000}; + const int64_t expected_offset_us[kNumSamples] = {0, -35000, -46667}; + + // Non-monotonic translated timestamps can happen when only for + // translated timestamps in the future. Which is tolerated if + // `timestamp_aligner.clip_bias_us` is large enough. Instead of + // changing that private member for this test, just add the bias to + // `kSystemTimeUs` when calling ClipTimestamp. + const int64_t kClipBiasUs = 100000; + + bool did_clip = false; + int64_t prev_timestamp_us = std::numeric_limits<int64_t>::min(); + for (int i = 0; i < kNumSamples; i++) { + int64_t offset_us = + timestamp_aligner.UpdateOffset(kCaptureTimeUs[i], kSystemTimeUs[i]); + EXPECT_EQ(offset_us, expected_offset_us[i]); + + int64_t translated_timestamp_us = kCaptureTimeUs[i] + offset_us; + int64_t clip_timestamp_us = timestamp_aligner.ClipTimestamp( + translated_timestamp_us, kSystemTimeUs[i] + kClipBiasUs); + if (translated_timestamp_us <= prev_timestamp_us) { + did_clip = true; + EXPECT_EQ(clip_timestamp_us, + prev_timestamp_us + rtc::kNumMicrosecsPerMillisec); + } else { + // No change from clipping. + EXPECT_EQ(clip_timestamp_us, translated_timestamp_us); + } + prev_timestamp_us = clip_timestamp_us; + } + EXPECT_TRUE(did_clip); +} + +TEST(TimestampAlignerTest, TranslateTimestampWithoutStateUpdate) { + TimestampAligner timestamp_aligner; + + constexpr int kNumSamples = 4; + constexpr int64_t kCaptureTimeUs[kNumSamples] = {0, 80000, 90001, 100000}; + constexpr int64_t kSystemTimeUs[kNumSamples] = {0, 10000, 20000, 30000}; + constexpr int64_t kQueryCaptureTimeOffsetUs[kNumSamples] = {0, 123, -321, + 345}; + + for (int i = 0; i < kNumSamples; i++) { + int64_t reference_timestamp = timestamp_aligner.TranslateTimestamp( + kCaptureTimeUs[i], kSystemTimeUs[i]); + EXPECT_EQ(reference_timestamp - kQueryCaptureTimeOffsetUs[i], + timestamp_aligner.TranslateTimestamp( + kCaptureTimeUs[i] - kQueryCaptureTimeOffsetUs[i])); + } +} + +} // namespace rtc |