summaryrefslogtreecommitdiffstats
path: root/third_party/rust/bytes-0.4.12/src/bytes.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/bytes-0.4.12/src/bytes.rs')
-rw-r--r--third_party/rust/bytes-0.4.12/src/bytes.rs2947
1 files changed, 2947 insertions, 0 deletions
diff --git a/third_party/rust/bytes-0.4.12/src/bytes.rs b/third_party/rust/bytes-0.4.12/src/bytes.rs
new file mode 100644
index 0000000000..e1559311b0
--- /dev/null
+++ b/third_party/rust/bytes-0.4.12/src/bytes.rs
@@ -0,0 +1,2947 @@
+use {IntoBuf, Buf, BufMut};
+use buf::Iter;
+use debug;
+
+use std::{cmp, fmt, mem, hash, ops, slice, ptr, usize};
+use std::borrow::{Borrow, BorrowMut};
+use std::io::Cursor;
+use std::sync::atomic::{self, AtomicUsize, AtomicPtr};
+use std::sync::atomic::Ordering::{Relaxed, Acquire, Release, AcqRel};
+use std::iter::{FromIterator, Iterator};
+
+/// A reference counted contiguous slice of memory.
+///
+/// `Bytes` is an efficient container for storing and operating on contiguous
+/// slices of memory. It is intended for use primarily in networking code, but
+/// could have applications elsewhere as well.
+///
+/// `Bytes` values facilitate zero-copy network programming by allowing multiple
+/// `Bytes` objects to point to the same underlying memory. This is managed by
+/// using a reference count to track when the memory is no longer needed and can
+/// be freed.
+///
+/// ```
+/// use bytes::Bytes;
+///
+/// let mut mem = Bytes::from(&b"Hello world"[..]);
+/// let a = mem.slice(0, 5);
+///
+/// assert_eq!(&a[..], b"Hello");
+///
+/// let b = mem.split_to(6);
+///
+/// assert_eq!(&mem[..], b"world");
+/// assert_eq!(&b[..], b"Hello ");
+/// ```
+///
+/// # Memory layout
+///
+/// The `Bytes` struct itself is fairly small, limited to a pointer to the
+/// memory and 4 `usize` fields used to track information about which segment of
+/// the underlying memory the `Bytes` handle has access to.
+///
+/// The memory layout looks like this:
+///
+/// ```text
+/// +-------+
+/// | Bytes |
+/// +-------+
+/// / \_____
+/// | \
+/// v v
+/// +-----+------------------------------------+
+/// | Arc | | Data | |
+/// +-----+------------------------------------+
+/// ```
+///
+/// `Bytes` keeps both a pointer to the shared `Arc` containing the full memory
+/// slice and a pointer to the start of the region visible by the handle.
+/// `Bytes` also tracks the length of its view into the memory.
+///
+/// # Sharing
+///
+/// The memory itself is reference counted, and multiple `Bytes` objects may
+/// point to the same region. Each `Bytes` handle point to different sections within
+/// the memory region, and `Bytes` handle may or may not have overlapping views
+/// into the memory.
+///
+///
+/// ```text
+///
+/// Arc ptrs +---------+
+/// ________________________ / | Bytes 2 |
+/// / +---------+
+/// / +-----------+ | |
+/// |_________/ | Bytes 1 | | |
+/// | +-----------+ | |
+/// | | | ___/ data | tail
+/// | data | tail |/ |
+/// v v v v
+/// +-----+---------------------------------+-----+
+/// | Arc | | | | |
+/// +-----+---------------------------------+-----+
+/// ```
+///
+/// # Mutating
+///
+/// While `Bytes` handles may potentially represent overlapping views of the
+/// underlying memory slice and may not be mutated, `BytesMut` handles are
+/// guaranteed to be the only handle able to view that slice of memory. As such,
+/// `BytesMut` handles are able to mutate the underlying memory. Note that
+/// holding a unique view to a region of memory does not mean that there are no
+/// other `Bytes` and `BytesMut` handles with disjoint views of the underlying
+/// memory.
+///
+/// # Inline bytes
+///
+/// As an optimization, when the slice referenced by a `Bytes` or `BytesMut`
+/// handle is small enough [^1], `with_capacity` will avoid the allocation by
+/// inlining the slice directly in the handle. In this case, a clone is no
+/// longer "shallow" and the data will be copied. Converting from a `Vec` will
+/// never use inlining.
+///
+/// [^1]: Small enough: 31 bytes on 64 bit systems, 15 on 32 bit systems.
+///
+pub struct Bytes {
+ inner: Inner,
+}
+
+/// A unique reference to a contiguous slice of memory.
+///
+/// `BytesMut` represents a unique view into a potentially shared memory region.
+/// Given the uniqueness guarantee, owners of `BytesMut` handles are able to
+/// mutate the memory. It is similar to a `Vec<u8>` but with less copies and
+/// allocations.
+///
+/// For more detail, see [Bytes](struct.Bytes.html).
+///
+/// # Growth
+///
+/// One key difference from `Vec<u8>` is that most operations **do not
+/// implicitly grow the buffer**. This means that calling `my_bytes.put("hello
+/// world");` could panic if `my_bytes` does not have enough capacity. Before
+/// writing to the buffer, ensure that there is enough remaining capacity by
+/// calling `my_bytes.remaining_mut()`. In general, avoiding calls to `reserve`
+/// is preferable.
+///
+/// The only exception is `extend` which implicitly reserves required capacity.
+///
+/// # Examples
+///
+/// ```
+/// use bytes::{BytesMut, BufMut};
+///
+/// let mut buf = BytesMut::with_capacity(64);
+///
+/// buf.put(b'h');
+/// buf.put(b'e');
+/// buf.put("llo");
+///
+/// assert_eq!(&buf[..], b"hello");
+///
+/// // Freeze the buffer so that it can be shared
+/// let a = buf.freeze();
+///
+/// // This does not allocate, instead `b` points to the same memory.
+/// let b = a.clone();
+///
+/// assert_eq!(&a[..], b"hello");
+/// assert_eq!(&b[..], b"hello");
+/// ```
+pub struct BytesMut {
+ inner: Inner,
+}
+
+// Both `Bytes` and `BytesMut` are backed by `Inner` and functions are delegated
+// to `Inner` functions. The `Bytes` and `BytesMut` shims ensure that functions
+// that mutate the underlying buffer are only performed when the data range
+// being mutated is only available via a single `BytesMut` handle.
+//
+// # Data storage modes
+//
+// The goal of `bytes` is to be as efficient as possible across a wide range of
+// potential usage patterns. As such, `bytes` needs to be able to handle buffers
+// that are never shared, shared on a single thread, and shared across many
+// threads. `bytes` also needs to handle both tiny buffers as well as very large
+// buffers. For example, [Cassandra](http://cassandra.apache.org) values have
+// been known to be in the hundreds of megabyte, and HTTP header values can be a
+// few characters in size.
+//
+// To achieve high performance in these various situations, `Bytes` and
+// `BytesMut` use different strategies for storing the buffer depending on the
+// usage pattern.
+//
+// ## Delayed `Arc` allocation
+//
+// When a `Bytes` or `BytesMut` is first created, there is only one outstanding
+// handle referencing the buffer. Since sharing is not yet required, an `Arc`* is
+// not used and the buffer is backed by a `Vec<u8>` directly. Using an
+// `Arc<Vec<u8>>` requires two allocations, so if the buffer ends up never being
+// shared, that allocation is avoided.
+//
+// When sharing does become necessary (`clone`, `split_to`, `split_off`), that
+// is when the buffer is promoted to being shareable. The `Vec<u8>` is moved
+// into an `Arc` and both the original handle and the new handle use the same
+// buffer via the `Arc`.
+//
+// * `Arc` is being used to signify an atomically reference counted cell. We
+// don't use the `Arc` implementation provided by `std` and instead use our own.
+// This ends up simplifying a number of the `unsafe` code snippets.
+//
+// ## Inlining small buffers
+//
+// The `Bytes` / `BytesMut` structs require 4 pointer sized fields. On 64 bit
+// systems, this ends up being 32 bytes, which is actually a lot of storage for
+// cases where `Bytes` is being used to represent small byte strings, such as
+// HTTP header names and values.
+//
+// To avoid any allocation at all in these cases, `Bytes` will use the struct
+// itself for storing the buffer, reserving 1 byte for meta data. This means
+// that, on 64 bit systems, 31 byte buffers require no allocation at all.
+//
+// The byte used for metadata stores a 2 bits flag used to indicate that the
+// buffer is stored inline as well as 6 bits for tracking the buffer length (the
+// return value of `Bytes::len`).
+//
+// ## Static buffers
+//
+// `Bytes` can also represent a static buffer, which is created with
+// `Bytes::from_static`. No copying or allocations are required for tracking
+// static buffers. The pointer to the `&'static [u8]`, the length, and a flag
+// tracking that the `Bytes` instance represents a static buffer is stored in
+// the `Bytes` struct.
+//
+// # Struct layout
+//
+// Both `Bytes` and `BytesMut` are wrappers around `Inner`, which provides the
+// data fields as well as all of the function implementations.
+//
+// The `Inner` struct is carefully laid out in order to support the
+// functionality described above as well as being as small as possible. Size is
+// important as growing the size of the `Bytes` struct from 32 bytes to 40 bytes
+// added as much as 15% overhead in benchmarks using `Bytes` in an HTTP header
+// map structure.
+//
+// The `Inner` struct contains the following fields:
+//
+// * `ptr: *mut u8`
+// * `len: usize`
+// * `cap: usize`
+// * `arc: AtomicPtr<Shared>`
+//
+// ## `ptr: *mut u8`
+//
+// A pointer to start of the handle's buffer view. When backed by a `Vec<u8>`,
+// this is always the `Vec`'s pointer. When backed by an `Arc<Vec<u8>>`, `ptr`
+// may have been shifted to point somewhere inside the buffer.
+//
+// When in "inlined" mode, `ptr` is used as part of the inlined buffer.
+//
+// ## `len: usize`
+//
+// The length of the handle's buffer view. When backed by a `Vec<u8>`, this is
+// always the `Vec`'s length. The slice represented by `ptr` and `len` should
+// (ideally) always be initialized memory.
+//
+// When in "inlined" mode, `len` is used as part of the inlined buffer.
+//
+// ## `cap: usize`
+//
+// The capacity of the handle's buffer view. When backed by a `Vec<u8>`, this is
+// always the `Vec`'s capacity. The slice represented by `ptr+len` and `cap-len`
+// may or may not be initialized memory.
+//
+// When in "inlined" mode, `cap` is used as part of the inlined buffer.
+//
+// ## `arc: AtomicPtr<Shared>`
+//
+// When `Inner` is in allocated mode (backed by Vec<u8> or Arc<Vec<u8>>), this
+// will be the pointer to the `Arc` structure tracking the ref count for the
+// underlying buffer. When the pointer is null, then the `Arc` has not been
+// allocated yet and `self` is the only outstanding handle for the underlying
+// buffer.
+//
+// The lower two bits of `arc` are used to track the storage mode of `Inner`.
+// `0b01` indicates inline storage, `0b10` indicates static storage, and `0b11`
+// indicates vector storage, not yet promoted to Arc. Since pointers to
+// allocated structures are aligned, the lower two bits of a pointer will always
+// be 0. This allows disambiguating between a pointer and the two flags.
+//
+// When in "inlined" mode, the least significant byte of `arc` is also used to
+// store the length of the buffer view (vs. the capacity, which is a constant).
+//
+// The rest of `arc`'s bytes are used as part of the inline buffer, which means
+// that those bytes need to be located next to the `ptr`, `len`, and `cap`
+// fields, which make up the rest of the inline buffer. This requires special
+// casing the layout of `Inner` depending on if the target platform is big or
+// little endian.
+//
+// On little endian platforms, the `arc` field must be the first field in the
+// struct. On big endian platforms, the `arc` field must be the last field in
+// the struct. Since a deterministic struct layout is required, `Inner` is
+// annotated with `#[repr(C)]`.
+//
+// # Thread safety
+//
+// `Bytes::clone()` returns a new `Bytes` handle with no copying. This is done
+// by bumping the buffer ref count and returning a new struct pointing to the
+// same buffer. However, the `Arc` structure is lazily allocated. This means
+// that if `Bytes` is stored itself in an `Arc` (`Arc<Bytes>`), the `clone`
+// function can be called concurrently from multiple threads. This is why an
+// `AtomicPtr` is used for the `arc` field vs. a `*const`.
+//
+// Care is taken to ensure that the need for synchronization is minimized. Most
+// operations do not require any synchronization.
+//
+#[cfg(target_endian = "little")]
+#[repr(C)]
+struct Inner {
+ // WARNING: Do not access the fields directly unless you know what you are
+ // doing. Instead, use the fns. See implementation comment above.
+ arc: AtomicPtr<Shared>,
+ ptr: *mut u8,
+ len: usize,
+ cap: usize,
+}
+
+#[cfg(target_endian = "big")]
+#[repr(C)]
+struct Inner {
+ // WARNING: Do not access the fields directly unless you know what you are
+ // doing. Instead, use the fns. See implementation comment above.
+ ptr: *mut u8,
+ len: usize,
+ cap: usize,
+ arc: AtomicPtr<Shared>,
+}
+
+// Thread-safe reference-counted container for the shared storage. This mostly
+// the same as `std::sync::Arc` but without the weak counter. The ref counting
+// fns are based on the ones found in `std`.
+//
+// The main reason to use `Shared` instead of `std::sync::Arc` is that it ends
+// up making the overall code simpler and easier to reason about. This is due to
+// some of the logic around setting `Inner::arc` and other ways the `arc` field
+// is used. Using `Arc` ended up requiring a number of funky transmutes and
+// other shenanigans to make it work.
+struct Shared {
+ vec: Vec<u8>,
+ original_capacity_repr: usize,
+ ref_count: AtomicUsize,
+}
+
+// Buffer storage strategy flags.
+const KIND_ARC: usize = 0b00;
+const KIND_INLINE: usize = 0b01;
+const KIND_STATIC: usize = 0b10;
+const KIND_VEC: usize = 0b11;
+const KIND_MASK: usize = 0b11;
+
+// The max original capacity value. Any `Bytes` allocated with a greater initial
+// capacity will default to this.
+const MAX_ORIGINAL_CAPACITY_WIDTH: usize = 17;
+// The original capacity algorithm will not take effect unless the originally
+// allocated capacity was at least 1kb in size.
+const MIN_ORIGINAL_CAPACITY_WIDTH: usize = 10;
+// The original capacity is stored in powers of 2 starting at 1kb to a max of
+// 64kb. Representing it as such requires only 3 bits of storage.
+const ORIGINAL_CAPACITY_MASK: usize = 0b11100;
+const ORIGINAL_CAPACITY_OFFSET: usize = 2;
+
+// When the storage is in the `Vec` representation, the pointer can be advanced
+// at most this value. This is due to the amount of storage available to track
+// the offset is usize - number of KIND bits and number of ORIGINAL_CAPACITY
+// bits.
+const VEC_POS_OFFSET: usize = 5;
+const MAX_VEC_POS: usize = usize::MAX >> VEC_POS_OFFSET;
+const NOT_VEC_POS_MASK: usize = 0b11111;
+
+// Bit op constants for extracting the inline length value from the `arc` field.
+const INLINE_LEN_MASK: usize = 0b11111100;
+const INLINE_LEN_OFFSET: usize = 2;
+
+// Byte offset from the start of `Inner` to where the inline buffer data
+// starts. On little endian platforms, the first byte of the struct is the
+// storage flag, so the data is shifted by a byte. On big endian systems, the
+// data starts at the beginning of the struct.
+#[cfg(target_endian = "little")]
+const INLINE_DATA_OFFSET: isize = 1;
+#[cfg(target_endian = "big")]
+const INLINE_DATA_OFFSET: isize = 0;
+
+#[cfg(target_pointer_width = "64")]
+const PTR_WIDTH: usize = 64;
+#[cfg(target_pointer_width = "32")]
+const PTR_WIDTH: usize = 32;
+
+// Inline buffer capacity. This is the size of `Inner` minus 1 byte for the
+// metadata.
+#[cfg(target_pointer_width = "64")]
+const INLINE_CAP: usize = 4 * 8 - 1;
+#[cfg(target_pointer_width = "32")]
+const INLINE_CAP: usize = 4 * 4 - 1;
+
+/*
+ *
+ * ===== Bytes =====
+ *
+ */
+
+impl Bytes {
+ /// Creates a new `Bytes` with the specified capacity.
+ ///
+ /// The returned `Bytes` will be able to hold at least `capacity` bytes
+ /// without reallocating. If `capacity` is under `4 * size_of::<usize>() - 1`,
+ /// then `BytesMut` will not allocate.
+ ///
+ /// It is important to note that this function does not specify the length
+ /// of the returned `Bytes`, but only the capacity.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::Bytes;
+ ///
+ /// let mut bytes = Bytes::with_capacity(64);
+ ///
+ /// // `bytes` contains no data, even though there is capacity
+ /// assert_eq!(bytes.len(), 0);
+ ///
+ /// bytes.extend_from_slice(&b"hello world"[..]);
+ ///
+ /// assert_eq!(&bytes[..], b"hello world");
+ /// ```
+ #[inline]
+ pub fn with_capacity(capacity: usize) -> Bytes {
+ Bytes {
+ inner: Inner::with_capacity(capacity),
+ }
+ }
+
+ /// Creates a new empty `Bytes`.
+ ///
+ /// This will not allocate and the returned `Bytes` handle will be empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::Bytes;
+ ///
+ /// let b = Bytes::new();
+ /// assert_eq!(&b[..], b"");
+ /// ```
+ #[inline]
+ pub fn new() -> Bytes {
+ Bytes::with_capacity(0)
+ }
+
+ /// Creates a new `Bytes` from a static slice.
+ ///
+ /// The returned `Bytes` will point directly to the static slice. There is
+ /// no allocating or copying.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::Bytes;
+ ///
+ /// let b = Bytes::from_static(b"hello");
+ /// assert_eq!(&b[..], b"hello");
+ /// ```
+ #[inline]
+ pub fn from_static(bytes: &'static [u8]) -> Bytes {
+ Bytes {
+ inner: Inner::from_static(bytes),
+ }
+ }
+
+ /// Returns the number of bytes contained in this `Bytes`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::Bytes;
+ ///
+ /// let b = Bytes::from(&b"hello"[..]);
+ /// assert_eq!(b.len(), 5);
+ /// ```
+ #[inline]
+ pub fn len(&self) -> usize {
+ self.inner.len()
+ }
+
+ /// Returns true if the `Bytes` has a length of 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::Bytes;
+ ///
+ /// let b = Bytes::new();
+ /// assert!(b.is_empty());
+ /// ```
+ #[inline]
+ pub fn is_empty(&self) -> bool {
+ self.inner.is_empty()
+ }
+
+ /// Returns a slice of self for the index range `[begin..end)`.
+ ///
+ /// This will increment the reference count for the underlying memory and
+ /// return a new `Bytes` handle set to the slice.
+ ///
+ /// This operation is `O(1)`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::Bytes;
+ ///
+ /// let a = Bytes::from(&b"hello world"[..]);
+ /// let b = a.slice(2, 5);
+ ///
+ /// assert_eq!(&b[..], b"llo");
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// Requires that `begin <= end` and `end <= self.len()`, otherwise slicing
+ /// will panic.
+ pub fn slice(&self, begin: usize, end: usize) -> Bytes {
+ assert!(begin <= end);
+ assert!(end <= self.len());
+
+ if end - begin <= INLINE_CAP {
+ return Bytes::from(&self[begin..end]);
+ }
+
+ let mut ret = self.clone();
+
+ unsafe {
+ ret.inner.set_end(end);
+ ret.inner.set_start(begin);
+ }
+
+ ret
+ }
+
+ /// Returns a slice of self for the index range `[begin..self.len())`.
+ ///
+ /// This will increment the reference count for the underlying memory and
+ /// return a new `Bytes` handle set to the slice.
+ ///
+ /// This operation is `O(1)` and is equivalent to `self.slice(begin,
+ /// self.len())`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::Bytes;
+ ///
+ /// let a = Bytes::from(&b"hello world"[..]);
+ /// let b = a.slice_from(6);
+ ///
+ /// assert_eq!(&b[..], b"world");
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// Requires that `begin <= self.len()`, otherwise slicing will panic.
+ pub fn slice_from(&self, begin: usize) -> Bytes {
+ self.slice(begin, self.len())
+ }
+
+ /// Returns a slice of self for the index range `[0..end)`.
+ ///
+ /// This will increment the reference count for the underlying memory and
+ /// return a new `Bytes` handle set to the slice.
+ ///
+ /// This operation is `O(1)` and is equivalent to `self.slice(0, end)`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::Bytes;
+ ///
+ /// let a = Bytes::from(&b"hello world"[..]);
+ /// let b = a.slice_to(5);
+ ///
+ /// assert_eq!(&b[..], b"hello");
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// Requires that `end <= self.len()`, otherwise slicing will panic.
+ pub fn slice_to(&self, end: usize) -> Bytes {
+ self.slice(0, end)
+ }
+
+ /// Returns a slice of self that is equivalent to the given `subset`.
+ ///
+ /// When processing a `Bytes` buffer with other tools, one often gets a
+ /// `&[u8]` which is in fact a slice of the `Bytes`, i.e. a subset of it.
+ /// This function turns that `&[u8]` into another `Bytes`, as if one had
+ /// called `self.slice()` with the offsets that correspond to `subset`.
+ ///
+ /// This operation is `O(1)`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::Bytes;
+ ///
+ /// let bytes = Bytes::from(&b"012345678"[..]);
+ /// let as_slice = bytes.as_ref();
+ /// let subset = &as_slice[2..6];
+ /// let subslice = bytes.slice_ref(&subset);
+ /// assert_eq!(&subslice[..], b"2345");
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// Requires that the given `sub` slice is in fact contained within the
+ /// `Bytes` buffer; otherwise this function will panic.
+ pub fn slice_ref(&self, subset: &[u8]) -> Bytes {
+ let bytes_p = self.as_ptr() as usize;
+ let bytes_len = self.len();
+
+ let sub_p = subset.as_ptr() as usize;
+ let sub_len = subset.len();
+
+ assert!(sub_p >= bytes_p);
+ assert!(sub_p + sub_len <= bytes_p + bytes_len);
+
+ let sub_offset = sub_p - bytes_p;
+
+ self.slice(sub_offset, sub_offset + sub_len)
+ }
+
+ /// Splits the bytes into two at the given index.
+ ///
+ /// Afterwards `self` contains elements `[0, at)`, and the returned `Bytes`
+ /// contains elements `[at, len)`.
+ ///
+ /// This is an `O(1)` operation that just increases the reference count and
+ /// sets a few indices.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::Bytes;
+ ///
+ /// let mut a = Bytes::from(&b"hello world"[..]);
+ /// let b = a.split_off(5);
+ ///
+ /// assert_eq!(&a[..], b"hello");
+ /// assert_eq!(&b[..], b" world");
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// Panics if `at > len`.
+ pub fn split_off(&mut self, at: usize) -> Bytes {
+ assert!(at <= self.len());
+
+ if at == self.len() {
+ return Bytes::new();
+ }
+
+ if at == 0 {
+ return mem::replace(self, Bytes::new());
+ }
+
+ Bytes {
+ inner: self.inner.split_off(at),
+ }
+ }
+
+ /// Splits the bytes into two at the given index.
+ ///
+ /// Afterwards `self` contains elements `[at, len)`, and the returned
+ /// `Bytes` contains elements `[0, at)`.
+ ///
+ /// This is an `O(1)` operation that just increases the reference count and
+ /// sets a few indices.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::Bytes;
+ ///
+ /// let mut a = Bytes::from(&b"hello world"[..]);
+ /// let b = a.split_to(5);
+ ///
+ /// assert_eq!(&a[..], b" world");
+ /// assert_eq!(&b[..], b"hello");
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// Panics if `at > len`.
+ pub fn split_to(&mut self, at: usize) -> Bytes {
+ assert!(at <= self.len());
+
+ if at == self.len() {
+ return mem::replace(self, Bytes::new());
+ }
+
+ if at == 0 {
+ return Bytes::new();
+ }
+
+ Bytes {
+ inner: self.inner.split_to(at),
+ }
+ }
+
+ #[deprecated(since = "0.4.1", note = "use split_to instead")]
+ #[doc(hidden)]
+ pub fn drain_to(&mut self, at: usize) -> Bytes {
+ self.split_to(at)
+ }
+
+ /// Shortens the buffer, keeping the first `len` bytes and dropping the
+ /// rest.
+ ///
+ /// If `len` is greater than the buffer's current length, this has no
+ /// effect.
+ ///
+ /// The [`split_off`] method can emulate `truncate`, but this causes the
+ /// excess bytes to be returned instead of dropped.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::Bytes;
+ ///
+ /// let mut buf = Bytes::from(&b"hello world"[..]);
+ /// buf.truncate(5);
+ /// assert_eq!(buf, b"hello"[..]);
+ /// ```
+ ///
+ /// [`split_off`]: #method.split_off
+ pub fn truncate(&mut self, len: usize) {
+ self.inner.truncate(len);
+ }
+
+ /// Shortens the buffer, dropping the first `cnt` bytes and keeping the
+ /// rest.
+ ///
+ /// This is the same function as `Buf::advance`, and in the next breaking
+ /// release of `bytes`, this implementation will be removed in favor of
+ /// having `Bytes` implement `Buf`.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if `cnt` is greater than `self.len()`
+ #[inline]
+ pub fn advance(&mut self, cnt: usize) {
+ assert!(cnt <= self.len(), "cannot advance past `remaining`");
+ unsafe { self.inner.set_start(cnt); }
+ }
+
+ /// Clears the buffer, removing all data.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::Bytes;
+ ///
+ /// let mut buf = Bytes::from(&b"hello world"[..]);
+ /// buf.clear();
+ /// assert!(buf.is_empty());
+ /// ```
+ pub fn clear(&mut self) {
+ self.truncate(0);
+ }
+
+ /// Attempts to convert into a `BytesMut` handle.
+ ///
+ /// This will only succeed if there are no other outstanding references to
+ /// the underlying chunk of memory. `Bytes` handles that contain inlined
+ /// bytes will always be convertable to `BytesMut`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::Bytes;
+ ///
+ /// let a = Bytes::from(&b"Mary had a little lamb, little lamb, little lamb..."[..]);
+ ///
+ /// // Create a shallow clone
+ /// let b = a.clone();
+ ///
+ /// // This will fail because `b` shares a reference with `a`
+ /// let a = a.try_mut().unwrap_err();
+ ///
+ /// drop(b);
+ ///
+ /// // This will succeed
+ /// let mut a = a.try_mut().unwrap();
+ ///
+ /// a[0] = b'b';
+ ///
+ /// assert_eq!(&a[..4], b"bary");
+ /// ```
+ pub fn try_mut(mut self) -> Result<BytesMut, Bytes> {
+ if self.inner.is_mut_safe() {
+ Ok(BytesMut { inner: self.inner })
+ } else {
+ Err(self)
+ }
+ }
+
+ /// Appends given bytes to this object.
+ ///
+ /// If this `Bytes` object has not enough capacity, it is resized first.
+ /// If it is shared (`refcount > 1`), it is copied first.
+ ///
+ /// This operation can be less effective than the similar operation on
+ /// `BytesMut`, especially on small additions.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::Bytes;
+ ///
+ /// let mut buf = Bytes::from("aabb");
+ /// buf.extend_from_slice(b"ccdd");
+ /// buf.extend_from_slice(b"eeff");
+ ///
+ /// assert_eq!(b"aabbccddeeff", &buf[..]);
+ /// ```
+ pub fn extend_from_slice(&mut self, extend: &[u8]) {
+ if extend.is_empty() {
+ return;
+ }
+
+ let new_cap = self.len().checked_add(extend.len()).expect("capacity overflow");
+
+ let result = match mem::replace(self, Bytes::new()).try_mut() {
+ Ok(mut bytes_mut) => {
+ bytes_mut.extend_from_slice(extend);
+ bytes_mut
+ },
+ Err(bytes) => {
+ let mut bytes_mut = BytesMut::with_capacity(new_cap);
+ bytes_mut.put_slice(&bytes);
+ bytes_mut.put_slice(extend);
+ bytes_mut
+ }
+ };
+
+ mem::replace(self, result.freeze());
+ }
+}
+
+impl IntoBuf for Bytes {
+ type Buf = Cursor<Self>;
+
+ fn into_buf(self) -> Self::Buf {
+ Cursor::new(self)
+ }
+}
+
+impl<'a> IntoBuf for &'a Bytes {
+ type Buf = Cursor<Self>;
+
+ fn into_buf(self) -> Self::Buf {
+ Cursor::new(self)
+ }
+}
+
+impl Clone for Bytes {
+ fn clone(&self) -> Bytes {
+ Bytes {
+ inner: unsafe { self.inner.shallow_clone(false) },
+ }
+ }
+}
+
+impl AsRef<[u8]> for Bytes {
+ #[inline]
+ fn as_ref(&self) -> &[u8] {
+ self.inner.as_ref()
+ }
+}
+
+impl ops::Deref for Bytes {
+ type Target = [u8];
+
+ #[inline]
+ fn deref(&self) -> &[u8] {
+ self.inner.as_ref()
+ }
+}
+
+impl From<BytesMut> for Bytes {
+ fn from(src: BytesMut) -> Bytes {
+ src.freeze()
+ }
+}
+
+impl From<Vec<u8>> for Bytes {
+ fn from(src: Vec<u8>) -> Bytes {
+ BytesMut::from(src).freeze()
+ }
+}
+
+impl From<String> for Bytes {
+ fn from(src: String) -> Bytes {
+ BytesMut::from(src).freeze()
+ }
+}
+
+impl<'a> From<&'a [u8]> for Bytes {
+ fn from(src: &'a [u8]) -> Bytes {
+ BytesMut::from(src).freeze()
+ }
+}
+
+impl<'a> From<&'a str> for Bytes {
+ fn from(src: &'a str) -> Bytes {
+ BytesMut::from(src).freeze()
+ }
+}
+
+impl FromIterator<u8> for BytesMut {
+ fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
+ let iter = into_iter.into_iter();
+ let (min, maybe_max) = iter.size_hint();
+
+ let mut out = BytesMut::with_capacity(maybe_max.unwrap_or(min));
+
+ for i in iter {
+ out.reserve(1);
+ out.put(i);
+ }
+
+ out
+ }
+}
+
+impl FromIterator<u8> for Bytes {
+ fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
+ BytesMut::from_iter(into_iter).freeze()
+ }
+}
+
+impl<'a> FromIterator<&'a u8> for BytesMut {
+ fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self {
+ BytesMut::from_iter(into_iter.into_iter().map(|b| *b))
+ }
+}
+
+impl<'a> FromIterator<&'a u8> for Bytes {
+ fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self {
+ BytesMut::from_iter(into_iter).freeze()
+ }
+}
+
+impl PartialEq for Bytes {
+ fn eq(&self, other: &Bytes) -> bool {
+ self.inner.as_ref() == other.inner.as_ref()
+ }
+}
+
+impl PartialOrd for Bytes {
+ fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
+ self.inner.as_ref().partial_cmp(other.inner.as_ref())
+ }
+}
+
+impl Ord for Bytes {
+ fn cmp(&self, other: &Bytes) -> cmp::Ordering {
+ self.inner.as_ref().cmp(other.inner.as_ref())
+ }
+}
+
+impl Eq for Bytes {
+}
+
+impl Default for Bytes {
+ #[inline]
+ fn default() -> Bytes {
+ Bytes::new()
+ }
+}
+
+impl fmt::Debug for Bytes {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Debug::fmt(&debug::BsDebug(&self.inner.as_ref()), fmt)
+ }
+}
+
+impl hash::Hash for Bytes {
+ fn hash<H>(&self, state: &mut H) where H: hash::Hasher {
+ let s: &[u8] = self.as_ref();
+ s.hash(state);
+ }
+}
+
+impl Borrow<[u8]> for Bytes {
+ fn borrow(&self) -> &[u8] {
+ self.as_ref()
+ }
+}
+
+impl IntoIterator for Bytes {
+ type Item = u8;
+ type IntoIter = Iter<Cursor<Bytes>>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ self.into_buf().iter()
+ }
+}
+
+impl<'a> IntoIterator for &'a Bytes {
+ type Item = u8;
+ type IntoIter = Iter<Cursor<&'a Bytes>>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ self.into_buf().iter()
+ }
+}
+
+impl Extend<u8> for Bytes {
+ fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = u8> {
+ let iter = iter.into_iter();
+
+ let (lower, upper) = iter.size_hint();
+
+ // Avoid possible conversion into mut if there's nothing to add
+ if let Some(0) = upper {
+ return;
+ }
+
+ let mut bytes_mut = match mem::replace(self, Bytes::new()).try_mut() {
+ Ok(bytes_mut) => bytes_mut,
+ Err(bytes) => {
+ let mut bytes_mut = BytesMut::with_capacity(bytes.len() + lower);
+ bytes_mut.put_slice(&bytes);
+ bytes_mut
+ }
+ };
+
+ bytes_mut.extend(iter);
+
+ mem::replace(self, bytes_mut.freeze());
+ }
+}
+
+impl<'a> Extend<&'a u8> for Bytes {
+ fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = &'a u8> {
+ self.extend(iter.into_iter().map(|b| *b))
+ }
+}
+
+/*
+ *
+ * ===== BytesMut =====
+ *
+ */
+
+impl BytesMut {
+ /// Creates a new `BytesMut` with the specified capacity.
+ ///
+ /// The returned `BytesMut` will be able to hold at least `capacity` bytes
+ /// without reallocating. If `capacity` is under `4 * size_of::<usize>() - 1`,
+ /// then `BytesMut` will not allocate.
+ ///
+ /// It is important to note that this function does not specify the length
+ /// of the returned `BytesMut`, but only the capacity.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::{BytesMut, BufMut};
+ ///
+ /// let mut bytes = BytesMut::with_capacity(64);
+ ///
+ /// // `bytes` contains no data, even though there is capacity
+ /// assert_eq!(bytes.len(), 0);
+ ///
+ /// bytes.put(&b"hello world"[..]);
+ ///
+ /// assert_eq!(&bytes[..], b"hello world");
+ /// ```
+ #[inline]
+ pub fn with_capacity(capacity: usize) -> BytesMut {
+ BytesMut {
+ inner: Inner::with_capacity(capacity),
+ }
+ }
+
+ /// Creates a new `BytesMut` with default capacity.
+ ///
+ /// Resulting object has length 0 and unspecified capacity.
+ /// This function does not allocate.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::{BytesMut, BufMut};
+ ///
+ /// let mut bytes = BytesMut::new();
+ ///
+ /// assert_eq!(0, bytes.len());
+ ///
+ /// bytes.reserve(2);
+ /// bytes.put_slice(b"xy");
+ ///
+ /// assert_eq!(&b"xy"[..], &bytes[..]);
+ /// ```
+ #[inline]
+ pub fn new() -> BytesMut {
+ BytesMut::with_capacity(0)
+ }
+
+ /// Returns the number of bytes contained in this `BytesMut`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::BytesMut;
+ ///
+ /// let b = BytesMut::from(&b"hello"[..]);
+ /// assert_eq!(b.len(), 5);
+ /// ```
+ #[inline]
+ pub fn len(&self) -> usize {
+ self.inner.len()
+ }
+
+ /// Returns true if the `BytesMut` has a length of 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::BytesMut;
+ ///
+ /// let b = BytesMut::with_capacity(64);
+ /// assert!(b.is_empty());
+ /// ```
+ #[inline]
+ pub fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Returns the number of bytes the `BytesMut` can hold without reallocating.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::BytesMut;
+ ///
+ /// let b = BytesMut::with_capacity(64);
+ /// assert_eq!(b.capacity(), 64);
+ /// ```
+ #[inline]
+ pub fn capacity(&self) -> usize {
+ self.inner.capacity()
+ }
+
+ /// Converts `self` into an immutable `Bytes`.
+ ///
+ /// The conversion is zero cost and is used to indicate that the slice
+ /// referenced by the handle will no longer be mutated. Once the conversion
+ /// is done, the handle can be cloned and shared across threads.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::{BytesMut, BufMut};
+ /// use std::thread;
+ ///
+ /// let mut b = BytesMut::with_capacity(64);
+ /// b.put("hello world");
+ /// let b1 = b.freeze();
+ /// let b2 = b1.clone();
+ ///
+ /// let th = thread::spawn(move || {
+ /// assert_eq!(&b1[..], b"hello world");
+ /// });
+ ///
+ /// assert_eq!(&b2[..], b"hello world");
+ /// th.join().unwrap();
+ /// ```
+ #[inline]
+ pub fn freeze(self) -> Bytes {
+ Bytes { inner: self.inner }
+ }
+
+ /// Splits the bytes into two at the given index.
+ ///
+ /// Afterwards `self` contains elements `[0, at)`, and the returned
+ /// `BytesMut` contains elements `[at, capacity)`.
+ ///
+ /// This is an `O(1)` operation that just increases the reference count
+ /// and sets a few indices.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::BytesMut;
+ ///
+ /// let mut a = BytesMut::from(&b"hello world"[..]);
+ /// let mut b = a.split_off(5);
+ ///
+ /// a[0] = b'j';
+ /// b[0] = b'!';
+ ///
+ /// assert_eq!(&a[..], b"jello");
+ /// assert_eq!(&b[..], b"!world");
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// Panics if `at > capacity`.
+ pub fn split_off(&mut self, at: usize) -> BytesMut {
+ BytesMut {
+ inner: self.inner.split_off(at),
+ }
+ }
+
+ /// Removes the bytes from the current view, returning them in a new
+ /// `BytesMut` handle.
+ ///
+ /// Afterwards, `self` will be empty, but will retain any additional
+ /// capacity that it had before the operation. This is identical to
+ /// `self.split_to(self.len())`.
+ ///
+ /// This is an `O(1)` operation that just increases the reference count and
+ /// sets a few indices.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::{BytesMut, BufMut};
+ ///
+ /// let mut buf = BytesMut::with_capacity(1024);
+ /// buf.put(&b"hello world"[..]);
+ ///
+ /// let other = buf.take();
+ ///
+ /// assert!(buf.is_empty());
+ /// assert_eq!(1013, buf.capacity());
+ ///
+ /// assert_eq!(other, b"hello world"[..]);
+ /// ```
+ pub fn take(&mut self) -> BytesMut {
+ let len = self.len();
+ self.split_to(len)
+ }
+
+ #[deprecated(since = "0.4.1", note = "use take instead")]
+ #[doc(hidden)]
+ pub fn drain(&mut self) -> BytesMut {
+ self.take()
+ }
+
+ /// Splits the buffer into two at the given index.
+ ///
+ /// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut`
+ /// contains elements `[0, at)`.
+ ///
+ /// This is an `O(1)` operation that just increases the reference count and
+ /// sets a few indices.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::BytesMut;
+ ///
+ /// let mut a = BytesMut::from(&b"hello world"[..]);
+ /// let mut b = a.split_to(5);
+ ///
+ /// a[0] = b'!';
+ /// b[0] = b'j';
+ ///
+ /// assert_eq!(&a[..], b"!world");
+ /// assert_eq!(&b[..], b"jello");
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// Panics if `at > len`.
+ pub fn split_to(&mut self, at: usize) -> BytesMut {
+ BytesMut {
+ inner: self.inner.split_to(at),
+ }
+ }
+
+ #[deprecated(since = "0.4.1", note = "use split_to instead")]
+ #[doc(hidden)]
+ pub fn drain_to(&mut self, at: usize) -> BytesMut {
+ self.split_to(at)
+ }
+
+ /// Shortens the buffer, keeping the first `len` bytes and dropping the
+ /// rest.
+ ///
+ /// If `len` is greater than the buffer's current length, this has no
+ /// effect.
+ ///
+ /// The [`split_off`] method can emulate `truncate`, but this causes the
+ /// excess bytes to be returned instead of dropped.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::BytesMut;
+ ///
+ /// let mut buf = BytesMut::from(&b"hello world"[..]);
+ /// buf.truncate(5);
+ /// assert_eq!(buf, b"hello"[..]);
+ /// ```
+ ///
+ /// [`split_off`]: #method.split_off
+ pub fn truncate(&mut self, len: usize) {
+ self.inner.truncate(len);
+ }
+
+ /// Shortens the buffer, dropping the first `cnt` bytes and keeping the
+ /// rest.
+ ///
+ /// This is the same function as `Buf::advance`, and in the next breaking
+ /// release of `bytes`, this implementation will be removed in favor of
+ /// having `BytesMut` implement `Buf`.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if `cnt` is greater than `self.len()`
+ #[inline]
+ pub fn advance(&mut self, cnt: usize) {
+ assert!(cnt <= self.len(), "cannot advance past `remaining`");
+ unsafe { self.inner.set_start(cnt); }
+ }
+
+ /// Clears the buffer, removing all data.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::BytesMut;
+ ///
+ /// let mut buf = BytesMut::from(&b"hello world"[..]);
+ /// buf.clear();
+ /// assert!(buf.is_empty());
+ /// ```
+ pub fn clear(&mut self) {
+ self.truncate(0);
+ }
+
+ /// Resizes the buffer so that `len` is equal to `new_len`.
+ ///
+ /// If `new_len` is greater than `len`, the buffer is extended by the
+ /// difference with each additional byte set to `value`. If `new_len` is
+ /// less than `len`, the buffer is simply truncated.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::BytesMut;
+ ///
+ /// let mut buf = BytesMut::new();
+ ///
+ /// buf.resize(3, 0x1);
+ /// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]);
+ ///
+ /// buf.resize(2, 0x2);
+ /// assert_eq!(&buf[..], &[0x1, 0x1]);
+ ///
+ /// buf.resize(4, 0x3);
+ /// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]);
+ /// ```
+ pub fn resize(&mut self, new_len: usize, value: u8) {
+ self.inner.resize(new_len, value);
+ }
+
+ /// Sets the length of the buffer.
+ ///
+ /// This will explicitly set the size of the buffer without actually
+ /// modifying the data, so it is up to the caller to ensure that the data
+ /// has been initialized.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::BytesMut;
+ ///
+ /// let mut b = BytesMut::from(&b"hello world"[..]);
+ ///
+ /// unsafe {
+ /// b.set_len(5);
+ /// }
+ ///
+ /// assert_eq!(&b[..], b"hello");
+ ///
+ /// unsafe {
+ /// b.set_len(11);
+ /// }
+ ///
+ /// assert_eq!(&b[..], b"hello world");
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// This method will panic if `len` is out of bounds for the underlying
+ /// slice or if it comes after the `end` of the configured window.
+ pub unsafe fn set_len(&mut self, len: usize) {
+ self.inner.set_len(len)
+ }
+
+ /// Reserves capacity for at least `additional` more bytes to be inserted
+ /// into the given `BytesMut`.
+ ///
+ /// More than `additional` bytes may be reserved in order to avoid frequent
+ /// reallocations. A call to `reserve` may result in an allocation.
+ ///
+ /// Before allocating new buffer space, the function will attempt to reclaim
+ /// space in the existing buffer. If the current handle references a small
+ /// view in the original buffer and all other handles have been dropped,
+ /// and the requested capacity is less than or equal to the existing
+ /// buffer's capacity, then the current view will be copied to the front of
+ /// the buffer and the handle will take ownership of the full buffer.
+ ///
+ /// # Examples
+ ///
+ /// In the following example, a new buffer is allocated.
+ ///
+ /// ```
+ /// use bytes::BytesMut;
+ ///
+ /// let mut buf = BytesMut::from(&b"hello"[..]);
+ /// buf.reserve(64);
+ /// assert!(buf.capacity() >= 69);
+ /// ```
+ ///
+ /// In the following example, the existing buffer is reclaimed.
+ ///
+ /// ```
+ /// use bytes::{BytesMut, BufMut};
+ ///
+ /// let mut buf = BytesMut::with_capacity(128);
+ /// buf.put(&[0; 64][..]);
+ ///
+ /// let ptr = buf.as_ptr();
+ /// let other = buf.take();
+ ///
+ /// assert!(buf.is_empty());
+ /// assert_eq!(buf.capacity(), 64);
+ ///
+ /// drop(other);
+ /// buf.reserve(128);
+ ///
+ /// assert_eq!(buf.capacity(), 128);
+ /// assert_eq!(buf.as_ptr(), ptr);
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity overflows `usize`.
+ pub fn reserve(&mut self, additional: usize) {
+ self.inner.reserve(additional)
+ }
+
+ /// Appends given bytes to this object.
+ ///
+ /// If this `BytesMut` object has not enough capacity, it is resized first.
+ /// So unlike `put_slice` operation, `extend_from_slice` does not panic.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::BytesMut;
+ ///
+ /// let mut buf = BytesMut::with_capacity(0);
+ /// buf.extend_from_slice(b"aaabbb");
+ /// buf.extend_from_slice(b"cccddd");
+ ///
+ /// assert_eq!(b"aaabbbcccddd", &buf[..]);
+ /// ```
+ pub fn extend_from_slice(&mut self, extend: &[u8]) {
+ self.reserve(extend.len());
+ self.put_slice(extend);
+ }
+
+ /// Combine splitted BytesMut objects back as contiguous.
+ ///
+ /// If `BytesMut` objects were not contiguous originally, they will be extended.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bytes::BytesMut;
+ ///
+ /// let mut buf = BytesMut::with_capacity(64);
+ /// buf.extend_from_slice(b"aaabbbcccddd");
+ ///
+ /// let splitted = buf.split_off(6);
+ /// assert_eq!(b"aaabbb", &buf[..]);
+ /// assert_eq!(b"cccddd", &splitted[..]);
+ ///
+ /// buf.unsplit(splitted);
+ /// assert_eq!(b"aaabbbcccddd", &buf[..]);
+ /// ```
+ pub fn unsplit(&mut self, other: BytesMut) {
+ let ptr;
+
+ if other.is_empty() {
+ return;
+ }
+
+ if self.is_empty() {
+ *self = other;
+ return;
+ }
+
+ unsafe {
+ ptr = self.inner.ptr.offset(self.inner.len as isize);
+ }
+ if ptr == other.inner.ptr &&
+ self.inner.kind() == KIND_ARC &&
+ other.inner.kind() == KIND_ARC
+ {
+ debug_assert_eq!(self.inner.arc.load(Acquire),
+ other.inner.arc.load(Acquire));
+ // Contiguous blocks, just combine directly
+ self.inner.len += other.inner.len;
+ self.inner.cap += other.inner.cap;
+ }
+ else {
+ self.extend_from_slice(&other);
+ }
+ }
+}
+
+impl BufMut for BytesMut {
+ #[inline]
+ fn remaining_mut(&self) -> usize {
+ self.capacity() - self.len()
+ }
+
+ #[inline]
+ unsafe fn advance_mut(&mut self, cnt: usize) {
+ let new_len = self.len() + cnt;
+
+ // This call will panic if `cnt` is too big
+ self.inner.set_len(new_len);
+ }
+
+ #[inline]
+ unsafe fn bytes_mut(&mut self) -> &mut [u8] {
+ let len = self.len();
+
+ // This will never panic as `len` can never become invalid
+ &mut self.inner.as_raw()[len..]
+ }
+
+ #[inline]
+ fn put_slice(&mut self, src: &[u8]) {
+ assert!(self.remaining_mut() >= src.len());
+
+ let len = src.len();
+
+ unsafe {
+ self.bytes_mut()[..len].copy_from_slice(src);
+ self.advance_mut(len);
+ }
+ }
+
+ #[inline]
+ fn put_u8(&mut self, n: u8) {
+ self.inner.put_u8(n);
+ }
+
+ #[inline]
+ fn put_i8(&mut self, n: i8) {
+ self.put_u8(n as u8);
+ }
+}
+
+impl IntoBuf for BytesMut {
+ type Buf = Cursor<Self>;
+
+ fn into_buf(self) -> Self::Buf {
+ Cursor::new(self)
+ }
+}
+
+impl<'a> IntoBuf for &'a BytesMut {
+ type Buf = Cursor<&'a BytesMut>;
+
+ fn into_buf(self) -> Self::Buf {
+ Cursor::new(self)
+ }
+}
+
+impl AsRef<[u8]> for BytesMut {
+ #[inline]
+ fn as_ref(&self) -> &[u8] {
+ self.inner.as_ref()
+ }
+}
+
+impl ops::Deref for BytesMut {
+ type Target = [u8];
+
+ #[inline]
+ fn deref(&self) -> &[u8] {
+ self.as_ref()
+ }
+}
+
+impl AsMut<[u8]> for BytesMut {
+ fn as_mut(&mut self) -> &mut [u8] {
+ self.inner.as_mut()
+ }
+}
+
+impl ops::DerefMut for BytesMut {
+ #[inline]
+ fn deref_mut(&mut self) -> &mut [u8] {
+ self.inner.as_mut()
+ }
+}
+
+impl From<Vec<u8>> for BytesMut {
+ fn from(src: Vec<u8>) -> BytesMut {
+ BytesMut {
+ inner: Inner::from_vec(src),
+ }
+ }
+}
+
+impl From<String> for BytesMut {
+ fn from(src: String) -> BytesMut {
+ BytesMut::from(src.into_bytes())
+ }
+}
+
+impl<'a> From<&'a [u8]> for BytesMut {
+ fn from(src: &'a [u8]) -> BytesMut {
+ let len = src.len();
+
+ if len == 0 {
+ BytesMut::new()
+ } else if len <= INLINE_CAP {
+ unsafe {
+ let mut inner: Inner = mem::uninitialized();
+
+ // Set inline mask
+ inner.arc = AtomicPtr::new(KIND_INLINE as *mut Shared);
+ inner.set_inline_len(len);
+ inner.as_raw()[0..len].copy_from_slice(src);
+
+ BytesMut {
+ inner: inner,
+ }
+ }
+ } else {
+ BytesMut::from(src.to_vec())
+ }
+ }
+}
+
+impl<'a> From<&'a str> for BytesMut {
+ fn from(src: &'a str) -> BytesMut {
+ BytesMut::from(src.as_bytes())
+ }
+}
+
+impl From<Bytes> for BytesMut {
+ fn from(src: Bytes) -> BytesMut {
+ src.try_mut()
+ .unwrap_or_else(|src| BytesMut::from(&src[..]))
+ }
+}
+
+impl PartialEq for BytesMut {
+ fn eq(&self, other: &BytesMut) -> bool {
+ self.inner.as_ref() == other.inner.as_ref()
+ }
+}
+
+impl PartialOrd for BytesMut {
+ fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
+ self.inner.as_ref().partial_cmp(other.inner.as_ref())
+ }
+}
+
+impl Ord for BytesMut {
+ fn cmp(&self, other: &BytesMut) -> cmp::Ordering {
+ self.inner.as_ref().cmp(other.inner.as_ref())
+ }
+}
+
+impl Eq for BytesMut {
+}
+
+impl Default for BytesMut {
+ #[inline]
+ fn default() -> BytesMut {
+ BytesMut::new()
+ }
+}
+
+impl fmt::Debug for BytesMut {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Debug::fmt(&debug::BsDebug(&self.inner.as_ref()), fmt)
+ }
+}
+
+impl hash::Hash for BytesMut {
+ fn hash<H>(&self, state: &mut H) where H: hash::Hasher {
+ let s: &[u8] = self.as_ref();
+ s.hash(state);
+ }
+}
+
+impl Borrow<[u8]> for BytesMut {
+ fn borrow(&self) -> &[u8] {
+ self.as_ref()
+ }
+}
+
+impl BorrowMut<[u8]> for BytesMut {
+ fn borrow_mut(&mut self) -> &mut [u8] {
+ self.as_mut()
+ }
+}
+
+impl fmt::Write for BytesMut {
+ #[inline]
+ fn write_str(&mut self, s: &str) -> fmt::Result {
+ if self.remaining_mut() >= s.len() {
+ self.put_slice(s.as_bytes());
+ Ok(())
+ } else {
+ Err(fmt::Error)
+ }
+ }
+
+ #[inline]
+ fn write_fmt(&mut self, args: fmt::Arguments) -> fmt::Result {
+ fmt::write(self, args)
+ }
+}
+
+impl Clone for BytesMut {
+ fn clone(&self) -> BytesMut {
+ BytesMut::from(&self[..])
+ }
+}
+
+impl IntoIterator for BytesMut {
+ type Item = u8;
+ type IntoIter = Iter<Cursor<BytesMut>>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ self.into_buf().iter()
+ }
+}
+
+impl<'a> IntoIterator for &'a BytesMut {
+ type Item = u8;
+ type IntoIter = Iter<Cursor<&'a BytesMut>>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ self.into_buf().iter()
+ }
+}
+
+impl Extend<u8> for BytesMut {
+ fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = u8> {
+ let iter = iter.into_iter();
+
+ let (lower, _) = iter.size_hint();
+ self.reserve(lower);
+
+ for b in iter {
+ unsafe {
+ self.bytes_mut()[0] = b;
+ self.advance_mut(1);
+ }
+ }
+ }
+}
+
+impl<'a> Extend<&'a u8> for BytesMut {
+ fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = &'a u8> {
+ self.extend(iter.into_iter().map(|b| *b))
+ }
+}
+
+/*
+ *
+ * ===== Inner =====
+ *
+ */
+
+impl Inner {
+ #[inline]
+ fn from_static(bytes: &'static [u8]) -> Inner {
+ let ptr = bytes.as_ptr() as *mut u8;
+
+ Inner {
+ // `arc` won't ever store a pointer. Instead, use it to
+ // track the fact that the `Bytes` handle is backed by a
+ // static buffer.
+ arc: AtomicPtr::new(KIND_STATIC as *mut Shared),
+ ptr: ptr,
+ len: bytes.len(),
+ cap: bytes.len(),
+ }
+ }
+
+ #[inline]
+ fn from_vec(mut src: Vec<u8>) -> Inner {
+ let len = src.len();
+ let cap = src.capacity();
+ let ptr = src.as_mut_ptr();
+
+ mem::forget(src);
+
+ let original_capacity_repr = original_capacity_to_repr(cap);
+ let arc = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
+
+ Inner {
+ arc: AtomicPtr::new(arc as *mut Shared),
+ ptr: ptr,
+ len: len,
+ cap: cap,
+ }
+ }
+
+ #[inline]
+ fn with_capacity(capacity: usize) -> Inner {
+ if capacity <= INLINE_CAP {
+ unsafe {
+ // Using uninitialized memory is ~30% faster
+ let mut inner: Inner = mem::uninitialized();
+ inner.arc = AtomicPtr::new(KIND_INLINE as *mut Shared);
+ inner
+ }
+ } else {
+ Inner::from_vec(Vec::with_capacity(capacity))
+ }
+ }
+
+ /// Return a slice for the handle's view into the shared buffer
+ #[inline]
+ fn as_ref(&self) -> &[u8] {
+ unsafe {
+ if self.is_inline() {
+ slice::from_raw_parts(self.inline_ptr(), self.inline_len())
+ } else {
+ slice::from_raw_parts(self.ptr, self.len)
+ }
+ }
+ }
+
+ /// Return a mutable slice for the handle's view into the shared buffer
+ #[inline]
+ fn as_mut(&mut self) -> &mut [u8] {
+ debug_assert!(!self.is_static());
+
+ unsafe {
+ if self.is_inline() {
+ slice::from_raw_parts_mut(self.inline_ptr(), self.inline_len())
+ } else {
+ slice::from_raw_parts_mut(self.ptr, self.len)
+ }
+ }
+ }
+
+ /// Return a mutable slice for the handle's view into the shared buffer
+ /// including potentially uninitialized bytes.
+ #[inline]
+ unsafe fn as_raw(&mut self) -> &mut [u8] {
+ debug_assert!(!self.is_static());
+
+ if self.is_inline() {
+ slice::from_raw_parts_mut(self.inline_ptr(), INLINE_CAP)
+ } else {
+ slice::from_raw_parts_mut(self.ptr, self.cap)
+ }
+ }
+
+ /// Insert a byte into the next slot and advance the len by 1.
+ #[inline]
+ fn put_u8(&mut self, n: u8) {
+ if self.is_inline() {
+ let len = self.inline_len();
+ assert!(len < INLINE_CAP);
+ unsafe {
+ *self.inline_ptr().offset(len as isize) = n;
+ }
+ self.set_inline_len(len + 1);
+ } else {
+ assert!(self.len < self.cap);
+ unsafe {
+ *self.ptr.offset(self.len as isize) = n;
+ }
+ self.len += 1;
+ }
+ }
+
+ #[inline]
+ fn len(&self) -> usize {
+ if self.is_inline() {
+ self.inline_len()
+ } else {
+ self.len
+ }
+ }
+
+ /// Pointer to the start of the inline buffer
+ #[inline]
+ unsafe fn inline_ptr(&self) -> *mut u8 {
+ (self as *const Inner as *mut Inner as *mut u8)
+ .offset(INLINE_DATA_OFFSET)
+ }
+
+ #[inline]
+ fn inline_len(&self) -> usize {
+ let p: &usize = unsafe { mem::transmute(&self.arc) };
+ (p & INLINE_LEN_MASK) >> INLINE_LEN_OFFSET
+ }
+
+ /// Set the length of the inline buffer. This is done by writing to the
+ /// least significant byte of the `arc` field.
+ #[inline]
+ fn set_inline_len(&mut self, len: usize) {
+ debug_assert!(len <= INLINE_CAP);
+ let p = self.arc.get_mut();
+ *p = ((*p as usize & !INLINE_LEN_MASK) | (len << INLINE_LEN_OFFSET)) as _;
+ }
+
+ /// slice.
+ #[inline]
+ unsafe fn set_len(&mut self, len: usize) {
+ if self.is_inline() {
+ assert!(len <= INLINE_CAP);
+ self.set_inline_len(len);
+ } else {
+ assert!(len <= self.cap);
+ self.len = len;
+ }
+ }
+
+ #[inline]
+ fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ #[inline]
+ fn capacity(&self) -> usize {
+ if self.is_inline() {
+ INLINE_CAP
+ } else {
+ self.cap
+ }
+ }
+
+ fn split_off(&mut self, at: usize) -> Inner {
+ let mut other = unsafe { self.shallow_clone(true) };
+
+ unsafe {
+ other.set_start(at);
+ self.set_end(at);
+ }
+
+ return other
+ }
+
+ fn split_to(&mut self, at: usize) -> Inner {
+ let mut other = unsafe { self.shallow_clone(true) };
+
+ unsafe {
+ other.set_end(at);
+ self.set_start(at);
+ }
+
+ return other
+ }
+
+ fn truncate(&mut self, len: usize) {
+ if len <= self.len() {
+ unsafe { self.set_len(len); }
+ }
+ }
+
+ fn resize(&mut self, new_len: usize, value: u8) {
+ let len = self.len();
+ if new_len > len {
+ let additional = new_len - len;
+ self.reserve(additional);
+ unsafe {
+ let dst = self.as_raw()[len..].as_mut_ptr();
+ ptr::write_bytes(dst, value, additional);
+ self.set_len(new_len);
+ }
+ } else {
+ self.truncate(new_len);
+ }
+ }
+
+ unsafe fn set_start(&mut self, start: usize) {
+ // Setting the start to 0 is a no-op, so return early if this is the
+ // case.
+ if start == 0 {
+ return;
+ }
+
+ let kind = self.kind();
+
+ // Always check `inline` first, because if the handle is using inline
+ // data storage, all of the `Inner` struct fields will be gibberish.
+ if kind == KIND_INLINE {
+ assert!(start <= INLINE_CAP);
+
+ let len = self.inline_len();
+
+ if len <= start {
+ self.set_inline_len(0);
+ } else {
+ // `set_start` is essentially shifting data off the front of the
+ // view. Inlined buffers only track the length of the slice.
+ // So, to update the start, the data at the new starting point
+ // is copied to the beginning of the buffer.
+ let new_len = len - start;
+
+ let dst = self.inline_ptr();
+ let src = (dst as *const u8).offset(start as isize);
+
+ ptr::copy(src, dst, new_len);
+
+ self.set_inline_len(new_len);
+ }
+ } else {
+ assert!(start <= self.cap);
+
+ if kind == KIND_VEC {
+ // Setting the start when in vec representation is a little more
+ // complicated. First, we have to track how far ahead the
+ // "start" of the byte buffer from the beginning of the vec. We
+ // also have to ensure that we don't exceed the maximum shift.
+ let (mut pos, prev) = self.uncoordinated_get_vec_pos();
+ pos += start;
+
+ if pos <= MAX_VEC_POS {
+ self.uncoordinated_set_vec_pos(pos, prev);
+ } else {
+ // The repr must be upgraded to ARC. This will never happen
+ // on 64 bit systems and will only happen on 32 bit systems
+ // when shifting past 134,217,727 bytes. As such, we don't
+ // worry too much about performance here.
+ let _ = self.shallow_clone(true);
+ }
+ }
+
+ // Updating the start of the view is setting `ptr` to point to the
+ // new start and updating the `len` field to reflect the new length
+ // of the view.
+ self.ptr = self.ptr.offset(start as isize);
+
+ if self.len >= start {
+ self.len -= start;
+ } else {
+ self.len = 0;
+ }
+
+ self.cap -= start;
+ }
+ }
+
+ unsafe fn set_end(&mut self, end: usize) {
+ debug_assert!(self.is_shared());
+
+ // Always check `inline` first, because if the handle is using inline
+ // data storage, all of the `Inner` struct fields will be gibberish.
+ if self.is_inline() {
+ assert!(end <= INLINE_CAP);
+ let new_len = cmp::min(self.inline_len(), end);
+ self.set_inline_len(new_len);
+ } else {
+ assert!(end <= self.cap);
+
+ self.cap = end;
+ self.len = cmp::min(self.len, end);
+ }
+ }
+
+ /// Checks if it is safe to mutate the memory
+ fn is_mut_safe(&mut self) -> bool {
+ let kind = self.kind();
+
+ // Always check `inline` first, because if the handle is using inline
+ // data storage, all of the `Inner` struct fields will be gibberish.
+ if kind == KIND_INLINE {
+ // Inlined buffers can always be mutated as the data is never shared
+ // across handles.
+ true
+ } else if kind == KIND_VEC {
+ true
+ } else if kind == KIND_STATIC {
+ false
+ } else {
+ // Otherwise, the underlying buffer is potentially shared with other
+ // handles, so the ref_count needs to be checked.
+ unsafe { (**self.arc.get_mut()).is_unique() }
+ }
+ }
+
+ /// Increments the ref count. This should only be done if it is known that
+ /// it can be done safely. As such, this fn is not public, instead other
+ /// fns will use this one while maintaining the guarantees.
+ /// Parameter `mut_self` should only be set to `true` if caller holds
+ /// `&mut self` reference.
+ ///
+ /// "Safely" is defined as not exposing two `BytesMut` values that point to
+ /// the same byte window.
+ ///
+ /// This function is thread safe.
+ unsafe fn shallow_clone(&self, mut_self: bool) -> Inner {
+ // Always check `inline` first, because if the handle is using inline
+ // data storage, all of the `Inner` struct fields will be gibberish.
+ //
+ // Additionally, if kind is STATIC, then Arc is *never* changed, making
+ // it safe and faster to check for it now before an atomic acquire.
+
+ if self.is_inline_or_static() {
+ // In this case, a shallow_clone still involves copying the data.
+ let mut inner: Inner = mem::uninitialized();
+ ptr::copy_nonoverlapping(
+ self,
+ &mut inner,
+ 1,
+ );
+ inner
+ } else {
+ self.shallow_clone_sync(mut_self)
+ }
+ }
+
+
+ #[cold]
+ unsafe fn shallow_clone_sync(&self, mut_self: bool) -> Inner {
+ // The function requires `&self`, this means that `shallow_clone`
+ // could be called concurrently.
+ //
+ // The first step is to load the value of `arc`. This will determine
+ // how to proceed. The `Acquire` ordering synchronizes with the
+ // `compare_and_swap` that comes later in this function. The goal is
+ // to ensure that if `arc` is currently set to point to a `Shared`,
+ // that the current thread acquires the associated memory.
+ let arc = self.arc.load(Acquire);
+ let kind = arc as usize & KIND_MASK;
+
+ if kind == KIND_ARC {
+ self.shallow_clone_arc(arc)
+ } else {
+ assert!(kind == KIND_VEC);
+ self.shallow_clone_vec(arc as usize, mut_self)
+ }
+ }
+
+ unsafe fn shallow_clone_arc(&self, arc: *mut Shared) -> Inner {
+ debug_assert!(arc as usize & KIND_MASK == KIND_ARC);
+
+ let old_size = (*arc).ref_count.fetch_add(1, Relaxed);
+
+ if old_size == usize::MAX {
+ abort();
+ }
+
+ Inner {
+ arc: AtomicPtr::new(arc),
+ .. *self
+ }
+ }
+
+ #[cold]
+ unsafe fn shallow_clone_vec(&self, arc: usize, mut_self: bool) -> Inner {
+ // If the buffer is still tracked in a `Vec<u8>`. It is time to
+ // promote the vec to an `Arc`. This could potentially be called
+ // concurrently, so some care must be taken.
+
+ debug_assert!(arc & KIND_MASK == KIND_VEC);
+
+ let original_capacity_repr =
+ (arc as usize & ORIGINAL_CAPACITY_MASK) >> ORIGINAL_CAPACITY_OFFSET;
+
+ // The vec offset cannot be concurrently mutated, so there
+ // should be no danger reading it.
+ let off = (arc as usize) >> VEC_POS_OFFSET;
+
+ // First, allocate a new `Shared` instance containing the
+ // `Vec` fields. It's important to note that `ptr`, `len`,
+ // and `cap` cannot be mutated without having `&mut self`.
+ // This means that these fields will not be concurrently
+ // updated and since the buffer hasn't been promoted to an
+ // `Arc`, those three fields still are the components of the
+ // vector.
+ let shared = Box::new(Shared {
+ vec: rebuild_vec(self.ptr, self.len, self.cap, off),
+ original_capacity_repr: original_capacity_repr,
+ // Initialize refcount to 2. One for this reference, and one
+ // for the new clone that will be returned from
+ // `shallow_clone`.
+ ref_count: AtomicUsize::new(2),
+ });
+
+ let shared = Box::into_raw(shared);
+
+ // The pointer should be aligned, so this assert should
+ // always succeed.
+ debug_assert!(0 == (shared as usize & 0b11));
+
+ // If there are no references to self in other threads,
+ // expensive atomic operations can be avoided.
+ if mut_self {
+ self.arc.store(shared, Relaxed);
+ return Inner {
+ arc: AtomicPtr::new(shared),
+ .. *self
+ };
+ }
+
+ // Try compare & swapping the pointer into the `arc` field.
+ // `Release` is used synchronize with other threads that
+ // will load the `arc` field.
+ //
+ // If the `compare_and_swap` fails, then the thread lost the
+ // race to promote the buffer to shared. The `Acquire`
+ // ordering will synchronize with the `compare_and_swap`
+ // that happened in the other thread and the `Shared`
+ // pointed to by `actual` will be visible.
+ let actual = self.arc.compare_and_swap(arc as *mut Shared, shared, AcqRel);
+
+ if actual as usize == arc {
+ // The upgrade was successful, the new handle can be
+ // returned.
+ return Inner {
+ arc: AtomicPtr::new(shared),
+ .. *self
+ };
+ }
+
+ // The upgrade failed, a concurrent clone happened. Release
+ // the allocation that was made in this thread, it will not
+ // be needed.
+ let shared = Box::from_raw(shared);
+ mem::forget(*shared);
+
+ // Buffer already promoted to shared storage, so increment ref
+ // count.
+ self.shallow_clone_arc(actual)
+ }
+
+ #[inline]
+ fn reserve(&mut self, additional: usize) {
+ let len = self.len();
+ let rem = self.capacity() - len;
+
+ if additional <= rem {
+ // The handle can already store at least `additional` more bytes, so
+ // there is no further work needed to be done.
+ return;
+ }
+
+ let kind = self.kind();
+
+ // Always check `inline` first, because if the handle is using inline
+ // data storage, all of the `Inner` struct fields will be gibberish.
+ if kind == KIND_INLINE {
+ let new_cap = len + additional;
+
+ // Promote to a vector
+ let mut v = Vec::with_capacity(new_cap);
+ v.extend_from_slice(self.as_ref());
+
+ self.ptr = v.as_mut_ptr();
+ self.len = v.len();
+ self.cap = v.capacity();
+
+ // Since the minimum capacity is `INLINE_CAP`, don't bother encoding
+ // the original capacity as INLINE_CAP
+ self.arc = AtomicPtr::new(KIND_VEC as *mut Shared);
+
+ mem::forget(v);
+ return;
+ }
+
+ if kind == KIND_VEC {
+ // If there's enough free space before the start of the buffer, then
+ // just copy the data backwards and reuse the already-allocated
+ // space.
+ //
+ // Otherwise, since backed by a vector, use `Vec::reserve`
+ unsafe {
+ let (off, prev) = self.uncoordinated_get_vec_pos();
+
+ // Only reuse space if we stand to gain at least capacity/2
+ // bytes of space back
+ if off >= additional && off >= (self.cap / 2) {
+ // There's space - reuse it
+ //
+ // Just move the pointer back to the start after copying
+ // data back.
+ let base_ptr = self.ptr.offset(-(off as isize));
+ ptr::copy(self.ptr, base_ptr, self.len);
+ self.ptr = base_ptr;
+ self.uncoordinated_set_vec_pos(0, prev);
+
+ // Length stays constant, but since we moved backwards we
+ // can gain capacity back.
+ self.cap += off;
+ } else {
+ // No space - allocate more
+ let mut v = rebuild_vec(self.ptr, self.len, self.cap, off);
+ v.reserve(additional);
+
+ // Update the info
+ self.ptr = v.as_mut_ptr().offset(off as isize);
+ self.len = v.len() - off;
+ self.cap = v.capacity() - off;
+
+ // Drop the vec reference
+ mem::forget(v);
+ }
+ return;
+ }
+ }
+
+ let arc = *self.arc.get_mut();
+
+ debug_assert!(kind == KIND_ARC);
+
+ // Reserving involves abandoning the currently shared buffer and
+ // allocating a new vector with the requested capacity.
+ //
+ // Compute the new capacity
+ let mut new_cap = len + additional;
+ let original_capacity;
+ let original_capacity_repr;
+
+ unsafe {
+ original_capacity_repr = (*arc).original_capacity_repr;
+ original_capacity = original_capacity_from_repr(original_capacity_repr);
+
+ // First, try to reclaim the buffer. This is possible if the current
+ // handle is the only outstanding handle pointing to the buffer.
+ if (*arc).is_unique() {
+ // This is the only handle to the buffer. It can be reclaimed.
+ // However, before doing the work of copying data, check to make
+ // sure that the vector has enough capacity.
+ let v = &mut (*arc).vec;
+
+ if v.capacity() >= new_cap {
+ // The capacity is sufficient, reclaim the buffer
+ let ptr = v.as_mut_ptr();
+
+ ptr::copy(self.ptr, ptr, len);
+
+ self.ptr = ptr;
+ self.cap = v.capacity();
+
+ return;
+ }
+
+ // The vector capacity is not sufficient. The reserve request is
+ // asking for more than the initial buffer capacity. Allocate more
+ // than requested if `new_cap` is not much bigger than the current
+ // capacity.
+ //
+ // There are some situations, using `reserve_exact` that the
+ // buffer capacity could be below `original_capacity`, so do a
+ // check.
+ new_cap = cmp::max(
+ cmp::max(v.capacity() << 1, new_cap),
+ original_capacity);
+ } else {
+ new_cap = cmp::max(new_cap, original_capacity);
+ }
+ }
+
+ // Create a new vector to store the data
+ let mut v = Vec::with_capacity(new_cap);
+
+ // Copy the bytes
+ v.extend_from_slice(self.as_ref());
+
+ // Release the shared handle. This must be done *after* the bytes are
+ // copied.
+ release_shared(arc);
+
+ // Update self
+ self.ptr = v.as_mut_ptr();
+ self.len = v.len();
+ self.cap = v.capacity();
+
+ let arc = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
+
+ self.arc = AtomicPtr::new(arc as *mut Shared);
+
+ // Forget the vector handle
+ mem::forget(v);
+ }
+
+ /// Returns true if the buffer is stored inline
+ #[inline]
+ fn is_inline(&self) -> bool {
+ self.kind() == KIND_INLINE
+ }
+
+ #[inline]
+ fn is_inline_or_static(&self) -> bool {
+ // The value returned by `kind` isn't itself safe, but the value could
+ // inform what operations to take, and unsafely do something without
+ // synchronization.
+ //
+ // KIND_INLINE and KIND_STATIC will *never* change, so branches on that
+ // information is safe.
+ let kind = self.kind();
+ kind == KIND_INLINE || kind == KIND_STATIC
+ }
+
+ /// Used for `debug_assert` statements. &mut is used to guarantee that it is
+ /// safe to check VEC_KIND
+ #[inline]
+ fn is_shared(&mut self) -> bool {
+ match self.kind() {
+ KIND_VEC => false,
+ _ => true,
+ }
+ }
+
+ /// Used for `debug_assert` statements
+ #[inline]
+ fn is_static(&mut self) -> bool {
+ match self.kind() {
+ KIND_STATIC => true,
+ _ => false,
+ }
+ }
+
+ #[inline]
+ fn kind(&self) -> usize {
+ // This function is going to probably raise some eyebrows. The function
+ // returns true if the buffer is stored inline. This is done by checking
+ // the least significant bit in the `arc` field.
+ //
+ // Now, you may notice that `arc` is an `AtomicPtr` and this is
+ // accessing it as a normal field without performing an atomic load...
+ //
+ // Again, the function only cares about the least significant bit, and
+ // this bit is set when `Inner` is created and never changed after that.
+ // All platforms have atomic "word" operations and won't randomly flip
+ // bits, so even without any explicit atomic operations, reading the
+ // flag will be correct.
+ //
+ // This is undefind behavior due to a data race, but experimental
+ // evidence shows that it works in practice (discussion:
+ // https://internals.rust-lang.org/t/bit-wise-reasoning-for-atomic-accesses/8853).
+ //
+ // This function is very critical performance wise as it is called for
+ // every operation. Performing an atomic load would mess with the
+ // compiler's ability to optimize. Simple benchmarks show up to a 10%
+ // slowdown using a `Relaxed` atomic load on x86.
+
+ #[cfg(target_endian = "little")]
+ #[inline]
+ fn imp(arc: &AtomicPtr<Shared>) -> usize {
+ unsafe {
+ let p: *const u8 = mem::transmute(arc);
+ (*p as usize) & KIND_MASK
+ }
+ }
+
+ #[cfg(target_endian = "big")]
+ #[inline]
+ fn imp(arc: &AtomicPtr<Shared>) -> usize {
+ unsafe {
+ let p: *const usize = mem::transmute(arc);
+ *p & KIND_MASK
+ }
+ }
+
+ imp(&self.arc)
+ }
+
+ #[inline]
+ fn uncoordinated_get_vec_pos(&mut self) -> (usize, usize) {
+ // Similar to above, this is a pretty crazed function. This should only
+ // be called when in the KIND_VEC mode. This + the &mut self argument
+ // guarantees that there is no possibility of concurrent calls to this
+ // function.
+ let prev = unsafe {
+ let p: &AtomicPtr<Shared> = &self.arc;
+ let p: *const usize = mem::transmute(p);
+ *p
+ };
+
+ (prev >> VEC_POS_OFFSET, prev)
+ }
+
+ #[inline]
+ fn uncoordinated_set_vec_pos(&mut self, pos: usize, prev: usize) {
+ // Once more... crazy
+ debug_assert!(pos <= MAX_VEC_POS);
+
+ unsafe {
+ let p: &mut AtomicPtr<Shared> = &mut self.arc;
+ let p: &mut usize = mem::transmute(p);
+ *p = (pos << VEC_POS_OFFSET) | (prev & NOT_VEC_POS_MASK);
+ }
+ }
+}
+
+fn rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8> {
+ unsafe {
+ let ptr = ptr.offset(-(off as isize));
+ len += off;
+ cap += off;
+
+ Vec::from_raw_parts(ptr, len, cap)
+ }
+}
+
+impl Drop for Inner {
+ fn drop(&mut self) {
+ let kind = self.kind();
+
+ if kind == KIND_VEC {
+ let (off, _) = self.uncoordinated_get_vec_pos();
+
+ // Vector storage, free the vector
+ let _ = rebuild_vec(self.ptr, self.len, self.cap, off);
+ } else if kind == KIND_ARC {
+ release_shared(*self.arc.get_mut());
+ }
+ }
+}
+
+fn release_shared(ptr: *mut Shared) {
+ // `Shared` storage... follow the drop steps from Arc.
+ unsafe {
+ if (*ptr).ref_count.fetch_sub(1, Release) != 1 {
+ return;
+ }
+
+ // This fence is needed to prevent reordering of use of the data and
+ // deletion of the data. Because it is marked `Release`, the decreasing
+ // of the reference count synchronizes with this `Acquire` fence. This
+ // means that use of the data happens before decreasing the reference
+ // count, which happens before this fence, which happens before the
+ // deletion of the data.
+ //
+ // As explained in the [Boost documentation][1],
+ //
+ // > It is important to enforce any possible access to the object in one
+ // > thread (through an existing reference) to *happen before* deleting
+ // > the object in a different thread. This is achieved by a "release"
+ // > operation after dropping a reference (any access to the object
+ // > through this reference must obviously happened before), and an
+ // > "acquire" operation before deleting the object.
+ //
+ // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
+ atomic::fence(Acquire);
+
+ // Drop the data
+ Box::from_raw(ptr);
+ }
+}
+
+impl Shared {
+ fn is_unique(&self) -> bool {
+ // The goal is to check if the current handle is the only handle
+ // that currently has access to the buffer. This is done by
+ // checking if the `ref_count` is currently 1.
+ //
+ // The `Acquire` ordering synchronizes with the `Release` as
+ // part of the `fetch_sub` in `release_shared`. The `fetch_sub`
+ // operation guarantees that any mutations done in other threads
+ // are ordered before the `ref_count` is decremented. As such,
+ // this `Acquire` will guarantee that those mutations are
+ // visible to the current thread.
+ self.ref_count.load(Acquire) == 1
+ }
+}
+
+fn original_capacity_to_repr(cap: usize) -> usize {
+ let width = PTR_WIDTH - ((cap >> MIN_ORIGINAL_CAPACITY_WIDTH).leading_zeros() as usize);
+ cmp::min(width, MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH)
+}
+
+fn original_capacity_from_repr(repr: usize) -> usize {
+ if repr == 0 {
+ return 0;
+ }
+
+ 1 << (repr + (MIN_ORIGINAL_CAPACITY_WIDTH - 1))
+}
+
+#[test]
+fn test_original_capacity_to_repr() {
+ assert_eq!(original_capacity_to_repr(0), 0);
+
+ let max_width = 32;
+
+ for width in 1..(max_width + 1) {
+ let cap = 1 << width - 1;
+
+ let expected = if width < MIN_ORIGINAL_CAPACITY_WIDTH {
+ 0
+ } else if width < MAX_ORIGINAL_CAPACITY_WIDTH {
+ width - MIN_ORIGINAL_CAPACITY_WIDTH
+ } else {
+ MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH
+ };
+
+ assert_eq!(original_capacity_to_repr(cap), expected);
+
+ if width > 1 {
+ assert_eq!(original_capacity_to_repr(cap + 1), expected);
+ }
+
+ // MIN_ORIGINAL_CAPACITY_WIDTH must be bigger than 7 to pass tests below
+ if width == MIN_ORIGINAL_CAPACITY_WIDTH + 1 {
+ assert_eq!(original_capacity_to_repr(cap - 24), expected - 1);
+ assert_eq!(original_capacity_to_repr(cap + 76), expected);
+ } else if width == MIN_ORIGINAL_CAPACITY_WIDTH + 2 {
+ assert_eq!(original_capacity_to_repr(cap - 1), expected - 1);
+ assert_eq!(original_capacity_to_repr(cap - 48), expected - 1);
+ }
+ }
+}
+
+#[test]
+fn test_original_capacity_from_repr() {
+ assert_eq!(0, original_capacity_from_repr(0));
+
+ let min_cap = 1 << MIN_ORIGINAL_CAPACITY_WIDTH;
+
+ assert_eq!(min_cap, original_capacity_from_repr(1));
+ assert_eq!(min_cap * 2, original_capacity_from_repr(2));
+ assert_eq!(min_cap * 4, original_capacity_from_repr(3));
+ assert_eq!(min_cap * 8, original_capacity_from_repr(4));
+ assert_eq!(min_cap * 16, original_capacity_from_repr(5));
+ assert_eq!(min_cap * 32, original_capacity_from_repr(6));
+ assert_eq!(min_cap * 64, original_capacity_from_repr(7));
+}
+
+unsafe impl Send for Inner {}
+unsafe impl Sync for Inner {}
+
+/*
+ *
+ * ===== PartialEq / PartialOrd =====
+ *
+ */
+
+impl PartialEq<[u8]> for BytesMut {
+ fn eq(&self, other: &[u8]) -> bool {
+ &**self == other
+ }
+}
+
+impl PartialOrd<[u8]> for BytesMut {
+ fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
+ (**self).partial_cmp(other)
+ }
+}
+
+impl PartialEq<BytesMut> for [u8] {
+ fn eq(&self, other: &BytesMut) -> bool {
+ *other == *self
+ }
+}
+
+impl PartialOrd<BytesMut> for [u8] {
+ fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
+ other.partial_cmp(self)
+ }
+}
+
+impl PartialEq<str> for BytesMut {
+ fn eq(&self, other: &str) -> bool {
+ &**self == other.as_bytes()
+ }
+}
+
+impl PartialOrd<str> for BytesMut {
+ fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
+ (**self).partial_cmp(other.as_bytes())
+ }
+}
+
+impl PartialEq<BytesMut> for str {
+ fn eq(&self, other: &BytesMut) -> bool {
+ *other == *self
+ }
+}
+
+impl PartialOrd<BytesMut> for str {
+ fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
+ other.partial_cmp(self)
+ }
+}
+
+impl PartialEq<Vec<u8>> for BytesMut {
+ fn eq(&self, other: &Vec<u8>) -> bool {
+ *self == &other[..]
+ }
+}
+
+impl PartialOrd<Vec<u8>> for BytesMut {
+ fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
+ (**self).partial_cmp(&other[..])
+ }
+}
+
+impl PartialEq<BytesMut> for Vec<u8> {
+ fn eq(&self, other: &BytesMut) -> bool {
+ *other == *self
+ }
+}
+
+impl PartialOrd<BytesMut> for Vec<u8> {
+ fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
+ other.partial_cmp(self)
+ }
+}
+
+impl PartialEq<String> for BytesMut {
+ fn eq(&self, other: &String) -> bool {
+ *self == &other[..]
+ }
+}
+
+impl PartialOrd<String> for BytesMut {
+ fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
+ (**self).partial_cmp(other.as_bytes())
+ }
+}
+
+impl PartialEq<BytesMut> for String {
+ fn eq(&self, other: &BytesMut) -> bool {
+ *other == *self
+ }
+}
+
+impl PartialOrd<BytesMut> for String {
+ fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
+ other.partial_cmp(self)
+ }
+}
+
+impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut
+ where BytesMut: PartialEq<T>
+{
+ fn eq(&self, other: &&'a T) -> bool {
+ *self == **other
+ }
+}
+
+impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut
+ where BytesMut: PartialOrd<T>
+{
+ fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
+ self.partial_cmp(*other)
+ }
+}
+
+impl<'a> PartialEq<BytesMut> for &'a [u8] {
+ fn eq(&self, other: &BytesMut) -> bool {
+ *other == *self
+ }
+}
+
+impl<'a> PartialOrd<BytesMut> for &'a [u8] {
+ fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
+ other.partial_cmp(self)
+ }
+}
+
+impl<'a> PartialEq<BytesMut> for &'a str {
+ fn eq(&self, other: &BytesMut) -> bool {
+ *other == *self
+ }
+}
+
+impl<'a> PartialOrd<BytesMut> for &'a str {
+ fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
+ other.partial_cmp(self)
+ }
+}
+
+impl PartialEq<[u8]> for Bytes {
+ fn eq(&self, other: &[u8]) -> bool {
+ self.inner.as_ref() == other
+ }
+}
+
+impl PartialOrd<[u8]> for Bytes {
+ fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
+ self.inner.as_ref().partial_cmp(other)
+ }
+}
+
+impl PartialEq<Bytes> for [u8] {
+ fn eq(&self, other: &Bytes) -> bool {
+ *other == *self
+ }
+}
+
+impl PartialOrd<Bytes> for [u8] {
+ fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
+ other.partial_cmp(self)
+ }
+}
+
+impl PartialEq<str> for Bytes {
+ fn eq(&self, other: &str) -> bool {
+ self.inner.as_ref() == other.as_bytes()
+ }
+}
+
+impl PartialOrd<str> for Bytes {
+ fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
+ self.inner.as_ref().partial_cmp(other.as_bytes())
+ }
+}
+
+impl PartialEq<Bytes> for str {
+ fn eq(&self, other: &Bytes) -> bool {
+ *other == *self
+ }
+}
+
+impl PartialOrd<Bytes> for str {
+ fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
+ other.partial_cmp(self)
+ }
+}
+
+impl PartialEq<Vec<u8>> for Bytes {
+ fn eq(&self, other: &Vec<u8>) -> bool {
+ *self == &other[..]
+ }
+}
+
+impl PartialOrd<Vec<u8>> for Bytes {
+ fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
+ self.inner.as_ref().partial_cmp(&other[..])
+ }
+}
+
+impl PartialEq<Bytes> for Vec<u8> {
+ fn eq(&self, other: &Bytes) -> bool {
+ *other == *self
+ }
+}
+
+impl PartialOrd<Bytes> for Vec<u8> {
+ fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
+ other.partial_cmp(self)
+ }
+}
+
+impl PartialEq<String> for Bytes {
+ fn eq(&self, other: &String) -> bool {
+ *self == &other[..]
+ }
+}
+
+impl PartialOrd<String> for Bytes {
+ fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
+ self.inner.as_ref().partial_cmp(other.as_bytes())
+ }
+}
+
+impl PartialEq<Bytes> for String {
+ fn eq(&self, other: &Bytes) -> bool {
+ *other == *self
+ }
+}
+
+impl PartialOrd<Bytes> for String {
+ fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
+ other.partial_cmp(self)
+ }
+}
+
+impl<'a> PartialEq<Bytes> for &'a [u8] {
+ fn eq(&self, other: &Bytes) -> bool {
+ *other == *self
+ }
+}
+
+impl<'a> PartialOrd<Bytes> for &'a [u8] {
+ fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
+ other.partial_cmp(self)
+ }
+}
+
+impl<'a> PartialEq<Bytes> for &'a str {
+ fn eq(&self, other: &Bytes) -> bool {
+ *other == *self
+ }
+}
+
+impl<'a> PartialOrd<Bytes> for &'a str {
+ fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
+ other.partial_cmp(self)
+ }
+}
+
+impl<'a, T: ?Sized> PartialEq<&'a T> for Bytes
+ where Bytes: PartialEq<T>
+{
+ fn eq(&self, other: &&'a T) -> bool {
+ *self == **other
+ }
+}
+
+impl<'a, T: ?Sized> PartialOrd<&'a T> for Bytes
+ where Bytes: PartialOrd<T>
+{
+ fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
+ self.partial_cmp(&**other)
+ }
+}
+
+impl PartialEq<BytesMut> for Bytes
+{
+ fn eq(&self, other: &BytesMut) -> bool {
+ &other[..] == &self[..]
+ }
+}
+
+impl PartialEq<Bytes> for BytesMut
+{
+ fn eq(&self, other: &Bytes) -> bool {
+ &other[..] == &self[..]
+ }
+}
+
+// While there is `std::process:abort`, it's only available in Rust 1.17, and
+// our minimum supported version is currently 1.15. So, this acts as an abort
+// by triggering a double panic, which always aborts in Rust.
+struct Abort;
+
+impl Drop for Abort {
+ fn drop(&mut self) {
+ panic!();
+ }
+}
+
+#[inline(never)]
+#[cold]
+fn abort() {
+ let _a = Abort;
+ panic!();
+}