summaryrefslogtreecommitdiffstats
path: root/third_party/rust/naga/src/back/spv/selection.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/naga/src/back/spv/selection.rs')
-rw-r--r--third_party/rust/naga/src/back/spv/selection.rs257
1 files changed, 257 insertions, 0 deletions
diff --git a/third_party/rust/naga/src/back/spv/selection.rs b/third_party/rust/naga/src/back/spv/selection.rs
new file mode 100644
index 0000000000..788b1f10ab
--- /dev/null
+++ b/third_party/rust/naga/src/back/spv/selection.rs
@@ -0,0 +1,257 @@
+/*!
+Generate SPIR-V conditional structures.
+
+Builders for `if` structures with `and`s.
+
+The types in this module track the information needed to emit SPIR-V code
+for complex conditional structures, like those whose conditions involve
+short-circuiting 'and' and 'or' structures. These track labels and can emit
+`OpPhi` instructions to merge values produced along different paths.
+
+This currently only supports exactly the forms Naga uses, so it doesn't
+support `or` or `else`, and only supports zero or one merged values.
+
+Naga needs to emit code roughly like this:
+
+```ignore
+
+ value = DEFAULT;
+ if COND1 && COND2 {
+ value = THEN_VALUE;
+ }
+ // use value
+
+```
+
+Assuming `ctx` and `block` are a mutable references to a [`BlockContext`]
+and the current [`Block`], and `merge_type` is the SPIR-V type for the
+merged value `value`, we can build SPIR-V for the code above like so:
+
+```ignore
+
+ let cond = Selection::start(block, merge_type);
+ // ... compute `cond1` ...
+ cond.if_true(ctx, cond1, DEFAULT);
+ // ... compute `cond2` ...
+ cond.if_true(ctx, cond2, DEFAULT);
+ // ... compute THEN_VALUE
+ let merged_value = cond.finish(ctx, THEN_VALUE);
+
+```
+
+After this, `merged_value` is either `DEFAULT` or `THEN_VALUE`, depending on
+the path by which the merged block was reached.
+
+This takes care of writing all branch instructions, including an
+`OpSelectionMerge` annotation in the header block; starting new blocks and
+assigning them labels; and emitting the `OpPhi` that gathers together the
+right sources for the merged values, for every path through the selection
+construct.
+
+When there is no merged value to produce, you can pass `()` for `merge_type`
+and the merge values. In this case no `OpPhi` instructions are produced, and
+the `finish` method returns `()`.
+
+To enforce proper nesting, a `Selection` takes ownership of the `&mut Block`
+pointer for the duration of its lifetime. To obtain the block for generating
+code in the selection's body, call the `Selection::block` method.
+*/
+
+use super::{Block, BlockContext, Instruction};
+use spirv::Word;
+
+/// A private struct recording what we know about the selection construct so far.
+pub(super) struct Selection<'b, M: MergeTuple> {
+ /// The block pointer we're emitting code into.
+ block: &'b mut Block,
+
+ /// The label of the selection construct's merge block, or `None` if we
+ /// haven't yet written the `OpSelectionMerge` merge instruction.
+ merge_label: Option<Word>,
+
+ /// A set of `(VALUES, PARENT)` pairs, used to build `OpPhi` instructions in
+ /// the merge block. Each `PARENT` is the label of a predecessor block of
+ /// the merge block. The corresponding `VALUES` holds the ids of the values
+ /// that `PARENT` contributes to the merged values.
+ ///
+ /// We emit all branches to the merge block, so we know all its
+ /// predecessors. And we refuse to emit a branch unless we're given the
+ /// values the branching block contributes to the merge, so we always have
+ /// everything we need to emit the correct phis, by construction.
+ values: Vec<(M, Word)>,
+
+ /// The types of the values in each element of `values`.
+ merge_types: M,
+}
+
+impl<'b, M: MergeTuple> Selection<'b, M> {
+ /// Start a new selection construct.
+ ///
+ /// The `block` argument indicates the selection's header block.
+ ///
+ /// The `merge_types` argument should be a `Word` or tuple of `Word`s, each
+ /// value being the SPIR-V result type id of an `OpPhi` instruction that
+ /// will be written to the selection's merge block when this selection's
+ /// [`finish`] method is called. This argument may also be `()`, for
+ /// selections that produce no values.
+ ///
+ /// (This function writes no code to `block` itself; it simply constructs a
+ /// fresh `Selection`.)
+ ///
+ /// [`finish`]: Selection::finish
+ pub(super) fn start(block: &'b mut Block, merge_types: M) -> Self {
+ Selection {
+ block,
+ merge_label: None,
+ values: vec![],
+ merge_types,
+ }
+ }
+
+ pub(super) fn block(&mut self) -> &mut Block {
+ self.block
+ }
+
+ /// Branch to a successor block if `cond` is true, otherwise merge.
+ ///
+ /// If `cond` is false, branch to the merge block, using `values` as the
+ /// merged values. Otherwise, proceed to a new block.
+ ///
+ /// The `values` argument must be the same shape as the `merge_types`
+ /// argument passed to `Selection::start`.
+ pub(super) fn if_true(&mut self, ctx: &mut BlockContext, cond: Word, values: M) {
+ self.values.push((values, self.block.label_id));
+
+ let merge_label = self.make_merge_label(ctx);
+ let next_label = ctx.gen_id();
+ ctx.function.consume(
+ std::mem::replace(self.block, Block::new(next_label)),
+ Instruction::branch_conditional(cond, next_label, merge_label),
+ );
+ }
+
+ /// Emit an unconditional branch to the merge block, and compute merged
+ /// values.
+ ///
+ /// Use `final_values` as the merged values contributed by the current
+ /// block, and transition to the merge block, emitting `OpPhi` instructions
+ /// to produce the merged values. This must be the same shape as the
+ /// `merge_types` argument passed to [`Selection::start`].
+ ///
+ /// Return the SPIR-V ids of the merged values. This value has the same
+ /// shape as the `merge_types` argument passed to `Selection::start`.
+ pub(super) fn finish(self, ctx: &mut BlockContext, final_values: M) -> M {
+ match self {
+ Selection {
+ merge_label: None, ..
+ } => {
+ // We didn't actually emit any branches, so `self.values` must
+ // be empty, and `final_values` are the only sources we have for
+ // the merged values. Easy peasy.
+ final_values
+ }
+
+ Selection {
+ block,
+ merge_label: Some(merge_label),
+ mut values,
+ merge_types,
+ } => {
+ // Emit the final branch and transition to the merge block.
+ values.push((final_values, block.label_id));
+ ctx.function.consume(
+ std::mem::replace(block, Block::new(merge_label)),
+ Instruction::branch(merge_label),
+ );
+
+ // Now that we're in the merge block, build the phi instructions.
+ merge_types.write_phis(ctx, block, &values)
+ }
+ }
+ }
+
+ /// Return the id of the merge block, writing a merge instruction if needed.
+ fn make_merge_label(&mut self, ctx: &mut BlockContext) -> Word {
+ match self.merge_label {
+ None => {
+ let merge_label = ctx.gen_id();
+ self.block.body.push(Instruction::selection_merge(
+ merge_label,
+ spirv::SelectionControl::NONE,
+ ));
+ self.merge_label = Some(merge_label);
+ merge_label
+ }
+ Some(merge_label) => merge_label,
+ }
+ }
+}
+
+/// A trait to help `Selection` manage any number of merged values.
+///
+/// Some selection constructs, like a `ReadZeroSkipWrite` bounds check on a
+/// [`Load`] expression, produce a single merged value. Others produce no merged
+/// value, like a bounds check on a [`Store`] statement.
+///
+/// To let `Selection` work nicely with both cases, we let the merge type
+/// argument passed to [`Selection::start`] be any type that implements this
+/// `MergeTuple` trait. `MergeTuple` is then implemented for `()`, `Word`,
+/// `(Word, Word)`, and so on.
+///
+/// A `MergeTuple` type can represent either a bunch of SPIR-V types or values;
+/// the `merge_types` argument to `Selection::start` are type ids, whereas the
+/// `values` arguments to the [`if_true`] and [`finish`] methods are value ids.
+/// The set of merged value returned by `finish` is a tuple of value ids.
+///
+/// In fact, since Naga only uses zero- and single-valued selection constructs
+/// at present, we only implement `MergeTuple` for `()` and `Word`. But if you
+/// add more cases, feel free to add more implementations. Once const generics
+/// are available, we could have a single implementation of `MergeTuple` for all
+/// lengths of arrays, and be done with it.
+///
+/// [`Load`]: crate::Expression::Load
+/// [`Store`]: crate::Statement::Store
+/// [`if_true`]: Selection::if_true
+/// [`finish`]: Selection::finish
+pub(super) trait MergeTuple: Sized {
+ /// Write OpPhi instructions for the given set of predecessors.
+ ///
+ /// The `predecessors` vector should be a vector of `(LABEL, VALUES)` pairs,
+ /// where each `VALUES` holds the values contributed by the branch from
+ /// `LABEL`, which should be one of the current block's predecessors.
+ fn write_phis(
+ self,
+ ctx: &mut BlockContext,
+ block: &mut Block,
+ predecessors: &[(Self, Word)],
+ ) -> Self;
+}
+
+/// Selections that produce a single merged value.
+///
+/// For example, `ImageLoad` with `BoundsCheckPolicy::ReadZeroSkipWrite` either
+/// returns a texel value or zeros.
+impl MergeTuple for Word {
+ fn write_phis(
+ self,
+ ctx: &mut BlockContext,
+ block: &mut Block,
+ predecessors: &[(Word, Word)],
+ ) -> Word {
+ let merged_value = ctx.gen_id();
+ block
+ .body
+ .push(Instruction::phi(self, merged_value, predecessors));
+ merged_value
+ }
+}
+
+/// Selections that produce no merged values.
+///
+/// For example, `ImageStore` under `BoundsCheckPolicy::ReadZeroSkipWrite`
+/// either does the store or skips it, but in neither case does it produce a
+/// value.
+impl MergeTuple for () {
+ /// No phis need to be generated.
+ fn write_phis(self, _: &mut BlockContext, _: &mut Block, _: &[((), Word)]) {}
+}