summaryrefslogtreecommitdiffstats
path: root/third_party/rust/rand/src/distributions
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/rand/src/distributions')
-rw-r--r--third_party/rust/rand/src/distributions/bernoulli.rs219
-rw-r--r--third_party/rust/rand/src/distributions/distribution.rs272
-rw-r--r--third_party/rust/rand/src/distributions/float.rs312
-rw-r--r--third_party/rust/rand/src/distributions/integer.rs274
-rw-r--r--third_party/rust/rand/src/distributions/mod.rs218
-rw-r--r--third_party/rust/rand/src/distributions/other.rs365
-rw-r--r--third_party/rust/rand/src/distributions/slice.rs117
-rw-r--r--third_party/rust/rand/src/distributions/uniform.rs1658
-rw-r--r--third_party/rust/rand/src/distributions/utils.rs429
-rw-r--r--third_party/rust/rand/src/distributions/weighted.rs47
-rw-r--r--third_party/rust/rand/src/distributions/weighted_index.rs458
11 files changed, 4369 insertions, 0 deletions
diff --git a/third_party/rust/rand/src/distributions/bernoulli.rs b/third_party/rust/rand/src/distributions/bernoulli.rs
new file mode 100644
index 0000000000..226db79fa9
--- /dev/null
+++ b/third_party/rust/rand/src/distributions/bernoulli.rs
@@ -0,0 +1,219 @@
+// Copyright 2018 Developers of the Rand project.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! The Bernoulli distribution.
+
+use crate::distributions::Distribution;
+use crate::Rng;
+use core::{fmt, u64};
+
+#[cfg(feature = "serde1")]
+use serde::{Serialize, Deserialize};
+/// The Bernoulli distribution.
+///
+/// This is a special case of the Binomial distribution where `n = 1`.
+///
+/// # Example
+///
+/// ```rust
+/// use rand::distributions::{Bernoulli, Distribution};
+///
+/// let d = Bernoulli::new(0.3).unwrap();
+/// let v = d.sample(&mut rand::thread_rng());
+/// println!("{} is from a Bernoulli distribution", v);
+/// ```
+///
+/// # Precision
+///
+/// This `Bernoulli` distribution uses 64 bits from the RNG (a `u64`),
+/// so only probabilities that are multiples of 2<sup>-64</sup> can be
+/// represented.
+#[derive(Clone, Copy, Debug, PartialEq)]
+#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
+pub struct Bernoulli {
+ /// Probability of success, relative to the maximal integer.
+ p_int: u64,
+}
+
+// To sample from the Bernoulli distribution we use a method that compares a
+// random `u64` value `v < (p * 2^64)`.
+//
+// If `p == 1.0`, the integer `v` to compare against can not represented as a
+// `u64`. We manually set it to `u64::MAX` instead (2^64 - 1 instead of 2^64).
+// Note that value of `p < 1.0` can never result in `u64::MAX`, because an
+// `f64` only has 53 bits of precision, and the next largest value of `p` will
+// result in `2^64 - 2048`.
+//
+// Also there is a 100% theoretical concern: if someone consistently wants to
+// generate `true` using the Bernoulli distribution (i.e. by using a probability
+// of `1.0`), just using `u64::MAX` is not enough. On average it would return
+// false once every 2^64 iterations. Some people apparently care about this
+// case.
+//
+// That is why we special-case `u64::MAX` to always return `true`, without using
+// the RNG, and pay the performance price for all uses that *are* reasonable.
+// Luckily, if `new()` and `sample` are close, the compiler can optimize out the
+// extra check.
+const ALWAYS_TRUE: u64 = u64::MAX;
+
+// This is just `2.0.powi(64)`, but written this way because it is not available
+// in `no_std` mode.
+const SCALE: f64 = 2.0 * (1u64 << 63) as f64;
+
+/// Error type returned from `Bernoulli::new`.
+#[derive(Clone, Copy, Debug, PartialEq, Eq)]
+pub enum BernoulliError {
+ /// `p < 0` or `p > 1`.
+ InvalidProbability,
+}
+
+impl fmt::Display for BernoulliError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.write_str(match self {
+ BernoulliError::InvalidProbability => "p is outside [0, 1] in Bernoulli distribution",
+ })
+ }
+}
+
+#[cfg(feature = "std")]
+impl ::std::error::Error for BernoulliError {}
+
+impl Bernoulli {
+ /// Construct a new `Bernoulli` with the given probability of success `p`.
+ ///
+ /// # Precision
+ ///
+ /// For `p = 1.0`, the resulting distribution will always generate true.
+ /// For `p = 0.0`, the resulting distribution will always generate false.
+ ///
+ /// This method is accurate for any input `p` in the range `[0, 1]` which is
+ /// a multiple of 2<sup>-64</sup>. (Note that not all multiples of
+ /// 2<sup>-64</sup> in `[0, 1]` can be represented as a `f64`.)
+ #[inline]
+ pub fn new(p: f64) -> Result<Bernoulli, BernoulliError> {
+ if !(0.0..1.0).contains(&p) {
+ if p == 1.0 {
+ return Ok(Bernoulli { p_int: ALWAYS_TRUE });
+ }
+ return Err(BernoulliError::InvalidProbability);
+ }
+ Ok(Bernoulli {
+ p_int: (p * SCALE) as u64,
+ })
+ }
+
+ /// Construct a new `Bernoulli` with the probability of success of
+ /// `numerator`-in-`denominator`. I.e. `new_ratio(2, 3)` will return
+ /// a `Bernoulli` with a 2-in-3 chance, or about 67%, of returning `true`.
+ ///
+ /// return `true`. If `numerator == 0` it will always return `false`.
+ /// For `numerator > denominator` and `denominator == 0`, this returns an
+ /// error. Otherwise, for `numerator == denominator`, samples are always
+ /// true; for `numerator == 0` samples are always false.
+ #[inline]
+ pub fn from_ratio(numerator: u32, denominator: u32) -> Result<Bernoulli, BernoulliError> {
+ if numerator > denominator || denominator == 0 {
+ return Err(BernoulliError::InvalidProbability);
+ }
+ if numerator == denominator {
+ return Ok(Bernoulli { p_int: ALWAYS_TRUE });
+ }
+ let p_int = ((f64::from(numerator) / f64::from(denominator)) * SCALE) as u64;
+ Ok(Bernoulli { p_int })
+ }
+}
+
+impl Distribution<bool> for Bernoulli {
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool {
+ // Make sure to always return true for p = 1.0.
+ if self.p_int == ALWAYS_TRUE {
+ return true;
+ }
+ let v: u64 = rng.gen();
+ v < self.p_int
+ }
+}
+
+#[cfg(test)]
+mod test {
+ use super::Bernoulli;
+ use crate::distributions::Distribution;
+ use crate::Rng;
+
+ #[test]
+ #[cfg(feature="serde1")]
+ fn test_serializing_deserializing_bernoulli() {
+ let coin_flip = Bernoulli::new(0.5).unwrap();
+ let de_coin_flip : Bernoulli = bincode::deserialize(&bincode::serialize(&coin_flip).unwrap()).unwrap();
+
+ assert_eq!(coin_flip.p_int, de_coin_flip.p_int);
+ }
+
+ #[test]
+ fn test_trivial() {
+ // We prefer to be explicit here.
+ #![allow(clippy::bool_assert_comparison)]
+
+ let mut r = crate::test::rng(1);
+ let always_false = Bernoulli::new(0.0).unwrap();
+ let always_true = Bernoulli::new(1.0).unwrap();
+ for _ in 0..5 {
+ assert_eq!(r.sample::<bool, _>(&always_false), false);
+ assert_eq!(r.sample::<bool, _>(&always_true), true);
+ assert_eq!(Distribution::<bool>::sample(&always_false, &mut r), false);
+ assert_eq!(Distribution::<bool>::sample(&always_true, &mut r), true);
+ }
+ }
+
+ #[test]
+ #[cfg_attr(miri, ignore)] // Miri is too slow
+ fn test_average() {
+ const P: f64 = 0.3;
+ const NUM: u32 = 3;
+ const DENOM: u32 = 10;
+ let d1 = Bernoulli::new(P).unwrap();
+ let d2 = Bernoulli::from_ratio(NUM, DENOM).unwrap();
+ const N: u32 = 100_000;
+
+ let mut sum1: u32 = 0;
+ let mut sum2: u32 = 0;
+ let mut rng = crate::test::rng(2);
+ for _ in 0..N {
+ if d1.sample(&mut rng) {
+ sum1 += 1;
+ }
+ if d2.sample(&mut rng) {
+ sum2 += 1;
+ }
+ }
+ let avg1 = (sum1 as f64) / (N as f64);
+ assert!((avg1 - P).abs() < 5e-3);
+
+ let avg2 = (sum2 as f64) / (N as f64);
+ assert!((avg2 - (NUM as f64) / (DENOM as f64)).abs() < 5e-3);
+ }
+
+ #[test]
+ fn value_stability() {
+ let mut rng = crate::test::rng(3);
+ let distr = Bernoulli::new(0.4532).unwrap();
+ let mut buf = [false; 10];
+ for x in &mut buf {
+ *x = rng.sample(&distr);
+ }
+ assert_eq!(buf, [
+ true, false, false, true, false, false, true, true, true, true
+ ]);
+ }
+
+ #[test]
+ fn bernoulli_distributions_can_be_compared() {
+ assert_eq!(Bernoulli::new(1.0), Bernoulli::new(1.0));
+ }
+}
diff --git a/third_party/rust/rand/src/distributions/distribution.rs b/third_party/rust/rand/src/distributions/distribution.rs
new file mode 100644
index 0000000000..c5cf6a607b
--- /dev/null
+++ b/third_party/rust/rand/src/distributions/distribution.rs
@@ -0,0 +1,272 @@
+// Copyright 2018 Developers of the Rand project.
+// Copyright 2013-2017 The Rust Project Developers.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Distribution trait and associates
+
+use crate::Rng;
+use core::iter;
+#[cfg(feature = "alloc")]
+use alloc::string::String;
+
+/// Types (distributions) that can be used to create a random instance of `T`.
+///
+/// It is possible to sample from a distribution through both the
+/// `Distribution` and [`Rng`] traits, via `distr.sample(&mut rng)` and
+/// `rng.sample(distr)`. They also both offer the [`sample_iter`] method, which
+/// produces an iterator that samples from the distribution.
+///
+/// All implementations are expected to be immutable; this has the significant
+/// advantage of not needing to consider thread safety, and for most
+/// distributions efficient state-less sampling algorithms are available.
+///
+/// Implementations are typically expected to be portable with reproducible
+/// results when used with a PRNG with fixed seed; see the
+/// [portability chapter](https://rust-random.github.io/book/portability.html)
+/// of The Rust Rand Book. In some cases this does not apply, e.g. the `usize`
+/// type requires different sampling on 32-bit and 64-bit machines.
+///
+/// [`sample_iter`]: Distribution::sample_iter
+pub trait Distribution<T> {
+ /// Generate a random value of `T`, using `rng` as the source of randomness.
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T;
+
+ /// Create an iterator that generates random values of `T`, using `rng` as
+ /// the source of randomness.
+ ///
+ /// Note that this function takes `self` by value. This works since
+ /// `Distribution<T>` is impl'd for `&D` where `D: Distribution<T>`,
+ /// however borrowing is not automatic hence `distr.sample_iter(...)` may
+ /// need to be replaced with `(&distr).sample_iter(...)` to borrow or
+ /// `(&*distr).sample_iter(...)` to reborrow an existing reference.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use rand::thread_rng;
+ /// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard};
+ ///
+ /// let mut rng = thread_rng();
+ ///
+ /// // Vec of 16 x f32:
+ /// let v: Vec<f32> = Standard.sample_iter(&mut rng).take(16).collect();
+ ///
+ /// // String:
+ /// let s: String = Alphanumeric
+ /// .sample_iter(&mut rng)
+ /// .take(7)
+ /// .map(char::from)
+ /// .collect();
+ ///
+ /// // Dice-rolling:
+ /// let die_range = Uniform::new_inclusive(1, 6);
+ /// let mut roll_die = die_range.sample_iter(&mut rng);
+ /// while roll_die.next().unwrap() != 6 {
+ /// println!("Not a 6; rolling again!");
+ /// }
+ /// ```
+ fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>
+ where
+ R: Rng,
+ Self: Sized,
+ {
+ DistIter {
+ distr: self,
+ rng,
+ phantom: ::core::marker::PhantomData,
+ }
+ }
+
+ /// Create a distribution of values of 'S' by mapping the output of `Self`
+ /// through the closure `F`
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use rand::thread_rng;
+ /// use rand::distributions::{Distribution, Uniform};
+ ///
+ /// let mut rng = thread_rng();
+ ///
+ /// let die = Uniform::new_inclusive(1, 6);
+ /// let even_number = die.map(|num| num % 2 == 0);
+ /// while !even_number.sample(&mut rng) {
+ /// println!("Still odd; rolling again!");
+ /// }
+ /// ```
+ fn map<F, S>(self, func: F) -> DistMap<Self, F, T, S>
+ where
+ F: Fn(T) -> S,
+ Self: Sized,
+ {
+ DistMap {
+ distr: self,
+ func,
+ phantom: ::core::marker::PhantomData,
+ }
+ }
+}
+
+impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D {
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T {
+ (*self).sample(rng)
+ }
+}
+
+/// An iterator that generates random values of `T` with distribution `D`,
+/// using `R` as the source of randomness.
+///
+/// This `struct` is created by the [`sample_iter`] method on [`Distribution`].
+/// See its documentation for more.
+///
+/// [`sample_iter`]: Distribution::sample_iter
+#[derive(Debug)]
+pub struct DistIter<D, R, T> {
+ distr: D,
+ rng: R,
+ phantom: ::core::marker::PhantomData<T>,
+}
+
+impl<D, R, T> Iterator for DistIter<D, R, T>
+where
+ D: Distribution<T>,
+ R: Rng,
+{
+ type Item = T;
+
+ #[inline(always)]
+ fn next(&mut self) -> Option<T> {
+ // Here, self.rng may be a reference, but we must take &mut anyway.
+ // Even if sample could take an R: Rng by value, we would need to do this
+ // since Rng is not copyable and we cannot enforce that this is "reborrowable".
+ Some(self.distr.sample(&mut self.rng))
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (usize::max_value(), None)
+ }
+}
+
+impl<D, R, T> iter::FusedIterator for DistIter<D, R, T>
+where
+ D: Distribution<T>,
+ R: Rng,
+{
+}
+
+#[cfg(features = "nightly")]
+impl<D, R, T> iter::TrustedLen for DistIter<D, R, T>
+where
+ D: Distribution<T>,
+ R: Rng,
+{
+}
+
+/// A distribution of values of type `S` derived from the distribution `D`
+/// by mapping its output of type `T` through the closure `F`.
+///
+/// This `struct` is created by the [`Distribution::map`] method.
+/// See its documentation for more.
+#[derive(Debug)]
+pub struct DistMap<D, F, T, S> {
+ distr: D,
+ func: F,
+ phantom: ::core::marker::PhantomData<fn(T) -> S>,
+}
+
+impl<D, F, T, S> Distribution<S> for DistMap<D, F, T, S>
+where
+ D: Distribution<T>,
+ F: Fn(T) -> S,
+{
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> S {
+ (self.func)(self.distr.sample(rng))
+ }
+}
+
+/// `String` sampler
+///
+/// Sampling a `String` of random characters is not quite the same as collecting
+/// a sequence of chars. This trait contains some helpers.
+#[cfg(feature = "alloc")]
+pub trait DistString {
+ /// Append `len` random chars to `string`
+ fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, string: &mut String, len: usize);
+
+ /// Generate a `String` of `len` random chars
+ #[inline]
+ fn sample_string<R: Rng + ?Sized>(&self, rng: &mut R, len: usize) -> String {
+ let mut s = String::new();
+ self.append_string(rng, &mut s, len);
+ s
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use crate::distributions::{Distribution, Uniform};
+ use crate::Rng;
+
+ #[test]
+ fn test_distributions_iter() {
+ use crate::distributions::Open01;
+ let mut rng = crate::test::rng(210);
+ let distr = Open01;
+ let mut iter = Distribution::<f32>::sample_iter(distr, &mut rng);
+ let mut sum: f32 = 0.;
+ for _ in 0..100 {
+ sum += iter.next().unwrap();
+ }
+ assert!(0. < sum && sum < 100.);
+ }
+
+ #[test]
+ fn test_distributions_map() {
+ let dist = Uniform::new_inclusive(0, 5).map(|val| val + 15);
+
+ let mut rng = crate::test::rng(212);
+ let val = dist.sample(&mut rng);
+ assert!((15..=20).contains(&val));
+ }
+
+ #[test]
+ fn test_make_an_iter() {
+ fn ten_dice_rolls_other_than_five<R: Rng>(
+ rng: &mut R,
+ ) -> impl Iterator<Item = i32> + '_ {
+ Uniform::new_inclusive(1, 6)
+ .sample_iter(rng)
+ .filter(|x| *x != 5)
+ .take(10)
+ }
+
+ let mut rng = crate::test::rng(211);
+ let mut count = 0;
+ for val in ten_dice_rolls_other_than_five(&mut rng) {
+ assert!((1..=6).contains(&val) && val != 5);
+ count += 1;
+ }
+ assert_eq!(count, 10);
+ }
+
+ #[test]
+ #[cfg(feature = "alloc")]
+ fn test_dist_string() {
+ use core::str;
+ use crate::distributions::{Alphanumeric, DistString, Standard};
+ let mut rng = crate::test::rng(213);
+
+ let s1 = Alphanumeric.sample_string(&mut rng, 20);
+ assert_eq!(s1.len(), 20);
+ assert_eq!(str::from_utf8(s1.as_bytes()), Ok(s1.as_str()));
+
+ let s2 = Standard.sample_string(&mut rng, 20);
+ assert_eq!(s2.chars().count(), 20);
+ assert_eq!(str::from_utf8(s2.as_bytes()), Ok(s2.as_str()));
+ }
+}
diff --git a/third_party/rust/rand/src/distributions/float.rs b/third_party/rust/rand/src/distributions/float.rs
new file mode 100644
index 0000000000..ce5946f7f0
--- /dev/null
+++ b/third_party/rust/rand/src/distributions/float.rs
@@ -0,0 +1,312 @@
+// Copyright 2018 Developers of the Rand project.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Basic floating-point number distributions
+
+use crate::distributions::utils::FloatSIMDUtils;
+use crate::distributions::{Distribution, Standard};
+use crate::Rng;
+use core::mem;
+#[cfg(feature = "simd_support")] use packed_simd::*;
+
+#[cfg(feature = "serde1")]
+use serde::{Serialize, Deserialize};
+
+/// A distribution to sample floating point numbers uniformly in the half-open
+/// interval `(0, 1]`, i.e. including 1 but not 0.
+///
+/// All values that can be generated are of the form `n * ε/2`. For `f32`
+/// the 24 most significant random bits of a `u32` are used and for `f64` the
+/// 53 most significant bits of a `u64` are used. The conversion uses the
+/// multiplicative method.
+///
+/// See also: [`Standard`] which samples from `[0, 1)`, [`Open01`]
+/// which samples from `(0, 1)` and [`Uniform`] which samples from arbitrary
+/// ranges.
+///
+/// # Example
+/// ```
+/// use rand::{thread_rng, Rng};
+/// use rand::distributions::OpenClosed01;
+///
+/// let val: f32 = thread_rng().sample(OpenClosed01);
+/// println!("f32 from (0, 1): {}", val);
+/// ```
+///
+/// [`Standard`]: crate::distributions::Standard
+/// [`Open01`]: crate::distributions::Open01
+/// [`Uniform`]: crate::distributions::uniform::Uniform
+#[derive(Clone, Copy, Debug)]
+#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
+pub struct OpenClosed01;
+
+/// A distribution to sample floating point numbers uniformly in the open
+/// interval `(0, 1)`, i.e. not including either endpoint.
+///
+/// All values that can be generated are of the form `n * ε + ε/2`. For `f32`
+/// the 23 most significant random bits of an `u32` are used, for `f64` 52 from
+/// an `u64`. The conversion uses a transmute-based method.
+///
+/// See also: [`Standard`] which samples from `[0, 1)`, [`OpenClosed01`]
+/// which samples from `(0, 1]` and [`Uniform`] which samples from arbitrary
+/// ranges.
+///
+/// # Example
+/// ```
+/// use rand::{thread_rng, Rng};
+/// use rand::distributions::Open01;
+///
+/// let val: f32 = thread_rng().sample(Open01);
+/// println!("f32 from (0, 1): {}", val);
+/// ```
+///
+/// [`Standard`]: crate::distributions::Standard
+/// [`OpenClosed01`]: crate::distributions::OpenClosed01
+/// [`Uniform`]: crate::distributions::uniform::Uniform
+#[derive(Clone, Copy, Debug)]
+#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
+pub struct Open01;
+
+
+// This trait is needed by both this lib and rand_distr hence is a hidden export
+#[doc(hidden)]
+pub trait IntoFloat {
+ type F;
+
+ /// Helper method to combine the fraction and a constant exponent into a
+ /// float.
+ ///
+ /// Only the least significant bits of `self` may be set, 23 for `f32` and
+ /// 52 for `f64`.
+ /// The resulting value will fall in a range that depends on the exponent.
+ /// As an example the range with exponent 0 will be
+ /// [2<sup>0</sup>..2<sup>1</sup>), which is [1..2).
+ fn into_float_with_exponent(self, exponent: i32) -> Self::F;
+}
+
+macro_rules! float_impls {
+ ($ty:ident, $uty:ident, $f_scalar:ident, $u_scalar:ty,
+ $fraction_bits:expr, $exponent_bias:expr) => {
+ impl IntoFloat for $uty {
+ type F = $ty;
+ #[inline(always)]
+ fn into_float_with_exponent(self, exponent: i32) -> $ty {
+ // The exponent is encoded using an offset-binary representation
+ let exponent_bits: $u_scalar =
+ (($exponent_bias + exponent) as $u_scalar) << $fraction_bits;
+ $ty::from_bits(self | exponent_bits)
+ }
+ }
+
+ impl Distribution<$ty> for Standard {
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
+ // Multiply-based method; 24/53 random bits; [0, 1) interval.
+ // We use the most significant bits because for simple RNGs
+ // those are usually more random.
+ let float_size = mem::size_of::<$f_scalar>() as u32 * 8;
+ let precision = $fraction_bits + 1;
+ let scale = 1.0 / ((1 as $u_scalar << precision) as $f_scalar);
+
+ let value: $uty = rng.gen();
+ let value = value >> (float_size - precision);
+ scale * $ty::cast_from_int(value)
+ }
+ }
+
+ impl Distribution<$ty> for OpenClosed01 {
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
+ // Multiply-based method; 24/53 random bits; (0, 1] interval.
+ // We use the most significant bits because for simple RNGs
+ // those are usually more random.
+ let float_size = mem::size_of::<$f_scalar>() as u32 * 8;
+ let precision = $fraction_bits + 1;
+ let scale = 1.0 / ((1 as $u_scalar << precision) as $f_scalar);
+
+ let value: $uty = rng.gen();
+ let value = value >> (float_size - precision);
+ // Add 1 to shift up; will not overflow because of right-shift:
+ scale * $ty::cast_from_int(value + 1)
+ }
+ }
+
+ impl Distribution<$ty> for Open01 {
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
+ // Transmute-based method; 23/52 random bits; (0, 1) interval.
+ // We use the most significant bits because for simple RNGs
+ // those are usually more random.
+ use core::$f_scalar::EPSILON;
+ let float_size = mem::size_of::<$f_scalar>() as u32 * 8;
+
+ let value: $uty = rng.gen();
+ let fraction = value >> (float_size - $fraction_bits);
+ fraction.into_float_with_exponent(0) - (1.0 - EPSILON / 2.0)
+ }
+ }
+ }
+}
+
+float_impls! { f32, u32, f32, u32, 23, 127 }
+float_impls! { f64, u64, f64, u64, 52, 1023 }
+
+#[cfg(feature = "simd_support")]
+float_impls! { f32x2, u32x2, f32, u32, 23, 127 }
+#[cfg(feature = "simd_support")]
+float_impls! { f32x4, u32x4, f32, u32, 23, 127 }
+#[cfg(feature = "simd_support")]
+float_impls! { f32x8, u32x8, f32, u32, 23, 127 }
+#[cfg(feature = "simd_support")]
+float_impls! { f32x16, u32x16, f32, u32, 23, 127 }
+
+#[cfg(feature = "simd_support")]
+float_impls! { f64x2, u64x2, f64, u64, 52, 1023 }
+#[cfg(feature = "simd_support")]
+float_impls! { f64x4, u64x4, f64, u64, 52, 1023 }
+#[cfg(feature = "simd_support")]
+float_impls! { f64x8, u64x8, f64, u64, 52, 1023 }
+
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use crate::rngs::mock::StepRng;
+
+ const EPSILON32: f32 = ::core::f32::EPSILON;
+ const EPSILON64: f64 = ::core::f64::EPSILON;
+
+ macro_rules! test_f32 {
+ ($fnn:ident, $ty:ident, $ZERO:expr, $EPSILON:expr) => {
+ #[test]
+ fn $fnn() {
+ // Standard
+ let mut zeros = StepRng::new(0, 0);
+ assert_eq!(zeros.gen::<$ty>(), $ZERO);
+ let mut one = StepRng::new(1 << 8 | 1 << (8 + 32), 0);
+ assert_eq!(one.gen::<$ty>(), $EPSILON / 2.0);
+ let mut max = StepRng::new(!0, 0);
+ assert_eq!(max.gen::<$ty>(), 1.0 - $EPSILON / 2.0);
+
+ // OpenClosed01
+ let mut zeros = StepRng::new(0, 0);
+ assert_eq!(zeros.sample::<$ty, _>(OpenClosed01), 0.0 + $EPSILON / 2.0);
+ let mut one = StepRng::new(1 << 8 | 1 << (8 + 32), 0);
+ assert_eq!(one.sample::<$ty, _>(OpenClosed01), $EPSILON);
+ let mut max = StepRng::new(!0, 0);
+ assert_eq!(max.sample::<$ty, _>(OpenClosed01), $ZERO + 1.0);
+
+ // Open01
+ let mut zeros = StepRng::new(0, 0);
+ assert_eq!(zeros.sample::<$ty, _>(Open01), 0.0 + $EPSILON / 2.0);
+ let mut one = StepRng::new(1 << 9 | 1 << (9 + 32), 0);
+ assert_eq!(one.sample::<$ty, _>(Open01), $EPSILON / 2.0 * 3.0);
+ let mut max = StepRng::new(!0, 0);
+ assert_eq!(max.sample::<$ty, _>(Open01), 1.0 - $EPSILON / 2.0);
+ }
+ };
+ }
+ test_f32! { f32_edge_cases, f32, 0.0, EPSILON32 }
+ #[cfg(feature = "simd_support")]
+ test_f32! { f32x2_edge_cases, f32x2, f32x2::splat(0.0), f32x2::splat(EPSILON32) }
+ #[cfg(feature = "simd_support")]
+ test_f32! { f32x4_edge_cases, f32x4, f32x4::splat(0.0), f32x4::splat(EPSILON32) }
+ #[cfg(feature = "simd_support")]
+ test_f32! { f32x8_edge_cases, f32x8, f32x8::splat(0.0), f32x8::splat(EPSILON32) }
+ #[cfg(feature = "simd_support")]
+ test_f32! { f32x16_edge_cases, f32x16, f32x16::splat(0.0), f32x16::splat(EPSILON32) }
+
+ macro_rules! test_f64 {
+ ($fnn:ident, $ty:ident, $ZERO:expr, $EPSILON:expr) => {
+ #[test]
+ fn $fnn() {
+ // Standard
+ let mut zeros = StepRng::new(0, 0);
+ assert_eq!(zeros.gen::<$ty>(), $ZERO);
+ let mut one = StepRng::new(1 << 11, 0);
+ assert_eq!(one.gen::<$ty>(), $EPSILON / 2.0);
+ let mut max = StepRng::new(!0, 0);
+ assert_eq!(max.gen::<$ty>(), 1.0 - $EPSILON / 2.0);
+
+ // OpenClosed01
+ let mut zeros = StepRng::new(0, 0);
+ assert_eq!(zeros.sample::<$ty, _>(OpenClosed01), 0.0 + $EPSILON / 2.0);
+ let mut one = StepRng::new(1 << 11, 0);
+ assert_eq!(one.sample::<$ty, _>(OpenClosed01), $EPSILON);
+ let mut max = StepRng::new(!0, 0);
+ assert_eq!(max.sample::<$ty, _>(OpenClosed01), $ZERO + 1.0);
+
+ // Open01
+ let mut zeros = StepRng::new(0, 0);
+ assert_eq!(zeros.sample::<$ty, _>(Open01), 0.0 + $EPSILON / 2.0);
+ let mut one = StepRng::new(1 << 12, 0);
+ assert_eq!(one.sample::<$ty, _>(Open01), $EPSILON / 2.0 * 3.0);
+ let mut max = StepRng::new(!0, 0);
+ assert_eq!(max.sample::<$ty, _>(Open01), 1.0 - $EPSILON / 2.0);
+ }
+ };
+ }
+ test_f64! { f64_edge_cases, f64, 0.0, EPSILON64 }
+ #[cfg(feature = "simd_support")]
+ test_f64! { f64x2_edge_cases, f64x2, f64x2::splat(0.0), f64x2::splat(EPSILON64) }
+ #[cfg(feature = "simd_support")]
+ test_f64! { f64x4_edge_cases, f64x4, f64x4::splat(0.0), f64x4::splat(EPSILON64) }
+ #[cfg(feature = "simd_support")]
+ test_f64! { f64x8_edge_cases, f64x8, f64x8::splat(0.0), f64x8::splat(EPSILON64) }
+
+ #[test]
+ fn value_stability() {
+ fn test_samples<T: Copy + core::fmt::Debug + PartialEq, D: Distribution<T>>(
+ distr: &D, zero: T, expected: &[T],
+ ) {
+ let mut rng = crate::test::rng(0x6f44f5646c2a7334);
+ let mut buf = [zero; 3];
+ for x in &mut buf {
+ *x = rng.sample(&distr);
+ }
+ assert_eq!(&buf, expected);
+ }
+
+ test_samples(&Standard, 0f32, &[0.0035963655, 0.7346052, 0.09778172]);
+ test_samples(&Standard, 0f64, &[
+ 0.7346051961657583,
+ 0.20298547462974248,
+ 0.8166436635290655,
+ ]);
+
+ test_samples(&OpenClosed01, 0f32, &[0.003596425, 0.73460525, 0.09778178]);
+ test_samples(&OpenClosed01, 0f64, &[
+ 0.7346051961657584,
+ 0.2029854746297426,
+ 0.8166436635290656,
+ ]);
+
+ test_samples(&Open01, 0f32, &[0.0035963655, 0.73460525, 0.09778172]);
+ test_samples(&Open01, 0f64, &[
+ 0.7346051961657584,
+ 0.20298547462974248,
+ 0.8166436635290656,
+ ]);
+
+ #[cfg(feature = "simd_support")]
+ {
+ // We only test a sub-set of types here. Values are identical to
+ // non-SIMD types; we assume this pattern continues across all
+ // SIMD types.
+
+ test_samples(&Standard, f32x2::new(0.0, 0.0), &[
+ f32x2::new(0.0035963655, 0.7346052),
+ f32x2::new(0.09778172, 0.20298547),
+ f32x2::new(0.34296435, 0.81664366),
+ ]);
+
+ test_samples(&Standard, f64x2::new(0.0, 0.0), &[
+ f64x2::new(0.7346051961657583, 0.20298547462974248),
+ f64x2::new(0.8166436635290655, 0.7423708925400552),
+ f64x2::new(0.16387782224016323, 0.9087068770169618),
+ ]);
+ }
+ }
+}
diff --git a/third_party/rust/rand/src/distributions/integer.rs b/third_party/rust/rand/src/distributions/integer.rs
new file mode 100644
index 0000000000..19ce71599c
--- /dev/null
+++ b/third_party/rust/rand/src/distributions/integer.rs
@@ -0,0 +1,274 @@
+// Copyright 2018 Developers of the Rand project.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! The implementations of the `Standard` distribution for integer types.
+
+use crate::distributions::{Distribution, Standard};
+use crate::Rng;
+#[cfg(all(target_arch = "x86", feature = "simd_support"))]
+use core::arch::x86::{__m128i, __m256i};
+#[cfg(all(target_arch = "x86_64", feature = "simd_support"))]
+use core::arch::x86_64::{__m128i, __m256i};
+use core::num::{NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize,
+ NonZeroU128};
+#[cfg(feature = "simd_support")] use packed_simd::*;
+
+impl Distribution<u8> for Standard {
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u8 {
+ rng.next_u32() as u8
+ }
+}
+
+impl Distribution<u16> for Standard {
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u16 {
+ rng.next_u32() as u16
+ }
+}
+
+impl Distribution<u32> for Standard {
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u32 {
+ rng.next_u32()
+ }
+}
+
+impl Distribution<u64> for Standard {
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
+ rng.next_u64()
+ }
+}
+
+impl Distribution<u128> for Standard {
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u128 {
+ // Use LE; we explicitly generate one value before the next.
+ let x = u128::from(rng.next_u64());
+ let y = u128::from(rng.next_u64());
+ (y << 64) | x
+ }
+}
+
+impl Distribution<usize> for Standard {
+ #[inline]
+ #[cfg(any(target_pointer_width = "32", target_pointer_width = "16"))]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
+ rng.next_u32() as usize
+ }
+
+ #[inline]
+ #[cfg(target_pointer_width = "64")]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
+ rng.next_u64() as usize
+ }
+}
+
+macro_rules! impl_int_from_uint {
+ ($ty:ty, $uty:ty) => {
+ impl Distribution<$ty> for Standard {
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
+ rng.gen::<$uty>() as $ty
+ }
+ }
+ };
+}
+
+impl_int_from_uint! { i8, u8 }
+impl_int_from_uint! { i16, u16 }
+impl_int_from_uint! { i32, u32 }
+impl_int_from_uint! { i64, u64 }
+impl_int_from_uint! { i128, u128 }
+impl_int_from_uint! { isize, usize }
+
+macro_rules! impl_nzint {
+ ($ty:ty, $new:path) => {
+ impl Distribution<$ty> for Standard {
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
+ loop {
+ if let Some(nz) = $new(rng.gen()) {
+ break nz;
+ }
+ }
+ }
+ }
+ };
+}
+
+impl_nzint!(NonZeroU8, NonZeroU8::new);
+impl_nzint!(NonZeroU16, NonZeroU16::new);
+impl_nzint!(NonZeroU32, NonZeroU32::new);
+impl_nzint!(NonZeroU64, NonZeroU64::new);
+impl_nzint!(NonZeroU128, NonZeroU128::new);
+impl_nzint!(NonZeroUsize, NonZeroUsize::new);
+
+#[cfg(feature = "simd_support")]
+macro_rules! simd_impl {
+ ($(($intrinsic:ident, $vec:ty),)+) => {$(
+ impl Distribution<$intrinsic> for Standard {
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $intrinsic {
+ $intrinsic::from_bits(rng.gen::<$vec>())
+ }
+ }
+ )+};
+
+ ($bits:expr,) => {};
+ ($bits:expr, $ty:ty, $($ty_more:ty,)*) => {
+ simd_impl!($bits, $($ty_more,)*);
+
+ impl Distribution<$ty> for Standard {
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
+ let mut vec: $ty = Default::default();
+ unsafe {
+ let ptr = &mut vec;
+ let b_ptr = &mut *(ptr as *mut $ty as *mut [u8; $bits/8]);
+ rng.fill_bytes(b_ptr);
+ }
+ vec.to_le()
+ }
+ }
+ };
+}
+
+#[cfg(feature = "simd_support")]
+simd_impl!(16, u8x2, i8x2,);
+#[cfg(feature = "simd_support")]
+simd_impl!(32, u8x4, i8x4, u16x2, i16x2,);
+#[cfg(feature = "simd_support")]
+simd_impl!(64, u8x8, i8x8, u16x4, i16x4, u32x2, i32x2,);
+#[cfg(feature = "simd_support")]
+simd_impl!(128, u8x16, i8x16, u16x8, i16x8, u32x4, i32x4, u64x2, i64x2,);
+#[cfg(feature = "simd_support")]
+simd_impl!(256, u8x32, i8x32, u16x16, i16x16, u32x8, i32x8, u64x4, i64x4,);
+#[cfg(feature = "simd_support")]
+simd_impl!(512, u8x64, i8x64, u16x32, i16x32, u32x16, i32x16, u64x8, i64x8,);
+#[cfg(all(
+ feature = "simd_support",
+ any(target_arch = "x86", target_arch = "x86_64")
+))]
+simd_impl!((__m128i, u8x16), (__m256i, u8x32),);
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn test_integers() {
+ let mut rng = crate::test::rng(806);
+
+ rng.sample::<isize, _>(Standard);
+ rng.sample::<i8, _>(Standard);
+ rng.sample::<i16, _>(Standard);
+ rng.sample::<i32, _>(Standard);
+ rng.sample::<i64, _>(Standard);
+ rng.sample::<i128, _>(Standard);
+
+ rng.sample::<usize, _>(Standard);
+ rng.sample::<u8, _>(Standard);
+ rng.sample::<u16, _>(Standard);
+ rng.sample::<u32, _>(Standard);
+ rng.sample::<u64, _>(Standard);
+ rng.sample::<u128, _>(Standard);
+ }
+
+ #[test]
+ fn value_stability() {
+ fn test_samples<T: Copy + core::fmt::Debug + PartialEq>(zero: T, expected: &[T])
+ where Standard: Distribution<T> {
+ let mut rng = crate::test::rng(807);
+ let mut buf = [zero; 3];
+ for x in &mut buf {
+ *x = rng.sample(Standard);
+ }
+ assert_eq!(&buf, expected);
+ }
+
+ test_samples(0u8, &[9, 247, 111]);
+ test_samples(0u16, &[32265, 42999, 38255]);
+ test_samples(0u32, &[2220326409, 2575017975, 2018088303]);
+ test_samples(0u64, &[
+ 11059617991457472009,
+ 16096616328739788143,
+ 1487364411147516184,
+ ]);
+ test_samples(0u128, &[
+ 296930161868957086625409848350820761097,
+ 145644820879247630242265036535529306392,
+ 111087889832015897993126088499035356354,
+ ]);
+ #[cfg(any(target_pointer_width = "32", target_pointer_width = "16"))]
+ test_samples(0usize, &[2220326409, 2575017975, 2018088303]);
+ #[cfg(target_pointer_width = "64")]
+ test_samples(0usize, &[
+ 11059617991457472009,
+ 16096616328739788143,
+ 1487364411147516184,
+ ]);
+
+ test_samples(0i8, &[9, -9, 111]);
+ // Skip further i* types: they are simple reinterpretation of u* samples
+
+ #[cfg(feature = "simd_support")]
+ {
+ // We only test a sub-set of types here and make assumptions about the rest.
+
+ test_samples(u8x2::default(), &[
+ u8x2::new(9, 126),
+ u8x2::new(247, 167),
+ u8x2::new(111, 149),
+ ]);
+ test_samples(u8x4::default(), &[
+ u8x4::new(9, 126, 87, 132),
+ u8x4::new(247, 167, 123, 153),
+ u8x4::new(111, 149, 73, 120),
+ ]);
+ test_samples(u8x8::default(), &[
+ u8x8::new(9, 126, 87, 132, 247, 167, 123, 153),
+ u8x8::new(111, 149, 73, 120, 68, 171, 98, 223),
+ u8x8::new(24, 121, 1, 50, 13, 46, 164, 20),
+ ]);
+
+ test_samples(i64x8::default(), &[
+ i64x8::new(
+ -7387126082252079607,
+ -2350127744969763473,
+ 1487364411147516184,
+ 7895421560427121838,
+ 602190064936008898,
+ 6022086574635100741,
+ -5080089175222015595,
+ -4066367846667249123,
+ ),
+ i64x8::new(
+ 9180885022207963908,
+ 3095981199532211089,
+ 6586075293021332726,
+ 419343203796414657,
+ 3186951873057035255,
+ 5287129228749947252,
+ 444726432079249540,
+ -1587028029513790706,
+ ),
+ i64x8::new(
+ 6075236523189346388,
+ 1351763722368165432,
+ -6192309979959753740,
+ -7697775502176768592,
+ -4482022114172078123,
+ 7522501477800909500,
+ -1837258847956201231,
+ -586926753024886735,
+ ),
+ ]);
+ }
+ }
+}
diff --git a/third_party/rust/rand/src/distributions/mod.rs b/third_party/rust/rand/src/distributions/mod.rs
new file mode 100644
index 0000000000..05ca80606b
--- /dev/null
+++ b/third_party/rust/rand/src/distributions/mod.rs
@@ -0,0 +1,218 @@
+// Copyright 2018 Developers of the Rand project.
+// Copyright 2013-2017 The Rust Project Developers.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Generating random samples from probability distributions
+//!
+//! This module is the home of the [`Distribution`] trait and several of its
+//! implementations. It is the workhorse behind some of the convenient
+//! functionality of the [`Rng`] trait, e.g. [`Rng::gen`] and of course
+//! [`Rng::sample`].
+//!
+//! Abstractly, a [probability distribution] describes the probability of
+//! occurrence of each value in its sample space.
+//!
+//! More concretely, an implementation of `Distribution<T>` for type `X` is an
+//! algorithm for choosing values from the sample space (a subset of `T`)
+//! according to the distribution `X` represents, using an external source of
+//! randomness (an RNG supplied to the `sample` function).
+//!
+//! A type `X` may implement `Distribution<T>` for multiple types `T`.
+//! Any type implementing [`Distribution`] is stateless (i.e. immutable),
+//! but it may have internal parameters set at construction time (for example,
+//! [`Uniform`] allows specification of its sample space as a range within `T`).
+//!
+//!
+//! # The `Standard` distribution
+//!
+//! The [`Standard`] distribution is important to mention. This is the
+//! distribution used by [`Rng::gen`] and represents the "default" way to
+//! produce a random value for many different types, including most primitive
+//! types, tuples, arrays, and a few derived types. See the documentation of
+//! [`Standard`] for more details.
+//!
+//! Implementing `Distribution<T>` for [`Standard`] for user types `T` makes it
+//! possible to generate type `T` with [`Rng::gen`], and by extension also
+//! with the [`random`] function.
+//!
+//! ## Random characters
+//!
+//! [`Alphanumeric`] is a simple distribution to sample random letters and
+//! numbers of the `char` type; in contrast [`Standard`] may sample any valid
+//! `char`.
+//!
+//!
+//! # Uniform numeric ranges
+//!
+//! The [`Uniform`] distribution is more flexible than [`Standard`], but also
+//! more specialised: it supports fewer target types, but allows the sample
+//! space to be specified as an arbitrary range within its target type `T`.
+//! Both [`Standard`] and [`Uniform`] are in some sense uniform distributions.
+//!
+//! Values may be sampled from this distribution using [`Rng::sample(Range)`] or
+//! by creating a distribution object with [`Uniform::new`],
+//! [`Uniform::new_inclusive`] or `From<Range>`. When the range limits are not
+//! known at compile time it is typically faster to reuse an existing
+//! `Uniform` object than to call [`Rng::sample(Range)`].
+//!
+//! User types `T` may also implement `Distribution<T>` for [`Uniform`],
+//! although this is less straightforward than for [`Standard`] (see the
+//! documentation in the [`uniform`] module). Doing so enables generation of
+//! values of type `T` with [`Rng::sample(Range)`].
+//!
+//! ## Open and half-open ranges
+//!
+//! There are surprisingly many ways to uniformly generate random floats. A
+//! range between 0 and 1 is standard, but the exact bounds (open vs closed)
+//! and accuracy differ. In addition to the [`Standard`] distribution Rand offers
+//! [`Open01`] and [`OpenClosed01`]. See "Floating point implementation" section of
+//! [`Standard`] documentation for more details.
+//!
+//! # Non-uniform sampling
+//!
+//! Sampling a simple true/false outcome with a given probability has a name:
+//! the [`Bernoulli`] distribution (this is used by [`Rng::gen_bool`]).
+//!
+//! For weighted sampling from a sequence of discrete values, use the
+//! [`WeightedIndex`] distribution.
+//!
+//! This crate no longer includes other non-uniform distributions; instead
+//! it is recommended that you use either [`rand_distr`] or [`statrs`].
+//!
+//!
+//! [probability distribution]: https://en.wikipedia.org/wiki/Probability_distribution
+//! [`rand_distr`]: https://crates.io/crates/rand_distr
+//! [`statrs`]: https://crates.io/crates/statrs
+
+//! [`random`]: crate::random
+//! [`rand_distr`]: https://crates.io/crates/rand_distr
+//! [`statrs`]: https://crates.io/crates/statrs
+
+mod bernoulli;
+mod distribution;
+mod float;
+mod integer;
+mod other;
+mod slice;
+mod utils;
+#[cfg(feature = "alloc")]
+mod weighted_index;
+
+#[doc(hidden)]
+pub mod hidden_export {
+ pub use super::float::IntoFloat; // used by rand_distr
+}
+pub mod uniform;
+#[deprecated(
+ since = "0.8.0",
+ note = "use rand::distributions::{WeightedIndex, WeightedError} instead"
+)]
+#[cfg(feature = "alloc")]
+#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
+pub mod weighted;
+
+pub use self::bernoulli::{Bernoulli, BernoulliError};
+pub use self::distribution::{Distribution, DistIter, DistMap};
+#[cfg(feature = "alloc")]
+pub use self::distribution::DistString;
+pub use self::float::{Open01, OpenClosed01};
+pub use self::other::Alphanumeric;
+pub use self::slice::Slice;
+#[doc(inline)]
+pub use self::uniform::Uniform;
+#[cfg(feature = "alloc")]
+pub use self::weighted_index::{WeightedError, WeightedIndex};
+
+#[allow(unused)]
+use crate::Rng;
+
+/// A generic random value distribution, implemented for many primitive types.
+/// Usually generates values with a numerically uniform distribution, and with a
+/// range appropriate to the type.
+///
+/// ## Provided implementations
+///
+/// Assuming the provided `Rng` is well-behaved, these implementations
+/// generate values with the following ranges and distributions:
+///
+/// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed
+/// over all values of the type.
+/// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all
+/// code points in the range `0...0x10_FFFF`, except for the range
+/// `0xD800...0xDFFF` (the surrogate code points). This includes
+/// unassigned/reserved code points.
+/// * `bool`: Generates `false` or `true`, each with probability 0.5.
+/// * Floating point types (`f32` and `f64`): Uniformly distributed in the
+/// half-open range `[0, 1)`. See notes below.
+/// * Wrapping integers (`Wrapping<T>`), besides the type identical to their
+/// normal integer variants.
+///
+/// The `Standard` distribution also supports generation of the following
+/// compound types where all component types are supported:
+///
+/// * Tuples (up to 12 elements): each element is generated sequentially.
+/// * Arrays (up to 32 elements): each element is generated sequentially;
+/// see also [`Rng::fill`] which supports arbitrary array length for integer
+/// and float types and tends to be faster for `u32` and smaller types.
+/// When using `rustc` ≥ 1.51, enable the `min_const_gen` feature to support
+/// arrays larger than 32 elements.
+/// Note that [`Rng::fill`] and `Standard`'s array support are *not* equivalent:
+/// the former is optimised for integer types (using fewer RNG calls for
+/// element types smaller than the RNG word size), while the latter supports
+/// any element type supported by `Standard`.
+/// * `Option<T>` first generates a `bool`, and if true generates and returns
+/// `Some(value)` where `value: T`, otherwise returning `None`.
+///
+/// ## Custom implementations
+///
+/// The [`Standard`] distribution may be implemented for user types as follows:
+///
+/// ```
+/// # #![allow(dead_code)]
+/// use rand::Rng;
+/// use rand::distributions::{Distribution, Standard};
+///
+/// struct MyF32 {
+/// x: f32,
+/// }
+///
+/// impl Distribution<MyF32> for Standard {
+/// fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> MyF32 {
+/// MyF32 { x: rng.gen() }
+/// }
+/// }
+/// ```
+///
+/// ## Example usage
+/// ```
+/// use rand::prelude::*;
+/// use rand::distributions::Standard;
+///
+/// let val: f32 = StdRng::from_entropy().sample(Standard);
+/// println!("f32 from [0, 1): {}", val);
+/// ```
+///
+/// # Floating point implementation
+/// The floating point implementations for `Standard` generate a random value in
+/// the half-open interval `[0, 1)`, i.e. including 0 but not 1.
+///
+/// All values that can be generated are of the form `n * ε/2`. For `f32`
+/// the 24 most significant random bits of a `u32` are used and for `f64` the
+/// 53 most significant bits of a `u64` are used. The conversion uses the
+/// multiplicative method: `(rng.gen::<$uty>() >> N) as $ty * (ε/2)`.
+///
+/// See also: [`Open01`] which samples from `(0, 1)`, [`OpenClosed01`] which
+/// samples from `(0, 1]` and `Rng::gen_range(0..1)` which also samples from
+/// `[0, 1)`. Note that `Open01` uses transmute-based methods which yield 1 bit
+/// less precision but may perform faster on some architectures (on modern Intel
+/// CPUs all methods have approximately equal performance).
+///
+/// [`Uniform`]: uniform::Uniform
+#[derive(Clone, Copy, Debug)]
+#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
+pub struct Standard;
diff --git a/third_party/rust/rand/src/distributions/other.rs b/third_party/rust/rand/src/distributions/other.rs
new file mode 100644
index 0000000000..03802a76d5
--- /dev/null
+++ b/third_party/rust/rand/src/distributions/other.rs
@@ -0,0 +1,365 @@
+// Copyright 2018 Developers of the Rand project.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! The implementations of the `Standard` distribution for other built-in types.
+
+use core::char;
+use core::num::Wrapping;
+#[cfg(feature = "alloc")]
+use alloc::string::String;
+
+use crate::distributions::{Distribution, Standard, Uniform};
+#[cfg(feature = "alloc")]
+use crate::distributions::DistString;
+use crate::Rng;
+
+#[cfg(feature = "serde1")]
+use serde::{Serialize, Deserialize};
+#[cfg(feature = "min_const_gen")]
+use core::mem::{self, MaybeUninit};
+
+
+// ----- Sampling distributions -----
+
+/// Sample a `u8`, uniformly distributed over ASCII letters and numbers:
+/// a-z, A-Z and 0-9.
+///
+/// # Example
+///
+/// ```
+/// use rand::{Rng, thread_rng};
+/// use rand::distributions::Alphanumeric;
+///
+/// let mut rng = thread_rng();
+/// let chars: String = (0..7).map(|_| rng.sample(Alphanumeric) as char).collect();
+/// println!("Random chars: {}", chars);
+/// ```
+///
+/// The [`DistString`] trait provides an easier method of generating
+/// a random `String`, and offers more efficient allocation:
+/// ```
+/// use rand::distributions::{Alphanumeric, DistString};
+/// let string = Alphanumeric.sample_string(&mut rand::thread_rng(), 16);
+/// println!("Random string: {}", string);
+/// ```
+///
+/// # Passwords
+///
+/// Users sometimes ask whether it is safe to use a string of random characters
+/// as a password. In principle, all RNGs in Rand implementing `CryptoRng` are
+/// suitable as a source of randomness for generating passwords (if they are
+/// properly seeded), but it is more conservative to only use randomness
+/// directly from the operating system via the `getrandom` crate, or the
+/// corresponding bindings of a crypto library.
+///
+/// When generating passwords or keys, it is important to consider the threat
+/// model and in some cases the memorability of the password. This is out of
+/// scope of the Rand project, and therefore we defer to the following
+/// references:
+///
+/// - [Wikipedia article on Password Strength](https://en.wikipedia.org/wiki/Password_strength)
+/// - [Diceware for generating memorable passwords](https://en.wikipedia.org/wiki/Diceware)
+#[derive(Debug, Clone, Copy)]
+#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
+pub struct Alphanumeric;
+
+
+// ----- Implementations of distributions -----
+
+impl Distribution<char> for Standard {
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> char {
+ // A valid `char` is either in the interval `[0, 0xD800)` or
+ // `(0xDFFF, 0x11_0000)`. All `char`s must therefore be in
+ // `[0, 0x11_0000)` but not in the "gap" `[0xD800, 0xDFFF]` which is
+ // reserved for surrogates. This is the size of that gap.
+ const GAP_SIZE: u32 = 0xDFFF - 0xD800 + 1;
+
+ // Uniform::new(0, 0x11_0000 - GAP_SIZE) can also be used but it
+ // seemed slower.
+ let range = Uniform::new(GAP_SIZE, 0x11_0000);
+
+ let mut n = range.sample(rng);
+ if n <= 0xDFFF {
+ n -= GAP_SIZE;
+ }
+ unsafe { char::from_u32_unchecked(n) }
+ }
+}
+
+/// Note: the `String` is potentially left with excess capacity; optionally the
+/// user may call `string.shrink_to_fit()` afterwards.
+#[cfg(feature = "alloc")]
+impl DistString for Standard {
+ fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, s: &mut String, len: usize) {
+ // A char is encoded with at most four bytes, thus this reservation is
+ // guaranteed to be sufficient. We do not shrink_to_fit afterwards so
+ // that repeated usage on the same `String` buffer does not reallocate.
+ s.reserve(4 * len);
+ s.extend(Distribution::<char>::sample_iter(self, rng).take(len));
+ }
+}
+
+impl Distribution<u8> for Alphanumeric {
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u8 {
+ const RANGE: u32 = 26 + 26 + 10;
+ const GEN_ASCII_STR_CHARSET: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\
+ abcdefghijklmnopqrstuvwxyz\
+ 0123456789";
+ // We can pick from 62 characters. This is so close to a power of 2, 64,
+ // that we can do better than `Uniform`. Use a simple bitshift and
+ // rejection sampling. We do not use a bitmask, because for small RNGs
+ // the most significant bits are usually of higher quality.
+ loop {
+ let var = rng.next_u32() >> (32 - 6);
+ if var < RANGE {
+ return GEN_ASCII_STR_CHARSET[var as usize];
+ }
+ }
+ }
+}
+
+#[cfg(feature = "alloc")]
+impl DistString for Alphanumeric {
+ fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, string: &mut String, len: usize) {
+ unsafe {
+ let v = string.as_mut_vec();
+ v.extend(self.sample_iter(rng).take(len));
+ }
+ }
+}
+
+impl Distribution<bool> for Standard {
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool {
+ // We can compare against an arbitrary bit of an u32 to get a bool.
+ // Because the least significant bits of a lower quality RNG can have
+ // simple patterns, we compare against the most significant bit. This is
+ // easiest done using a sign test.
+ (rng.next_u32() as i32) < 0
+ }
+}
+
+macro_rules! tuple_impl {
+ // use variables to indicate the arity of the tuple
+ ($($tyvar:ident),* ) => {
+ // the trailing commas are for the 1 tuple
+ impl< $( $tyvar ),* >
+ Distribution<( $( $tyvar ),* , )>
+ for Standard
+ where $( Standard: Distribution<$tyvar> ),*
+ {
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> ( $( $tyvar ),* , ) {
+ (
+ // use the $tyvar's to get the appropriate number of
+ // repeats (they're not actually needed)
+ $(
+ _rng.gen::<$tyvar>()
+ ),*
+ ,
+ )
+ }
+ }
+ }
+}
+
+impl Distribution<()> for Standard {
+ #[allow(clippy::unused_unit)]
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, _: &mut R) -> () {
+ ()
+ }
+}
+tuple_impl! {A}
+tuple_impl! {A, B}
+tuple_impl! {A, B, C}
+tuple_impl! {A, B, C, D}
+tuple_impl! {A, B, C, D, E}
+tuple_impl! {A, B, C, D, E, F}
+tuple_impl! {A, B, C, D, E, F, G}
+tuple_impl! {A, B, C, D, E, F, G, H}
+tuple_impl! {A, B, C, D, E, F, G, H, I}
+tuple_impl! {A, B, C, D, E, F, G, H, I, J}
+tuple_impl! {A, B, C, D, E, F, G, H, I, J, K}
+tuple_impl! {A, B, C, D, E, F, G, H, I, J, K, L}
+
+#[cfg(feature = "min_const_gen")]
+#[cfg_attr(doc_cfg, doc(cfg(feature = "min_const_gen")))]
+impl<T, const N: usize> Distribution<[T; N]> for Standard
+where Standard: Distribution<T>
+{
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; N] {
+ let mut buff: [MaybeUninit<T>; N] = unsafe { MaybeUninit::uninit().assume_init() };
+
+ for elem in &mut buff {
+ *elem = MaybeUninit::new(_rng.gen());
+ }
+
+ unsafe { mem::transmute_copy::<_, _>(&buff) }
+ }
+}
+
+#[cfg(not(feature = "min_const_gen"))]
+macro_rules! array_impl {
+ // recursive, given at least one type parameter:
+ {$n:expr, $t:ident, $($ts:ident,)*} => {
+ array_impl!{($n - 1), $($ts,)*}
+
+ impl<T> Distribution<[T; $n]> for Standard where Standard: Distribution<T> {
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] {
+ [_rng.gen::<$t>(), $(_rng.gen::<$ts>()),*]
+ }
+ }
+ };
+ // empty case:
+ {$n:expr,} => {
+ impl<T> Distribution<[T; $n]> for Standard {
+ fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] { [] }
+ }
+ };
+}
+
+#[cfg(not(feature = "min_const_gen"))]
+array_impl! {32, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T,}
+
+impl<T> Distribution<Option<T>> for Standard
+where Standard: Distribution<T>
+{
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Option<T> {
+ // UFCS is needed here: https://github.com/rust-lang/rust/issues/24066
+ if rng.gen::<bool>() {
+ Some(rng.gen())
+ } else {
+ None
+ }
+ }
+}
+
+impl<T> Distribution<Wrapping<T>> for Standard
+where Standard: Distribution<T>
+{
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Wrapping<T> {
+ Wrapping(rng.gen())
+ }
+}
+
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use crate::RngCore;
+ #[cfg(feature = "alloc")] use alloc::string::String;
+
+ #[test]
+ fn test_misc() {
+ let rng: &mut dyn RngCore = &mut crate::test::rng(820);
+
+ rng.sample::<char, _>(Standard);
+ rng.sample::<bool, _>(Standard);
+ }
+
+ #[cfg(feature = "alloc")]
+ #[test]
+ fn test_chars() {
+ use core::iter;
+ let mut rng = crate::test::rng(805);
+
+ // Test by generating a relatively large number of chars, so we also
+ // take the rejection sampling path.
+ let word: String = iter::repeat(())
+ .map(|()| rng.gen::<char>())
+ .take(1000)
+ .collect();
+ assert!(!word.is_empty());
+ }
+
+ #[test]
+ fn test_alphanumeric() {
+ let mut rng = crate::test::rng(806);
+
+ // Test by generating a relatively large number of chars, so we also
+ // take the rejection sampling path.
+ let mut incorrect = false;
+ for _ in 0..100 {
+ let c: char = rng.sample(Alphanumeric).into();
+ incorrect |= !(('0'..='9').contains(&c) ||
+ ('A'..='Z').contains(&c) ||
+ ('a'..='z').contains(&c) );
+ }
+ assert!(!incorrect);
+ }
+
+ #[test]
+ fn value_stability() {
+ fn test_samples<T: Copy + core::fmt::Debug + PartialEq, D: Distribution<T>>(
+ distr: &D, zero: T, expected: &[T],
+ ) {
+ let mut rng = crate::test::rng(807);
+ let mut buf = [zero; 5];
+ for x in &mut buf {
+ *x = rng.sample(&distr);
+ }
+ assert_eq!(&buf, expected);
+ }
+
+ test_samples(&Standard, 'a', &[
+ '\u{8cdac}',
+ '\u{a346a}',
+ '\u{80120}',
+ '\u{ed692}',
+ '\u{35888}',
+ ]);
+ test_samples(&Alphanumeric, 0, &[104, 109, 101, 51, 77]);
+ test_samples(&Standard, false, &[true, true, false, true, false]);
+ test_samples(&Standard, None as Option<bool>, &[
+ Some(true),
+ None,
+ Some(false),
+ None,
+ Some(false),
+ ]);
+ test_samples(&Standard, Wrapping(0i32), &[
+ Wrapping(-2074640887),
+ Wrapping(-1719949321),
+ Wrapping(2018088303),
+ Wrapping(-547181756),
+ Wrapping(838957336),
+ ]);
+
+ // We test only sub-sets of tuple and array impls
+ test_samples(&Standard, (), &[(), (), (), (), ()]);
+ test_samples(&Standard, (false,), &[
+ (true,),
+ (true,),
+ (false,),
+ (true,),
+ (false,),
+ ]);
+ test_samples(&Standard, (false, false), &[
+ (true, true),
+ (false, true),
+ (false, false),
+ (true, false),
+ (false, false),
+ ]);
+
+ test_samples(&Standard, [0u8; 0], &[[], [], [], [], []]);
+ test_samples(&Standard, [0u8; 3], &[
+ [9, 247, 111],
+ [68, 24, 13],
+ [174, 19, 194],
+ [172, 69, 213],
+ [149, 207, 29],
+ ]);
+ }
+}
diff --git a/third_party/rust/rand/src/distributions/slice.rs b/third_party/rust/rand/src/distributions/slice.rs
new file mode 100644
index 0000000000..3302deb2a4
--- /dev/null
+++ b/third_party/rust/rand/src/distributions/slice.rs
@@ -0,0 +1,117 @@
+// Copyright 2021 Developers of the Rand project.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+use crate::distributions::{Distribution, Uniform};
+
+/// A distribution to sample items uniformly from a slice.
+///
+/// [`Slice::new`] constructs a distribution referencing a slice and uniformly
+/// samples references from the items in the slice. It may do extra work up
+/// front to make sampling of multiple values faster; if only one sample from
+/// the slice is required, [`SliceRandom::choose`] can be more efficient.
+///
+/// Steps are taken to avoid bias which might be present in naive
+/// implementations; for example `slice[rng.gen() % slice.len()]` samples from
+/// the slice, but may be more likely to select numbers in the low range than
+/// other values.
+///
+/// This distribution samples with replacement; each sample is independent.
+/// Sampling without replacement requires state to be retained, and therefore
+/// cannot be handled by a distribution; you should instead consider methods
+/// on [`SliceRandom`], such as [`SliceRandom::choose_multiple`].
+///
+/// # Example
+///
+/// ```
+/// use rand::Rng;
+/// use rand::distributions::Slice;
+///
+/// let vowels = ['a', 'e', 'i', 'o', 'u'];
+/// let vowels_dist = Slice::new(&vowels).unwrap();
+/// let rng = rand::thread_rng();
+///
+/// // build a string of 10 vowels
+/// let vowel_string: String = rng
+/// .sample_iter(&vowels_dist)
+/// .take(10)
+/// .collect();
+///
+/// println!("{}", vowel_string);
+/// assert_eq!(vowel_string.len(), 10);
+/// assert!(vowel_string.chars().all(|c| vowels.contains(&c)));
+/// ```
+///
+/// For a single sample, [`SliceRandom::choose`][crate::seq::SliceRandom::choose]
+/// may be preferred:
+///
+/// ```
+/// use rand::seq::SliceRandom;
+///
+/// let vowels = ['a', 'e', 'i', 'o', 'u'];
+/// let mut rng = rand::thread_rng();
+///
+/// println!("{}", vowels.choose(&mut rng).unwrap())
+/// ```
+///
+/// [`SliceRandom`]: crate::seq::SliceRandom
+/// [`SliceRandom::choose`]: crate::seq::SliceRandom::choose
+/// [`SliceRandom::choose_multiple`]: crate::seq::SliceRandom::choose_multiple
+#[derive(Debug, Clone, Copy)]
+pub struct Slice<'a, T> {
+ slice: &'a [T],
+ range: Uniform<usize>,
+}
+
+impl<'a, T> Slice<'a, T> {
+ /// Create a new `Slice` instance which samples uniformly from the slice.
+ /// Returns `Err` if the slice is empty.
+ pub fn new(slice: &'a [T]) -> Result<Self, EmptySlice> {
+ match slice.len() {
+ 0 => Err(EmptySlice),
+ len => Ok(Self {
+ slice,
+ range: Uniform::new(0, len),
+ }),
+ }
+ }
+}
+
+impl<'a, T> Distribution<&'a T> for Slice<'a, T> {
+ fn sample<R: crate::Rng + ?Sized>(&self, rng: &mut R) -> &'a T {
+ let idx = self.range.sample(rng);
+
+ debug_assert!(
+ idx < self.slice.len(),
+ "Uniform::new(0, {}) somehow returned {}",
+ self.slice.len(),
+ idx
+ );
+
+ // Safety: at construction time, it was ensured that the slice was
+ // non-empty, and that the `Uniform` range produces values in range
+ // for the slice
+ unsafe { self.slice.get_unchecked(idx) }
+ }
+}
+
+/// Error type indicating that a [`Slice`] distribution was improperly
+/// constructed with an empty slice.
+#[derive(Debug, Clone, Copy)]
+pub struct EmptySlice;
+
+impl core::fmt::Display for EmptySlice {
+ fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
+ write!(
+ f,
+ "Tried to create a `distributions::Slice` with an empty slice"
+ )
+ }
+}
+
+#[cfg(feature = "std")]
+impl std::error::Error for EmptySlice {}
diff --git a/third_party/rust/rand/src/distributions/uniform.rs b/third_party/rust/rand/src/distributions/uniform.rs
new file mode 100644
index 0000000000..261357b245
--- /dev/null
+++ b/third_party/rust/rand/src/distributions/uniform.rs
@@ -0,0 +1,1658 @@
+// Copyright 2018-2020 Developers of the Rand project.
+// Copyright 2017 The Rust Project Developers.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! A distribution uniformly sampling numbers within a given range.
+//!
+//! [`Uniform`] is the standard distribution to sample uniformly from a range;
+//! e.g. `Uniform::new_inclusive(1, 6)` can sample integers from 1 to 6, like a
+//! standard die. [`Rng::gen_range`] supports any type supported by
+//! [`Uniform`].
+//!
+//! This distribution is provided with support for several primitive types
+//! (all integer and floating-point types) as well as [`std::time::Duration`],
+//! and supports extension to user-defined types via a type-specific *back-end*
+//! implementation.
+//!
+//! The types [`UniformInt`], [`UniformFloat`] and [`UniformDuration`] are the
+//! back-ends supporting sampling from primitive integer and floating-point
+//! ranges as well as from [`std::time::Duration`]; these types do not normally
+//! need to be used directly (unless implementing a derived back-end).
+//!
+//! # Example usage
+//!
+//! ```
+//! use rand::{Rng, thread_rng};
+//! use rand::distributions::Uniform;
+//!
+//! let mut rng = thread_rng();
+//! let side = Uniform::new(-10.0, 10.0);
+//!
+//! // sample between 1 and 10 points
+//! for _ in 0..rng.gen_range(1..=10) {
+//! // sample a point from the square with sides -10 - 10 in two dimensions
+//! let (x, y) = (rng.sample(side), rng.sample(side));
+//! println!("Point: {}, {}", x, y);
+//! }
+//! ```
+//!
+//! # Extending `Uniform` to support a custom type
+//!
+//! To extend [`Uniform`] to support your own types, write a back-end which
+//! implements the [`UniformSampler`] trait, then implement the [`SampleUniform`]
+//! helper trait to "register" your back-end. See the `MyF32` example below.
+//!
+//! At a minimum, the back-end needs to store any parameters needed for sampling
+//! (e.g. the target range) and implement `new`, `new_inclusive` and `sample`.
+//! Those methods should include an assert to check the range is valid (i.e.
+//! `low < high`). The example below merely wraps another back-end.
+//!
+//! The `new`, `new_inclusive` and `sample_single` functions use arguments of
+//! type SampleBorrow<X> in order to support passing in values by reference or
+//! by value. In the implementation of these functions, you can choose to
+//! simply use the reference returned by [`SampleBorrow::borrow`], or you can choose
+//! to copy or clone the value, whatever is appropriate for your type.
+//!
+//! ```
+//! use rand::prelude::*;
+//! use rand::distributions::uniform::{Uniform, SampleUniform,
+//! UniformSampler, UniformFloat, SampleBorrow};
+//!
+//! struct MyF32(f32);
+//!
+//! #[derive(Clone, Copy, Debug)]
+//! struct UniformMyF32(UniformFloat<f32>);
+//!
+//! impl UniformSampler for UniformMyF32 {
+//! type X = MyF32;
+//! fn new<B1, B2>(low: B1, high: B2) -> Self
+//! where B1: SampleBorrow<Self::X> + Sized,
+//! B2: SampleBorrow<Self::X> + Sized
+//! {
+//! UniformMyF32(UniformFloat::<f32>::new(low.borrow().0, high.borrow().0))
+//! }
+//! fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
+//! where B1: SampleBorrow<Self::X> + Sized,
+//! B2: SampleBorrow<Self::X> + Sized
+//! {
+//! UniformMyF32(UniformFloat::<f32>::new_inclusive(
+//! low.borrow().0,
+//! high.borrow().0,
+//! ))
+//! }
+//! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
+//! MyF32(self.0.sample(rng))
+//! }
+//! }
+//!
+//! impl SampleUniform for MyF32 {
+//! type Sampler = UniformMyF32;
+//! }
+//!
+//! let (low, high) = (MyF32(17.0f32), MyF32(22.0f32));
+//! let uniform = Uniform::new(low, high);
+//! let x = uniform.sample(&mut thread_rng());
+//! ```
+//!
+//! [`SampleUniform`]: crate::distributions::uniform::SampleUniform
+//! [`UniformSampler`]: crate::distributions::uniform::UniformSampler
+//! [`UniformInt`]: crate::distributions::uniform::UniformInt
+//! [`UniformFloat`]: crate::distributions::uniform::UniformFloat
+//! [`UniformDuration`]: crate::distributions::uniform::UniformDuration
+//! [`SampleBorrow::borrow`]: crate::distributions::uniform::SampleBorrow::borrow
+
+use core::time::Duration;
+use core::ops::{Range, RangeInclusive};
+
+use crate::distributions::float::IntoFloat;
+use crate::distributions::utils::{BoolAsSIMD, FloatAsSIMD, FloatSIMDUtils, WideningMultiply};
+use crate::distributions::Distribution;
+use crate::{Rng, RngCore};
+
+#[cfg(not(feature = "std"))]
+#[allow(unused_imports)] // rustc doesn't detect that this is actually used
+use crate::distributions::utils::Float;
+
+#[cfg(feature = "simd_support")] use packed_simd::*;
+
+#[cfg(feature = "serde1")]
+use serde::{Serialize, Deserialize};
+
+/// Sample values uniformly between two bounds.
+///
+/// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform
+/// distribution sampling from the given range; these functions may do extra
+/// work up front to make sampling of multiple values faster. If only one sample
+/// from the range is required, [`Rng::gen_range`] can be more efficient.
+///
+/// When sampling from a constant range, many calculations can happen at
+/// compile-time and all methods should be fast; for floating-point ranges and
+/// the full range of integer types this should have comparable performance to
+/// the `Standard` distribution.
+///
+/// Steps are taken to avoid bias which might be present in naive
+/// implementations; for example `rng.gen::<u8>() % 170` samples from the range
+/// `[0, 169]` but is twice as likely to select numbers less than 85 than other
+/// values. Further, the implementations here give more weight to the high-bits
+/// generated by the RNG than the low bits, since with some RNGs the low-bits
+/// are of lower quality than the high bits.
+///
+/// Implementations must sample in `[low, high)` range for
+/// `Uniform::new(low, high)`, i.e., excluding `high`. In particular, care must
+/// be taken to ensure that rounding never results values `< low` or `>= high`.
+///
+/// # Example
+///
+/// ```
+/// use rand::distributions::{Distribution, Uniform};
+///
+/// let between = Uniform::from(10..10000);
+/// let mut rng = rand::thread_rng();
+/// let mut sum = 0;
+/// for _ in 0..1000 {
+/// sum += between.sample(&mut rng);
+/// }
+/// println!("{}", sum);
+/// ```
+///
+/// For a single sample, [`Rng::gen_range`] may be preferred:
+///
+/// ```
+/// use rand::Rng;
+///
+/// let mut rng = rand::thread_rng();
+/// println!("{}", rng.gen_range(0..10));
+/// ```
+///
+/// [`new`]: Uniform::new
+/// [`new_inclusive`]: Uniform::new_inclusive
+/// [`Rng::gen_range`]: Rng::gen_range
+#[derive(Clone, Copy, Debug, PartialEq)]
+#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
+#[cfg_attr(feature = "serde1", serde(bound(serialize = "X::Sampler: Serialize")))]
+#[cfg_attr(feature = "serde1", serde(bound(deserialize = "X::Sampler: Deserialize<'de>")))]
+pub struct Uniform<X: SampleUniform>(X::Sampler);
+
+impl<X: SampleUniform> Uniform<X> {
+ /// Create a new `Uniform` instance which samples uniformly from the half
+ /// open range `[low, high)` (excluding `high`). Panics if `low >= high`.
+ pub fn new<B1, B2>(low: B1, high: B2) -> Uniform<X>
+ where
+ B1: SampleBorrow<X> + Sized,
+ B2: SampleBorrow<X> + Sized,
+ {
+ Uniform(X::Sampler::new(low, high))
+ }
+
+ /// Create a new `Uniform` instance which samples uniformly from the closed
+ /// range `[low, high]` (inclusive). Panics if `low > high`.
+ pub fn new_inclusive<B1, B2>(low: B1, high: B2) -> Uniform<X>
+ where
+ B1: SampleBorrow<X> + Sized,
+ B2: SampleBorrow<X> + Sized,
+ {
+ Uniform(X::Sampler::new_inclusive(low, high))
+ }
+}
+
+impl<X: SampleUniform> Distribution<X> for Uniform<X> {
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X {
+ self.0.sample(rng)
+ }
+}
+
+/// Helper trait for creating objects using the correct implementation of
+/// [`UniformSampler`] for the sampling type.
+///
+/// See the [module documentation] on how to implement [`Uniform`] range
+/// sampling for a custom type.
+///
+/// [module documentation]: crate::distributions::uniform
+pub trait SampleUniform: Sized {
+ /// The `UniformSampler` implementation supporting type `X`.
+ type Sampler: UniformSampler<X = Self>;
+}
+
+/// Helper trait handling actual uniform sampling.
+///
+/// See the [module documentation] on how to implement [`Uniform`] range
+/// sampling for a custom type.
+///
+/// Implementation of [`sample_single`] is optional, and is only useful when
+/// the implementation can be faster than `Self::new(low, high).sample(rng)`.
+///
+/// [module documentation]: crate::distributions::uniform
+/// [`sample_single`]: UniformSampler::sample_single
+pub trait UniformSampler: Sized {
+ /// The type sampled by this implementation.
+ type X;
+
+ /// Construct self, with inclusive lower bound and exclusive upper bound
+ /// `[low, high)`.
+ ///
+ /// Usually users should not call this directly but instead use
+ /// `Uniform::new`, which asserts that `low < high` before calling this.
+ fn new<B1, B2>(low: B1, high: B2) -> Self
+ where
+ B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized;
+
+ /// Construct self, with inclusive bounds `[low, high]`.
+ ///
+ /// Usually users should not call this directly but instead use
+ /// `Uniform::new_inclusive`, which asserts that `low <= high` before
+ /// calling this.
+ fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
+ where
+ B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized;
+
+ /// Sample a value.
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X;
+
+ /// Sample a single value uniformly from a range with inclusive lower bound
+ /// and exclusive upper bound `[low, high)`.
+ ///
+ /// By default this is implemented using
+ /// `UniformSampler::new(low, high).sample(rng)`. However, for some types
+ /// more optimal implementations for single usage may be provided via this
+ /// method (which is the case for integers and floats).
+ /// Results may not be identical.
+ ///
+ /// Note that to use this method in a generic context, the type needs to be
+ /// retrieved via `SampleUniform::Sampler` as follows:
+ /// ```
+ /// use rand::{thread_rng, distributions::uniform::{SampleUniform, UniformSampler}};
+ /// # #[allow(unused)]
+ /// fn sample_from_range<T: SampleUniform>(lb: T, ub: T) -> T {
+ /// let mut rng = thread_rng();
+ /// <T as SampleUniform>::Sampler::sample_single(lb, ub, &mut rng)
+ /// }
+ /// ```
+ fn sample_single<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R) -> Self::X
+ where
+ B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized,
+ {
+ let uniform: Self = UniformSampler::new(low, high);
+ uniform.sample(rng)
+ }
+
+ /// Sample a single value uniformly from a range with inclusive lower bound
+ /// and inclusive upper bound `[low, high]`.
+ ///
+ /// By default this is implemented using
+ /// `UniformSampler::new_inclusive(low, high).sample(rng)`. However, for
+ /// some types more optimal implementations for single usage may be provided
+ /// via this method.
+ /// Results may not be identical.
+ fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R)
+ -> Self::X
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized
+ {
+ let uniform: Self = UniformSampler::new_inclusive(low, high);
+ uniform.sample(rng)
+ }
+}
+
+impl<X: SampleUniform> From<Range<X>> for Uniform<X> {
+ fn from(r: ::core::ops::Range<X>) -> Uniform<X> {
+ Uniform::new(r.start, r.end)
+ }
+}
+
+impl<X: SampleUniform> From<RangeInclusive<X>> for Uniform<X> {
+ fn from(r: ::core::ops::RangeInclusive<X>) -> Uniform<X> {
+ Uniform::new_inclusive(r.start(), r.end())
+ }
+}
+
+
+/// Helper trait similar to [`Borrow`] but implemented
+/// only for SampleUniform and references to SampleUniform in
+/// order to resolve ambiguity issues.
+///
+/// [`Borrow`]: std::borrow::Borrow
+pub trait SampleBorrow<Borrowed> {
+ /// Immutably borrows from an owned value. See [`Borrow::borrow`]
+ ///
+ /// [`Borrow::borrow`]: std::borrow::Borrow::borrow
+ fn borrow(&self) -> &Borrowed;
+}
+impl<Borrowed> SampleBorrow<Borrowed> for Borrowed
+where Borrowed: SampleUniform
+{
+ #[inline(always)]
+ fn borrow(&self) -> &Borrowed {
+ self
+ }
+}
+impl<'a, Borrowed> SampleBorrow<Borrowed> for &'a Borrowed
+where Borrowed: SampleUniform
+{
+ #[inline(always)]
+ fn borrow(&self) -> &Borrowed {
+ *self
+ }
+}
+
+/// Range that supports generating a single sample efficiently.
+///
+/// Any type implementing this trait can be used to specify the sampled range
+/// for `Rng::gen_range`.
+pub trait SampleRange<T> {
+ /// Generate a sample from the given range.
+ fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T;
+
+ /// Check whether the range is empty.
+ fn is_empty(&self) -> bool;
+}
+
+impl<T: SampleUniform + PartialOrd> SampleRange<T> for Range<T> {
+ #[inline]
+ fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T {
+ T::Sampler::sample_single(self.start, self.end, rng)
+ }
+
+ #[inline]
+ fn is_empty(&self) -> bool {
+ !(self.start < self.end)
+ }
+}
+
+impl<T: SampleUniform + PartialOrd> SampleRange<T> for RangeInclusive<T> {
+ #[inline]
+ fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T {
+ T::Sampler::sample_single_inclusive(self.start(), self.end(), rng)
+ }
+
+ #[inline]
+ fn is_empty(&self) -> bool {
+ !(self.start() <= self.end())
+ }
+}
+
+
+////////////////////////////////////////////////////////////////////////////////
+
+// What follows are all back-ends.
+
+
+/// The back-end implementing [`UniformSampler`] for integer types.
+///
+/// Unless you are implementing [`UniformSampler`] for your own type, this type
+/// should not be used directly, use [`Uniform`] instead.
+///
+/// # Implementation notes
+///
+/// For simplicity, we use the same generic struct `UniformInt<X>` for all
+/// integer types `X`. This gives us only one field type, `X`; to store unsigned
+/// values of this size, we take use the fact that these conversions are no-ops.
+///
+/// For a closed range, the number of possible numbers we should generate is
+/// `range = (high - low + 1)`. To avoid bias, we must ensure that the size of
+/// our sample space, `zone`, is a multiple of `range`; other values must be
+/// rejected (by replacing with a new random sample).
+///
+/// As a special case, we use `range = 0` to represent the full range of the
+/// result type (i.e. for `new_inclusive($ty::MIN, $ty::MAX)`).
+///
+/// The optimum `zone` is the largest product of `range` which fits in our
+/// (unsigned) target type. We calculate this by calculating how many numbers we
+/// must reject: `reject = (MAX + 1) % range = (MAX - range + 1) % range`. Any (large)
+/// product of `range` will suffice, thus in `sample_single` we multiply by a
+/// power of 2 via bit-shifting (faster but may cause more rejections).
+///
+/// The smallest integer PRNGs generate is `u32`. For 8- and 16-bit outputs we
+/// use `u32` for our `zone` and samples (because it's not slower and because
+/// it reduces the chance of having to reject a sample). In this case we cannot
+/// store `zone` in the target type since it is too large, however we know
+/// `ints_to_reject < range <= $unsigned::MAX`.
+///
+/// An alternative to using a modulus is widening multiply: After a widening
+/// multiply by `range`, the result is in the high word. Then comparing the low
+/// word against `zone` makes sure our distribution is uniform.
+#[derive(Clone, Copy, Debug, PartialEq)]
+#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
+pub struct UniformInt<X> {
+ low: X,
+ range: X,
+ z: X, // either ints_to_reject or zone depending on implementation
+}
+
+macro_rules! uniform_int_impl {
+ ($ty:ty, $unsigned:ident, $u_large:ident) => {
+ impl SampleUniform for $ty {
+ type Sampler = UniformInt<$ty>;
+ }
+
+ impl UniformSampler for UniformInt<$ty> {
+ // We play free and fast with unsigned vs signed here
+ // (when $ty is signed), but that's fine, since the
+ // contract of this macro is for $ty and $unsigned to be
+ // "bit-equal", so casting between them is a no-op.
+
+ type X = $ty;
+
+ #[inline] // if the range is constant, this helps LLVM to do the
+ // calculations at compile-time.
+ fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where
+ B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized,
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(low < high, "Uniform::new called with `low >= high`");
+ UniformSampler::new_inclusive(low, high - 1)
+ }
+
+ #[inline] // if the range is constant, this helps LLVM to do the
+ // calculations at compile-time.
+ fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where
+ B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized,
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(
+ low <= high,
+ "Uniform::new_inclusive called with `low > high`"
+ );
+ let unsigned_max = ::core::$u_large::MAX;
+
+ let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned;
+ let ints_to_reject = if range > 0 {
+ let range = $u_large::from(range);
+ (unsigned_max - range + 1) % range
+ } else {
+ 0
+ };
+
+ UniformInt {
+ low,
+ // These are really $unsigned values, but store as $ty:
+ range: range as $ty,
+ z: ints_to_reject as $unsigned as $ty,
+ }
+ }
+
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
+ let range = self.range as $unsigned as $u_large;
+ if range > 0 {
+ let unsigned_max = ::core::$u_large::MAX;
+ let zone = unsigned_max - (self.z as $unsigned as $u_large);
+ loop {
+ let v: $u_large = rng.gen();
+ let (hi, lo) = v.wmul(range);
+ if lo <= zone {
+ return self.low.wrapping_add(hi as $ty);
+ }
+ }
+ } else {
+ // Sample from the entire integer range.
+ rng.gen()
+ }
+ }
+
+ #[inline]
+ fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
+ where
+ B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized,
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(low < high, "UniformSampler::sample_single: low >= high");
+ Self::sample_single_inclusive(low, high - 1, rng)
+ }
+
+ #[inline]
+ fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
+ where
+ B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized,
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(low <= high, "UniformSampler::sample_single_inclusive: low > high");
+ let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned as $u_large;
+ // If the above resulted in wrap-around to 0, the range is $ty::MIN..=$ty::MAX,
+ // and any integer will do.
+ if range == 0 {
+ return rng.gen();
+ }
+
+ let zone = if ::core::$unsigned::MAX <= ::core::u16::MAX as $unsigned {
+ // Using a modulus is faster than the approximation for
+ // i8 and i16. I suppose we trade the cost of one
+ // modulus for near-perfect branch prediction.
+ let unsigned_max: $u_large = ::core::$u_large::MAX;
+ let ints_to_reject = (unsigned_max - range + 1) % range;
+ unsigned_max - ints_to_reject
+ } else {
+ // conservative but fast approximation. `- 1` is necessary to allow the
+ // same comparison without bias.
+ (range << range.leading_zeros()).wrapping_sub(1)
+ };
+
+ loop {
+ let v: $u_large = rng.gen();
+ let (hi, lo) = v.wmul(range);
+ if lo <= zone {
+ return low.wrapping_add(hi as $ty);
+ }
+ }
+ }
+ }
+ };
+}
+
+uniform_int_impl! { i8, u8, u32 }
+uniform_int_impl! { i16, u16, u32 }
+uniform_int_impl! { i32, u32, u32 }
+uniform_int_impl! { i64, u64, u64 }
+uniform_int_impl! { i128, u128, u128 }
+uniform_int_impl! { isize, usize, usize }
+uniform_int_impl! { u8, u8, u32 }
+uniform_int_impl! { u16, u16, u32 }
+uniform_int_impl! { u32, u32, u32 }
+uniform_int_impl! { u64, u64, u64 }
+uniform_int_impl! { usize, usize, usize }
+uniform_int_impl! { u128, u128, u128 }
+
+#[cfg(feature = "simd_support")]
+macro_rules! uniform_simd_int_impl {
+ ($ty:ident, $unsigned:ident, $u_scalar:ident) => {
+ // The "pick the largest zone that can fit in an `u32`" optimization
+ // is less useful here. Multiple lanes complicate things, we don't
+ // know the PRNG's minimal output size, and casting to a larger vector
+ // is generally a bad idea for SIMD performance. The user can still
+ // implement it manually.
+
+ // TODO: look into `Uniform::<u32x4>::new(0u32, 100)` functionality
+ // perhaps `impl SampleUniform for $u_scalar`?
+ impl SampleUniform for $ty {
+ type Sampler = UniformInt<$ty>;
+ }
+
+ impl UniformSampler for UniformInt<$ty> {
+ type X = $ty;
+
+ #[inline] // if the range is constant, this helps LLVM to do the
+ // calculations at compile-time.
+ fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(low.lt(high).all(), "Uniform::new called with `low >= high`");
+ UniformSampler::new_inclusive(low, high - 1)
+ }
+
+ #[inline] // if the range is constant, this helps LLVM to do the
+ // calculations at compile-time.
+ fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(low.le(high).all(),
+ "Uniform::new_inclusive called with `low > high`");
+ let unsigned_max = ::core::$u_scalar::MAX;
+
+ // NOTE: these may need to be replaced with explicitly
+ // wrapping operations if `packed_simd` changes
+ let range: $unsigned = ((high - low) + 1).cast();
+ // `% 0` will panic at runtime.
+ let not_full_range = range.gt($unsigned::splat(0));
+ // replacing 0 with `unsigned_max` allows a faster `select`
+ // with bitwise OR
+ let modulo = not_full_range.select(range, $unsigned::splat(unsigned_max));
+ // wrapping addition
+ let ints_to_reject = (unsigned_max - range + 1) % modulo;
+ // When `range` is 0, `lo` of `v.wmul(range)` will always be
+ // zero which means only one sample is needed.
+ let zone = unsigned_max - ints_to_reject;
+
+ UniformInt {
+ low,
+ // These are really $unsigned values, but store as $ty:
+ range: range.cast(),
+ z: zone.cast(),
+ }
+ }
+
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
+ let range: $unsigned = self.range.cast();
+ let zone: $unsigned = self.z.cast();
+
+ // This might seem very slow, generating a whole new
+ // SIMD vector for every sample rejection. For most uses
+ // though, the chance of rejection is small and provides good
+ // general performance. With multiple lanes, that chance is
+ // multiplied. To mitigate this, we replace only the lanes of
+ // the vector which fail, iteratively reducing the chance of
+ // rejection. The replacement method does however add a little
+ // overhead. Benchmarking or calculating probabilities might
+ // reveal contexts where this replacement method is slower.
+ let mut v: $unsigned = rng.gen();
+ loop {
+ let (hi, lo) = v.wmul(range);
+ let mask = lo.le(zone);
+ if mask.all() {
+ let hi: $ty = hi.cast();
+ // wrapping addition
+ let result = self.low + hi;
+ // `select` here compiles to a blend operation
+ // When `range.eq(0).none()` the compare and blend
+ // operations are avoided.
+ let v: $ty = v.cast();
+ return range.gt($unsigned::splat(0)).select(result, v);
+ }
+ // Replace only the failing lanes
+ v = mask.select(v, rng.gen());
+ }
+ }
+ }
+ };
+
+ // bulk implementation
+ ($(($unsigned:ident, $signed:ident),)+ $u_scalar:ident) => {
+ $(
+ uniform_simd_int_impl!($unsigned, $unsigned, $u_scalar);
+ uniform_simd_int_impl!($signed, $unsigned, $u_scalar);
+ )+
+ };
+}
+
+#[cfg(feature = "simd_support")]
+uniform_simd_int_impl! {
+ (u64x2, i64x2),
+ (u64x4, i64x4),
+ (u64x8, i64x8),
+ u64
+}
+
+#[cfg(feature = "simd_support")]
+uniform_simd_int_impl! {
+ (u32x2, i32x2),
+ (u32x4, i32x4),
+ (u32x8, i32x8),
+ (u32x16, i32x16),
+ u32
+}
+
+#[cfg(feature = "simd_support")]
+uniform_simd_int_impl! {
+ (u16x2, i16x2),
+ (u16x4, i16x4),
+ (u16x8, i16x8),
+ (u16x16, i16x16),
+ (u16x32, i16x32),
+ u16
+}
+
+#[cfg(feature = "simd_support")]
+uniform_simd_int_impl! {
+ (u8x2, i8x2),
+ (u8x4, i8x4),
+ (u8x8, i8x8),
+ (u8x16, i8x16),
+ (u8x32, i8x32),
+ (u8x64, i8x64),
+ u8
+}
+
+impl SampleUniform for char {
+ type Sampler = UniformChar;
+}
+
+/// The back-end implementing [`UniformSampler`] for `char`.
+///
+/// Unless you are implementing [`UniformSampler`] for your own type, this type
+/// should not be used directly, use [`Uniform`] instead.
+///
+/// This differs from integer range sampling since the range `0xD800..=0xDFFF`
+/// are used for surrogate pairs in UCS and UTF-16, and consequently are not
+/// valid Unicode code points. We must therefore avoid sampling values in this
+/// range.
+#[derive(Clone, Copy, Debug)]
+#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
+pub struct UniformChar {
+ sampler: UniformInt<u32>,
+}
+
+/// UTF-16 surrogate range start
+const CHAR_SURROGATE_START: u32 = 0xD800;
+/// UTF-16 surrogate range size
+const CHAR_SURROGATE_LEN: u32 = 0xE000 - CHAR_SURROGATE_START;
+
+/// Convert `char` to compressed `u32`
+fn char_to_comp_u32(c: char) -> u32 {
+ match c as u32 {
+ c if c >= CHAR_SURROGATE_START => c - CHAR_SURROGATE_LEN,
+ c => c,
+ }
+}
+
+impl UniformSampler for UniformChar {
+ type X = char;
+
+ #[inline] // if the range is constant, this helps LLVM to do the
+ // calculations at compile-time.
+ fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where
+ B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized,
+ {
+ let low = char_to_comp_u32(*low_b.borrow());
+ let high = char_to_comp_u32(*high_b.borrow());
+ let sampler = UniformInt::<u32>::new(low, high);
+ UniformChar { sampler }
+ }
+
+ #[inline] // if the range is constant, this helps LLVM to do the
+ // calculations at compile-time.
+ fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where
+ B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized,
+ {
+ let low = char_to_comp_u32(*low_b.borrow());
+ let high = char_to_comp_u32(*high_b.borrow());
+ let sampler = UniformInt::<u32>::new_inclusive(low, high);
+ UniformChar { sampler }
+ }
+
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
+ let mut x = self.sampler.sample(rng);
+ if x >= CHAR_SURROGATE_START {
+ x += CHAR_SURROGATE_LEN;
+ }
+ // SAFETY: x must not be in surrogate range or greater than char::MAX.
+ // This relies on range constructors which accept char arguments.
+ // Validity of input char values is assumed.
+ unsafe { core::char::from_u32_unchecked(x) }
+ }
+}
+
+/// The back-end implementing [`UniformSampler`] for floating-point types.
+///
+/// Unless you are implementing [`UniformSampler`] for your own type, this type
+/// should not be used directly, use [`Uniform`] instead.
+///
+/// # Implementation notes
+///
+/// Instead of generating a float in the `[0, 1)` range using [`Standard`], the
+/// `UniformFloat` implementation converts the output of an PRNG itself. This
+/// way one or two steps can be optimized out.
+///
+/// The floats are first converted to a value in the `[1, 2)` interval using a
+/// transmute-based method, and then mapped to the expected range with a
+/// multiply and addition. Values produced this way have what equals 23 bits of
+/// random digits for an `f32`, and 52 for an `f64`.
+///
+/// [`new`]: UniformSampler::new
+/// [`new_inclusive`]: UniformSampler::new_inclusive
+/// [`Standard`]: crate::distributions::Standard
+#[derive(Clone, Copy, Debug, PartialEq)]
+#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
+pub struct UniformFloat<X> {
+ low: X,
+ scale: X,
+}
+
+macro_rules! uniform_float_impl {
+ ($ty:ty, $uty:ident, $f_scalar:ident, $u_scalar:ident, $bits_to_discard:expr) => {
+ impl SampleUniform for $ty {
+ type Sampler = UniformFloat<$ty>;
+ }
+
+ impl UniformSampler for UniformFloat<$ty> {
+ type X = $ty;
+
+ fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where
+ B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized,
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ debug_assert!(
+ low.all_finite(),
+ "Uniform::new called with `low` non-finite."
+ );
+ debug_assert!(
+ high.all_finite(),
+ "Uniform::new called with `high` non-finite."
+ );
+ assert!(low.all_lt(high), "Uniform::new called with `low >= high`");
+ let max_rand = <$ty>::splat(
+ (::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0,
+ );
+
+ let mut scale = high - low;
+ assert!(scale.all_finite(), "Uniform::new: range overflow");
+
+ loop {
+ let mask = (scale * max_rand + low).ge_mask(high);
+ if mask.none() {
+ break;
+ }
+ scale = scale.decrease_masked(mask);
+ }
+
+ debug_assert!(<$ty>::splat(0.0).all_le(scale));
+
+ UniformFloat { low, scale }
+ }
+
+ fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where
+ B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized,
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ debug_assert!(
+ low.all_finite(),
+ "Uniform::new_inclusive called with `low` non-finite."
+ );
+ debug_assert!(
+ high.all_finite(),
+ "Uniform::new_inclusive called with `high` non-finite."
+ );
+ assert!(
+ low.all_le(high),
+ "Uniform::new_inclusive called with `low > high`"
+ );
+ let max_rand = <$ty>::splat(
+ (::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0,
+ );
+
+ let mut scale = (high - low) / max_rand;
+ assert!(scale.all_finite(), "Uniform::new_inclusive: range overflow");
+
+ loop {
+ let mask = (scale * max_rand + low).gt_mask(high);
+ if mask.none() {
+ break;
+ }
+ scale = scale.decrease_masked(mask);
+ }
+
+ debug_assert!(<$ty>::splat(0.0).all_le(scale));
+
+ UniformFloat { low, scale }
+ }
+
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
+ // Generate a value in the range [1, 2)
+ let value1_2 = (rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0);
+
+ // Get a value in the range [0, 1) in order to avoid
+ // overflowing into infinity when multiplying with scale
+ let value0_1 = value1_2 - 1.0;
+
+ // We don't use `f64::mul_add`, because it is not available with
+ // `no_std`. Furthermore, it is slower for some targets (but
+ // faster for others). However, the order of multiplication and
+ // addition is important, because on some platforms (e.g. ARM)
+ // it will be optimized to a single (non-FMA) instruction.
+ value0_1 * self.scale + self.low
+ }
+
+ #[inline]
+ fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
+ where
+ B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized,
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ debug_assert!(
+ low.all_finite(),
+ "UniformSampler::sample_single called with `low` non-finite."
+ );
+ debug_assert!(
+ high.all_finite(),
+ "UniformSampler::sample_single called with `high` non-finite."
+ );
+ assert!(
+ low.all_lt(high),
+ "UniformSampler::sample_single: low >= high"
+ );
+ let mut scale = high - low;
+ assert!(scale.all_finite(), "UniformSampler::sample_single: range overflow");
+
+ loop {
+ // Generate a value in the range [1, 2)
+ let value1_2 =
+ (rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0);
+
+ // Get a value in the range [0, 1) in order to avoid
+ // overflowing into infinity when multiplying with scale
+ let value0_1 = value1_2 - 1.0;
+
+ // Doing multiply before addition allows some architectures
+ // to use a single instruction.
+ let res = value0_1 * scale + low;
+
+ debug_assert!(low.all_le(res) || !scale.all_finite());
+ if res.all_lt(high) {
+ return res;
+ }
+
+ // This handles a number of edge cases.
+ // * `low` or `high` is NaN. In this case `scale` and
+ // `res` are going to end up as NaN.
+ // * `low` is negative infinity and `high` is finite.
+ // `scale` is going to be infinite and `res` will be
+ // NaN.
+ // * `high` is positive infinity and `low` is finite.
+ // `scale` is going to be infinite and `res` will
+ // be infinite or NaN (if value0_1 is 0).
+ // * `low` is negative infinity and `high` is positive
+ // infinity. `scale` will be infinite and `res` will
+ // be NaN.
+ // * `low` and `high` are finite, but `high - low`
+ // overflows to infinite. `scale` will be infinite
+ // and `res` will be infinite or NaN (if value0_1 is 0).
+ // So if `high` or `low` are non-finite, we are guaranteed
+ // to fail the `res < high` check above and end up here.
+ //
+ // While we technically should check for non-finite `low`
+ // and `high` before entering the loop, by doing the checks
+ // here instead, we allow the common case to avoid these
+ // checks. But we are still guaranteed that if `low` or
+ // `high` are non-finite we'll end up here and can do the
+ // appropriate checks.
+ //
+ // Likewise `high - low` overflowing to infinity is also
+ // rare, so handle it here after the common case.
+ let mask = !scale.finite_mask();
+ if mask.any() {
+ assert!(
+ low.all_finite() && high.all_finite(),
+ "Uniform::sample_single: low and high must be finite"
+ );
+ scale = scale.decrease_masked(mask);
+ }
+ }
+ }
+ }
+ };
+}
+
+uniform_float_impl! { f32, u32, f32, u32, 32 - 23 }
+uniform_float_impl! { f64, u64, f64, u64, 64 - 52 }
+
+#[cfg(feature = "simd_support")]
+uniform_float_impl! { f32x2, u32x2, f32, u32, 32 - 23 }
+#[cfg(feature = "simd_support")]
+uniform_float_impl! { f32x4, u32x4, f32, u32, 32 - 23 }
+#[cfg(feature = "simd_support")]
+uniform_float_impl! { f32x8, u32x8, f32, u32, 32 - 23 }
+#[cfg(feature = "simd_support")]
+uniform_float_impl! { f32x16, u32x16, f32, u32, 32 - 23 }
+
+#[cfg(feature = "simd_support")]
+uniform_float_impl! { f64x2, u64x2, f64, u64, 64 - 52 }
+#[cfg(feature = "simd_support")]
+uniform_float_impl! { f64x4, u64x4, f64, u64, 64 - 52 }
+#[cfg(feature = "simd_support")]
+uniform_float_impl! { f64x8, u64x8, f64, u64, 64 - 52 }
+
+
+/// The back-end implementing [`UniformSampler`] for `Duration`.
+///
+/// Unless you are implementing [`UniformSampler`] for your own types, this type
+/// should not be used directly, use [`Uniform`] instead.
+#[derive(Clone, Copy, Debug)]
+#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
+pub struct UniformDuration {
+ mode: UniformDurationMode,
+ offset: u32,
+}
+
+#[derive(Debug, Copy, Clone)]
+#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
+enum UniformDurationMode {
+ Small {
+ secs: u64,
+ nanos: Uniform<u32>,
+ },
+ Medium {
+ nanos: Uniform<u64>,
+ },
+ Large {
+ max_secs: u64,
+ max_nanos: u32,
+ secs: Uniform<u64>,
+ },
+}
+
+impl SampleUniform for Duration {
+ type Sampler = UniformDuration;
+}
+
+impl UniformSampler for UniformDuration {
+ type X = Duration;
+
+ #[inline]
+ fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where
+ B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized,
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(low < high, "Uniform::new called with `low >= high`");
+ UniformDuration::new_inclusive(low, high - Duration::new(0, 1))
+ }
+
+ #[inline]
+ fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where
+ B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized,
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(
+ low <= high,
+ "Uniform::new_inclusive called with `low > high`"
+ );
+
+ let low_s = low.as_secs();
+ let low_n = low.subsec_nanos();
+ let mut high_s = high.as_secs();
+ let mut high_n = high.subsec_nanos();
+
+ if high_n < low_n {
+ high_s -= 1;
+ high_n += 1_000_000_000;
+ }
+
+ let mode = if low_s == high_s {
+ UniformDurationMode::Small {
+ secs: low_s,
+ nanos: Uniform::new_inclusive(low_n, high_n),
+ }
+ } else {
+ let max = high_s
+ .checked_mul(1_000_000_000)
+ .and_then(|n| n.checked_add(u64::from(high_n)));
+
+ if let Some(higher_bound) = max {
+ let lower_bound = low_s * 1_000_000_000 + u64::from(low_n);
+ UniformDurationMode::Medium {
+ nanos: Uniform::new_inclusive(lower_bound, higher_bound),
+ }
+ } else {
+ // An offset is applied to simplify generation of nanoseconds
+ let max_nanos = high_n - low_n;
+ UniformDurationMode::Large {
+ max_secs: high_s,
+ max_nanos,
+ secs: Uniform::new_inclusive(low_s, high_s),
+ }
+ }
+ };
+ UniformDuration {
+ mode,
+ offset: low_n,
+ }
+ }
+
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Duration {
+ match self.mode {
+ UniformDurationMode::Small { secs, nanos } => {
+ let n = nanos.sample(rng);
+ Duration::new(secs, n)
+ }
+ UniformDurationMode::Medium { nanos } => {
+ let nanos = nanos.sample(rng);
+ Duration::new(nanos / 1_000_000_000, (nanos % 1_000_000_000) as u32)
+ }
+ UniformDurationMode::Large {
+ max_secs,
+ max_nanos,
+ secs,
+ } => {
+ // constant folding means this is at least as fast as `Rng::sample(Range)`
+ let nano_range = Uniform::new(0, 1_000_000_000);
+ loop {
+ let s = secs.sample(rng);
+ let n = nano_range.sample(rng);
+ if !(s == max_secs && n > max_nanos) {
+ let sum = n + self.offset;
+ break Duration::new(s, sum);
+ }
+ }
+ }
+ }
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use crate::rngs::mock::StepRng;
+
+ #[test]
+ #[cfg(feature = "serde1")]
+ fn test_serialization_uniform_duration() {
+ let distr = UniformDuration::new(Duration::from_secs(10), Duration::from_secs(60));
+ let de_distr: UniformDuration = bincode::deserialize(&bincode::serialize(&distr).unwrap()).unwrap();
+ assert_eq!(
+ distr.offset, de_distr.offset
+ );
+ match (distr.mode, de_distr.mode) {
+ (UniformDurationMode::Small {secs: a_secs, nanos: a_nanos}, UniformDurationMode::Small {secs, nanos}) => {
+ assert_eq!(a_secs, secs);
+
+ assert_eq!(a_nanos.0.low, nanos.0.low);
+ assert_eq!(a_nanos.0.range, nanos.0.range);
+ assert_eq!(a_nanos.0.z, nanos.0.z);
+ }
+ (UniformDurationMode::Medium {nanos: a_nanos} , UniformDurationMode::Medium {nanos}) => {
+ assert_eq!(a_nanos.0.low, nanos.0.low);
+ assert_eq!(a_nanos.0.range, nanos.0.range);
+ assert_eq!(a_nanos.0.z, nanos.0.z);
+ }
+ (UniformDurationMode::Large {max_secs:a_max_secs, max_nanos:a_max_nanos, secs:a_secs}, UniformDurationMode::Large {max_secs, max_nanos, secs} ) => {
+ assert_eq!(a_max_secs, max_secs);
+ assert_eq!(a_max_nanos, max_nanos);
+
+ assert_eq!(a_secs.0.low, secs.0.low);
+ assert_eq!(a_secs.0.range, secs.0.range);
+ assert_eq!(a_secs.0.z, secs.0.z);
+ }
+ _ => panic!("`UniformDurationMode` was not serialized/deserialized correctly")
+ }
+ }
+
+ #[test]
+ #[cfg(feature = "serde1")]
+ fn test_uniform_serialization() {
+ let unit_box: Uniform<i32> = Uniform::new(-1, 1);
+ let de_unit_box: Uniform<i32> = bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap();
+
+ assert_eq!(unit_box.0.low, de_unit_box.0.low);
+ assert_eq!(unit_box.0.range, de_unit_box.0.range);
+ assert_eq!(unit_box.0.z, de_unit_box.0.z);
+
+ let unit_box: Uniform<f32> = Uniform::new(-1., 1.);
+ let de_unit_box: Uniform<f32> = bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap();
+
+ assert_eq!(unit_box.0.low, de_unit_box.0.low);
+ assert_eq!(unit_box.0.scale, de_unit_box.0.scale);
+ }
+
+ #[should_panic]
+ #[test]
+ fn test_uniform_bad_limits_equal_int() {
+ Uniform::new(10, 10);
+ }
+
+ #[test]
+ fn test_uniform_good_limits_equal_int() {
+ let mut rng = crate::test::rng(804);
+ let dist = Uniform::new_inclusive(10, 10);
+ for _ in 0..20 {
+ assert_eq!(rng.sample(dist), 10);
+ }
+ }
+
+ #[should_panic]
+ #[test]
+ fn test_uniform_bad_limits_flipped_int() {
+ Uniform::new(10, 5);
+ }
+
+ #[test]
+ #[cfg_attr(miri, ignore)] // Miri is too slow
+ fn test_integers() {
+ use core::{i128, u128};
+ use core::{i16, i32, i64, i8, isize};
+ use core::{u16, u32, u64, u8, usize};
+
+ let mut rng = crate::test::rng(251);
+ macro_rules! t {
+ ($ty:ident, $v:expr, $le:expr, $lt:expr) => {{
+ for &(low, high) in $v.iter() {
+ let my_uniform = Uniform::new(low, high);
+ for _ in 0..1000 {
+ let v: $ty = rng.sample(my_uniform);
+ assert!($le(low, v) && $lt(v, high));
+ }
+
+ let my_uniform = Uniform::new_inclusive(low, high);
+ for _ in 0..1000 {
+ let v: $ty = rng.sample(my_uniform);
+ assert!($le(low, v) && $le(v, high));
+ }
+
+ let my_uniform = Uniform::new(&low, high);
+ for _ in 0..1000 {
+ let v: $ty = rng.sample(my_uniform);
+ assert!($le(low, v) && $lt(v, high));
+ }
+
+ let my_uniform = Uniform::new_inclusive(&low, &high);
+ for _ in 0..1000 {
+ let v: $ty = rng.sample(my_uniform);
+ assert!($le(low, v) && $le(v, high));
+ }
+
+ for _ in 0..1000 {
+ let v = <$ty as SampleUniform>::Sampler::sample_single(low, high, &mut rng);
+ assert!($le(low, v) && $lt(v, high));
+ }
+
+ for _ in 0..1000 {
+ let v = <$ty as SampleUniform>::Sampler::sample_single_inclusive(low, high, &mut rng);
+ assert!($le(low, v) && $le(v, high));
+ }
+ }
+ }};
+
+ // scalar bulk
+ ($($ty:ident),*) => {{
+ $(t!(
+ $ty,
+ [(0, 10), (10, 127), ($ty::MIN, $ty::MAX)],
+ |x, y| x <= y,
+ |x, y| x < y
+ );)*
+ }};
+
+ // simd bulk
+ ($($ty:ident),* => $scalar:ident) => {{
+ $(t!(
+ $ty,
+ [
+ ($ty::splat(0), $ty::splat(10)),
+ ($ty::splat(10), $ty::splat(127)),
+ ($ty::splat($scalar::MIN), $ty::splat($scalar::MAX)),
+ ],
+ |x: $ty, y| x.le(y).all(),
+ |x: $ty, y| x.lt(y).all()
+ );)*
+ }};
+ }
+ t!(i8, i16, i32, i64, isize, u8, u16, u32, u64, usize, i128, u128);
+
+ #[cfg(feature = "simd_support")]
+ {
+ t!(u8x2, u8x4, u8x8, u8x16, u8x32, u8x64 => u8);
+ t!(i8x2, i8x4, i8x8, i8x16, i8x32, i8x64 => i8);
+ t!(u16x2, u16x4, u16x8, u16x16, u16x32 => u16);
+ t!(i16x2, i16x4, i16x8, i16x16, i16x32 => i16);
+ t!(u32x2, u32x4, u32x8, u32x16 => u32);
+ t!(i32x2, i32x4, i32x8, i32x16 => i32);
+ t!(u64x2, u64x4, u64x8 => u64);
+ t!(i64x2, i64x4, i64x8 => i64);
+ }
+ }
+
+ #[test]
+ #[cfg_attr(miri, ignore)] // Miri is too slow
+ fn test_char() {
+ let mut rng = crate::test::rng(891);
+ let mut max = core::char::from_u32(0).unwrap();
+ for _ in 0..100 {
+ let c = rng.gen_range('A'..='Z');
+ assert!(('A'..='Z').contains(&c));
+ max = max.max(c);
+ }
+ assert_eq!(max, 'Z');
+ let d = Uniform::new(
+ core::char::from_u32(0xD7F0).unwrap(),
+ core::char::from_u32(0xE010).unwrap(),
+ );
+ for _ in 0..100 {
+ let c = d.sample(&mut rng);
+ assert!((c as u32) < 0xD800 || (c as u32) > 0xDFFF);
+ }
+ }
+
+ #[test]
+ #[cfg_attr(miri, ignore)] // Miri is too slow
+ fn test_floats() {
+ let mut rng = crate::test::rng(252);
+ let mut zero_rng = StepRng::new(0, 0);
+ let mut max_rng = StepRng::new(0xffff_ffff_ffff_ffff, 0);
+ macro_rules! t {
+ ($ty:ty, $f_scalar:ident, $bits_shifted:expr) => {{
+ let v: &[($f_scalar, $f_scalar)] = &[
+ (0.0, 100.0),
+ (-1e35, -1e25),
+ (1e-35, 1e-25),
+ (-1e35, 1e35),
+ (<$f_scalar>::from_bits(0), <$f_scalar>::from_bits(3)),
+ (-<$f_scalar>::from_bits(10), -<$f_scalar>::from_bits(1)),
+ (-<$f_scalar>::from_bits(5), 0.0),
+ (-<$f_scalar>::from_bits(7), -0.0),
+ (0.1 * ::core::$f_scalar::MAX, ::core::$f_scalar::MAX),
+ (-::core::$f_scalar::MAX * 0.2, ::core::$f_scalar::MAX * 0.7),
+ ];
+ for &(low_scalar, high_scalar) in v.iter() {
+ for lane in 0..<$ty>::lanes() {
+ let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar);
+ let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar);
+ let my_uniform = Uniform::new(low, high);
+ let my_incl_uniform = Uniform::new_inclusive(low, high);
+ for _ in 0..100 {
+ let v = rng.sample(my_uniform).extract(lane);
+ assert!(low_scalar <= v && v < high_scalar);
+ let v = rng.sample(my_incl_uniform).extract(lane);
+ assert!(low_scalar <= v && v <= high_scalar);
+ let v = <$ty as SampleUniform>::Sampler
+ ::sample_single(low, high, &mut rng).extract(lane);
+ assert!(low_scalar <= v && v < high_scalar);
+ }
+
+ assert_eq!(
+ rng.sample(Uniform::new_inclusive(low, low)).extract(lane),
+ low_scalar
+ );
+
+ assert_eq!(zero_rng.sample(my_uniform).extract(lane), low_scalar);
+ assert_eq!(zero_rng.sample(my_incl_uniform).extract(lane), low_scalar);
+ assert_eq!(<$ty as SampleUniform>::Sampler
+ ::sample_single(low, high, &mut zero_rng)
+ .extract(lane), low_scalar);
+ assert!(max_rng.sample(my_uniform).extract(lane) < high_scalar);
+ assert!(max_rng.sample(my_incl_uniform).extract(lane) <= high_scalar);
+
+ // Don't run this test for really tiny differences between high and low
+ // since for those rounding might result in selecting high for a very
+ // long time.
+ if (high_scalar - low_scalar) > 0.0001 {
+ let mut lowering_max_rng = StepRng::new(
+ 0xffff_ffff_ffff_ffff,
+ (-1i64 << $bits_shifted) as u64,
+ );
+ assert!(
+ <$ty as SampleUniform>::Sampler
+ ::sample_single(low, high, &mut lowering_max_rng)
+ .extract(lane) < high_scalar
+ );
+ }
+ }
+ }
+
+ assert_eq!(
+ rng.sample(Uniform::new_inclusive(
+ ::core::$f_scalar::MAX,
+ ::core::$f_scalar::MAX
+ )),
+ ::core::$f_scalar::MAX
+ );
+ assert_eq!(
+ rng.sample(Uniform::new_inclusive(
+ -::core::$f_scalar::MAX,
+ -::core::$f_scalar::MAX
+ )),
+ -::core::$f_scalar::MAX
+ );
+ }};
+ }
+
+ t!(f32, f32, 32 - 23);
+ t!(f64, f64, 64 - 52);
+ #[cfg(feature = "simd_support")]
+ {
+ t!(f32x2, f32, 32 - 23);
+ t!(f32x4, f32, 32 - 23);
+ t!(f32x8, f32, 32 - 23);
+ t!(f32x16, f32, 32 - 23);
+ t!(f64x2, f64, 64 - 52);
+ t!(f64x4, f64, 64 - 52);
+ t!(f64x8, f64, 64 - 52);
+ }
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_float_overflow() {
+ let _ = Uniform::from(::core::f64::MIN..::core::f64::MAX);
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_float_overflow_single() {
+ let mut rng = crate::test::rng(252);
+ rng.gen_range(::core::f64::MIN..::core::f64::MAX);
+ }
+
+ #[test]
+ #[cfg(all(
+ feature = "std",
+ not(target_arch = "wasm32"),
+ not(target_arch = "asmjs")
+ ))]
+ fn test_float_assertions() {
+ use super::SampleUniform;
+ use std::panic::catch_unwind;
+ fn range<T: SampleUniform>(low: T, high: T) {
+ let mut rng = crate::test::rng(253);
+ T::Sampler::sample_single(low, high, &mut rng);
+ }
+
+ macro_rules! t {
+ ($ty:ident, $f_scalar:ident) => {{
+ let v: &[($f_scalar, $f_scalar)] = &[
+ (::std::$f_scalar::NAN, 0.0),
+ (1.0, ::std::$f_scalar::NAN),
+ (::std::$f_scalar::NAN, ::std::$f_scalar::NAN),
+ (1.0, 0.5),
+ (::std::$f_scalar::MAX, -::std::$f_scalar::MAX),
+ (::std::$f_scalar::INFINITY, ::std::$f_scalar::INFINITY),
+ (
+ ::std::$f_scalar::NEG_INFINITY,
+ ::std::$f_scalar::NEG_INFINITY,
+ ),
+ (::std::$f_scalar::NEG_INFINITY, 5.0),
+ (5.0, ::std::$f_scalar::INFINITY),
+ (::std::$f_scalar::NAN, ::std::$f_scalar::INFINITY),
+ (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::NAN),
+ (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::INFINITY),
+ ];
+ for &(low_scalar, high_scalar) in v.iter() {
+ for lane in 0..<$ty>::lanes() {
+ let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar);
+ let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar);
+ assert!(catch_unwind(|| range(low, high)).is_err());
+ assert!(catch_unwind(|| Uniform::new(low, high)).is_err());
+ assert!(catch_unwind(|| Uniform::new_inclusive(low, high)).is_err());
+ assert!(catch_unwind(|| range(low, low)).is_err());
+ assert!(catch_unwind(|| Uniform::new(low, low)).is_err());
+ }
+ }
+ }};
+ }
+
+ t!(f32, f32);
+ t!(f64, f64);
+ #[cfg(feature = "simd_support")]
+ {
+ t!(f32x2, f32);
+ t!(f32x4, f32);
+ t!(f32x8, f32);
+ t!(f32x16, f32);
+ t!(f64x2, f64);
+ t!(f64x4, f64);
+ t!(f64x8, f64);
+ }
+ }
+
+
+ #[test]
+ #[cfg_attr(miri, ignore)] // Miri is too slow
+ fn test_durations() {
+ let mut rng = crate::test::rng(253);
+
+ let v = &[
+ (Duration::new(10, 50000), Duration::new(100, 1234)),
+ (Duration::new(0, 100), Duration::new(1, 50)),
+ (
+ Duration::new(0, 0),
+ Duration::new(u64::max_value(), 999_999_999),
+ ),
+ ];
+ for &(low, high) in v.iter() {
+ let my_uniform = Uniform::new(low, high);
+ for _ in 0..1000 {
+ let v = rng.sample(my_uniform);
+ assert!(low <= v && v < high);
+ }
+ }
+ }
+
+ #[test]
+ fn test_custom_uniform() {
+ use crate::distributions::uniform::{
+ SampleBorrow, SampleUniform, UniformFloat, UniformSampler,
+ };
+ #[derive(Clone, Copy, PartialEq, PartialOrd)]
+ struct MyF32 {
+ x: f32,
+ }
+ #[derive(Clone, Copy, Debug)]
+ struct UniformMyF32(UniformFloat<f32>);
+ impl UniformSampler for UniformMyF32 {
+ type X = MyF32;
+
+ fn new<B1, B2>(low: B1, high: B2) -> Self
+ where
+ B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized,
+ {
+ UniformMyF32(UniformFloat::<f32>::new(low.borrow().x, high.borrow().x))
+ }
+
+ fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
+ where
+ B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized,
+ {
+ UniformSampler::new(low, high)
+ }
+
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
+ MyF32 {
+ x: self.0.sample(rng),
+ }
+ }
+ }
+ impl SampleUniform for MyF32 {
+ type Sampler = UniformMyF32;
+ }
+
+ let (low, high) = (MyF32 { x: 17.0f32 }, MyF32 { x: 22.0f32 });
+ let uniform = Uniform::new(low, high);
+ let mut rng = crate::test::rng(804);
+ for _ in 0..100 {
+ let x: MyF32 = rng.sample(uniform);
+ assert!(low <= x && x < high);
+ }
+ }
+
+ #[test]
+ fn test_uniform_from_std_range() {
+ let r = Uniform::from(2u32..7);
+ assert_eq!(r.0.low, 2);
+ assert_eq!(r.0.range, 5);
+ let r = Uniform::from(2.0f64..7.0);
+ assert_eq!(r.0.low, 2.0);
+ assert_eq!(r.0.scale, 5.0);
+ }
+
+ #[test]
+ fn test_uniform_from_std_range_inclusive() {
+ let r = Uniform::from(2u32..=6);
+ assert_eq!(r.0.low, 2);
+ assert_eq!(r.0.range, 5);
+ let r = Uniform::from(2.0f64..=7.0);
+ assert_eq!(r.0.low, 2.0);
+ assert!(r.0.scale > 5.0);
+ assert!(r.0.scale < 5.0 + 1e-14);
+ }
+
+ #[test]
+ fn value_stability() {
+ fn test_samples<T: SampleUniform + Copy + core::fmt::Debug + PartialEq>(
+ lb: T, ub: T, expected_single: &[T], expected_multiple: &[T],
+ ) where Uniform<T>: Distribution<T> {
+ let mut rng = crate::test::rng(897);
+ let mut buf = [lb; 3];
+
+ for x in &mut buf {
+ *x = T::Sampler::sample_single(lb, ub, &mut rng);
+ }
+ assert_eq!(&buf, expected_single);
+
+ let distr = Uniform::new(lb, ub);
+ for x in &mut buf {
+ *x = rng.sample(&distr);
+ }
+ assert_eq!(&buf, expected_multiple);
+ }
+
+ // We test on a sub-set of types; possibly we should do more.
+ // TODO: SIMD types
+
+ test_samples(11u8, 219, &[17, 66, 214], &[181, 93, 165]);
+ test_samples(11u32, 219, &[17, 66, 214], &[181, 93, 165]);
+
+ test_samples(0f32, 1e-2f32, &[0.0003070104, 0.0026630748, 0.00979833], &[
+ 0.008194133,
+ 0.00398172,
+ 0.007428536,
+ ]);
+ test_samples(
+ -1e10f64,
+ 1e10f64,
+ &[-4673848682.871551, 6388267422.932352, 4857075081.198343],
+ &[1173375212.1808167, 1917642852.109581, 2365076174.3153973],
+ );
+
+ test_samples(
+ Duration::new(2, 0),
+ Duration::new(4, 0),
+ &[
+ Duration::new(2, 532615131),
+ Duration::new(3, 638826742),
+ Duration::new(3, 485707508),
+ ],
+ &[
+ Duration::new(3, 117337521),
+ Duration::new(3, 191764285),
+ Duration::new(3, 236507617),
+ ],
+ );
+ }
+
+ #[test]
+ fn uniform_distributions_can_be_compared() {
+ assert_eq!(Uniform::new(1.0, 2.0), Uniform::new(1.0, 2.0));
+
+ // To cover UniformInt
+ assert_eq!(Uniform::new(1 as u32, 2 as u32), Uniform::new(1 as u32, 2 as u32));
+ }
+}
diff --git a/third_party/rust/rand/src/distributions/utils.rs b/third_party/rust/rand/src/distributions/utils.rs
new file mode 100644
index 0000000000..89da5fd7aa
--- /dev/null
+++ b/third_party/rust/rand/src/distributions/utils.rs
@@ -0,0 +1,429 @@
+// Copyright 2018 Developers of the Rand project.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Math helper functions
+
+#[cfg(feature = "simd_support")] use packed_simd::*;
+
+
+pub(crate) trait WideningMultiply<RHS = Self> {
+ type Output;
+
+ fn wmul(self, x: RHS) -> Self::Output;
+}
+
+macro_rules! wmul_impl {
+ ($ty:ty, $wide:ty, $shift:expr) => {
+ impl WideningMultiply for $ty {
+ type Output = ($ty, $ty);
+
+ #[inline(always)]
+ fn wmul(self, x: $ty) -> Self::Output {
+ let tmp = (self as $wide) * (x as $wide);
+ ((tmp >> $shift) as $ty, tmp as $ty)
+ }
+ }
+ };
+
+ // simd bulk implementation
+ ($(($ty:ident, $wide:ident),)+, $shift:expr) => {
+ $(
+ impl WideningMultiply for $ty {
+ type Output = ($ty, $ty);
+
+ #[inline(always)]
+ fn wmul(self, x: $ty) -> Self::Output {
+ // For supported vectors, this should compile to a couple
+ // supported multiply & swizzle instructions (no actual
+ // casting).
+ // TODO: optimize
+ let y: $wide = self.cast();
+ let x: $wide = x.cast();
+ let tmp = y * x;
+ let hi: $ty = (tmp >> $shift).cast();
+ let lo: $ty = tmp.cast();
+ (hi, lo)
+ }
+ }
+ )+
+ };
+}
+wmul_impl! { u8, u16, 8 }
+wmul_impl! { u16, u32, 16 }
+wmul_impl! { u32, u64, 32 }
+wmul_impl! { u64, u128, 64 }
+
+// This code is a translation of the __mulddi3 function in LLVM's
+// compiler-rt. It is an optimised variant of the common method
+// `(a + b) * (c + d) = ac + ad + bc + bd`.
+//
+// For some reason LLVM can optimise the C version very well, but
+// keeps shuffling registers in this Rust translation.
+macro_rules! wmul_impl_large {
+ ($ty:ty, $half:expr) => {
+ impl WideningMultiply for $ty {
+ type Output = ($ty, $ty);
+
+ #[inline(always)]
+ fn wmul(self, b: $ty) -> Self::Output {
+ const LOWER_MASK: $ty = !0 >> $half;
+ let mut low = (self & LOWER_MASK).wrapping_mul(b & LOWER_MASK);
+ let mut t = low >> $half;
+ low &= LOWER_MASK;
+ t += (self >> $half).wrapping_mul(b & LOWER_MASK);
+ low += (t & LOWER_MASK) << $half;
+ let mut high = t >> $half;
+ t = low >> $half;
+ low &= LOWER_MASK;
+ t += (b >> $half).wrapping_mul(self & LOWER_MASK);
+ low += (t & LOWER_MASK) << $half;
+ high += t >> $half;
+ high += (self >> $half).wrapping_mul(b >> $half);
+
+ (high, low)
+ }
+ }
+ };
+
+ // simd bulk implementation
+ (($($ty:ty,)+) $scalar:ty, $half:expr) => {
+ $(
+ impl WideningMultiply for $ty {
+ type Output = ($ty, $ty);
+
+ #[inline(always)]
+ fn wmul(self, b: $ty) -> Self::Output {
+ // needs wrapping multiplication
+ const LOWER_MASK: $scalar = !0 >> $half;
+ let mut low = (self & LOWER_MASK) * (b & LOWER_MASK);
+ let mut t = low >> $half;
+ low &= LOWER_MASK;
+ t += (self >> $half) * (b & LOWER_MASK);
+ low += (t & LOWER_MASK) << $half;
+ let mut high = t >> $half;
+ t = low >> $half;
+ low &= LOWER_MASK;
+ t += (b >> $half) * (self & LOWER_MASK);
+ low += (t & LOWER_MASK) << $half;
+ high += t >> $half;
+ high += (self >> $half) * (b >> $half);
+
+ (high, low)
+ }
+ }
+ )+
+ };
+}
+wmul_impl_large! { u128, 64 }
+
+macro_rules! wmul_impl_usize {
+ ($ty:ty) => {
+ impl WideningMultiply for usize {
+ type Output = (usize, usize);
+
+ #[inline(always)]
+ fn wmul(self, x: usize) -> Self::Output {
+ let (high, low) = (self as $ty).wmul(x as $ty);
+ (high as usize, low as usize)
+ }
+ }
+ };
+}
+#[cfg(target_pointer_width = "16")]
+wmul_impl_usize! { u16 }
+#[cfg(target_pointer_width = "32")]
+wmul_impl_usize! { u32 }
+#[cfg(target_pointer_width = "64")]
+wmul_impl_usize! { u64 }
+
+#[cfg(feature = "simd_support")]
+mod simd_wmul {
+ use super::*;
+ #[cfg(target_arch = "x86")] use core::arch::x86::*;
+ #[cfg(target_arch = "x86_64")] use core::arch::x86_64::*;
+
+ wmul_impl! {
+ (u8x2, u16x2),
+ (u8x4, u16x4),
+ (u8x8, u16x8),
+ (u8x16, u16x16),
+ (u8x32, u16x32),,
+ 8
+ }
+
+ wmul_impl! { (u16x2, u32x2),, 16 }
+ wmul_impl! { (u16x4, u32x4),, 16 }
+ #[cfg(not(target_feature = "sse2"))]
+ wmul_impl! { (u16x8, u32x8),, 16 }
+ #[cfg(not(target_feature = "avx2"))]
+ wmul_impl! { (u16x16, u32x16),, 16 }
+
+ // 16-bit lane widths allow use of the x86 `mulhi` instructions, which
+ // means `wmul` can be implemented with only two instructions.
+ #[allow(unused_macros)]
+ macro_rules! wmul_impl_16 {
+ ($ty:ident, $intrinsic:ident, $mulhi:ident, $mullo:ident) => {
+ impl WideningMultiply for $ty {
+ type Output = ($ty, $ty);
+
+ #[inline(always)]
+ fn wmul(self, x: $ty) -> Self::Output {
+ let b = $intrinsic::from_bits(x);
+ let a = $intrinsic::from_bits(self);
+ let hi = $ty::from_bits(unsafe { $mulhi(a, b) });
+ let lo = $ty::from_bits(unsafe { $mullo(a, b) });
+ (hi, lo)
+ }
+ }
+ };
+ }
+
+ #[cfg(target_feature = "sse2")]
+ wmul_impl_16! { u16x8, __m128i, _mm_mulhi_epu16, _mm_mullo_epi16 }
+ #[cfg(target_feature = "avx2")]
+ wmul_impl_16! { u16x16, __m256i, _mm256_mulhi_epu16, _mm256_mullo_epi16 }
+ // FIXME: there are no `__m512i` types in stdsimd yet, so `wmul::<u16x32>`
+ // cannot use the same implementation.
+
+ wmul_impl! {
+ (u32x2, u64x2),
+ (u32x4, u64x4),
+ (u32x8, u64x8),,
+ 32
+ }
+
+ // TODO: optimize, this seems to seriously slow things down
+ wmul_impl_large! { (u8x64,) u8, 4 }
+ wmul_impl_large! { (u16x32,) u16, 8 }
+ wmul_impl_large! { (u32x16,) u32, 16 }
+ wmul_impl_large! { (u64x2, u64x4, u64x8,) u64, 32 }
+}
+
+/// Helper trait when dealing with scalar and SIMD floating point types.
+pub(crate) trait FloatSIMDUtils {
+ // `PartialOrd` for vectors compares lexicographically. We want to compare all
+ // the individual SIMD lanes instead, and get the combined result over all
+ // lanes. This is possible using something like `a.lt(b).all()`, but we
+ // implement it as a trait so we can write the same code for `f32` and `f64`.
+ // Only the comparison functions we need are implemented.
+ fn all_lt(self, other: Self) -> bool;
+ fn all_le(self, other: Self) -> bool;
+ fn all_finite(self) -> bool;
+
+ type Mask;
+ fn finite_mask(self) -> Self::Mask;
+ fn gt_mask(self, other: Self) -> Self::Mask;
+ fn ge_mask(self, other: Self) -> Self::Mask;
+
+ // Decrease all lanes where the mask is `true` to the next lower value
+ // representable by the floating-point type. At least one of the lanes
+ // must be set.
+ fn decrease_masked(self, mask: Self::Mask) -> Self;
+
+ // Convert from int value. Conversion is done while retaining the numerical
+ // value, not by retaining the binary representation.
+ type UInt;
+ fn cast_from_int(i: Self::UInt) -> Self;
+}
+
+/// Implement functions available in std builds but missing from core primitives
+#[cfg(not(std))]
+// False positive: We are following `std` here.
+#[allow(clippy::wrong_self_convention)]
+pub(crate) trait Float: Sized {
+ fn is_nan(self) -> bool;
+ fn is_infinite(self) -> bool;
+ fn is_finite(self) -> bool;
+}
+
+/// Implement functions on f32/f64 to give them APIs similar to SIMD types
+pub(crate) trait FloatAsSIMD: Sized {
+ #[inline(always)]
+ fn lanes() -> usize {
+ 1
+ }
+ #[inline(always)]
+ fn splat(scalar: Self) -> Self {
+ scalar
+ }
+ #[inline(always)]
+ fn extract(self, index: usize) -> Self {
+ debug_assert_eq!(index, 0);
+ self
+ }
+ #[inline(always)]
+ fn replace(self, index: usize, new_value: Self) -> Self {
+ debug_assert_eq!(index, 0);
+ new_value
+ }
+}
+
+pub(crate) trait BoolAsSIMD: Sized {
+ fn any(self) -> bool;
+ fn all(self) -> bool;
+ fn none(self) -> bool;
+}
+
+impl BoolAsSIMD for bool {
+ #[inline(always)]
+ fn any(self) -> bool {
+ self
+ }
+
+ #[inline(always)]
+ fn all(self) -> bool {
+ self
+ }
+
+ #[inline(always)]
+ fn none(self) -> bool {
+ !self
+ }
+}
+
+macro_rules! scalar_float_impl {
+ ($ty:ident, $uty:ident) => {
+ #[cfg(not(std))]
+ impl Float for $ty {
+ #[inline]
+ fn is_nan(self) -> bool {
+ self != self
+ }
+
+ #[inline]
+ fn is_infinite(self) -> bool {
+ self == ::core::$ty::INFINITY || self == ::core::$ty::NEG_INFINITY
+ }
+
+ #[inline]
+ fn is_finite(self) -> bool {
+ !(self.is_nan() || self.is_infinite())
+ }
+ }
+
+ impl FloatSIMDUtils for $ty {
+ type Mask = bool;
+ type UInt = $uty;
+
+ #[inline(always)]
+ fn all_lt(self, other: Self) -> bool {
+ self < other
+ }
+
+ #[inline(always)]
+ fn all_le(self, other: Self) -> bool {
+ self <= other
+ }
+
+ #[inline(always)]
+ fn all_finite(self) -> bool {
+ self.is_finite()
+ }
+
+ #[inline(always)]
+ fn finite_mask(self) -> Self::Mask {
+ self.is_finite()
+ }
+
+ #[inline(always)]
+ fn gt_mask(self, other: Self) -> Self::Mask {
+ self > other
+ }
+
+ #[inline(always)]
+ fn ge_mask(self, other: Self) -> Self::Mask {
+ self >= other
+ }
+
+ #[inline(always)]
+ fn decrease_masked(self, mask: Self::Mask) -> Self {
+ debug_assert!(mask, "At least one lane must be set");
+ <$ty>::from_bits(self.to_bits() - 1)
+ }
+
+ #[inline]
+ fn cast_from_int(i: Self::UInt) -> Self {
+ i as $ty
+ }
+ }
+
+ impl FloatAsSIMD for $ty {}
+ };
+}
+
+scalar_float_impl!(f32, u32);
+scalar_float_impl!(f64, u64);
+
+
+#[cfg(feature = "simd_support")]
+macro_rules! simd_impl {
+ ($ty:ident, $f_scalar:ident, $mty:ident, $uty:ident) => {
+ impl FloatSIMDUtils for $ty {
+ type Mask = $mty;
+ type UInt = $uty;
+
+ #[inline(always)]
+ fn all_lt(self, other: Self) -> bool {
+ self.lt(other).all()
+ }
+
+ #[inline(always)]
+ fn all_le(self, other: Self) -> bool {
+ self.le(other).all()
+ }
+
+ #[inline(always)]
+ fn all_finite(self) -> bool {
+ self.finite_mask().all()
+ }
+
+ #[inline(always)]
+ fn finite_mask(self) -> Self::Mask {
+ // This can possibly be done faster by checking bit patterns
+ let neg_inf = $ty::splat(::core::$f_scalar::NEG_INFINITY);
+ let pos_inf = $ty::splat(::core::$f_scalar::INFINITY);
+ self.gt(neg_inf) & self.lt(pos_inf)
+ }
+
+ #[inline(always)]
+ fn gt_mask(self, other: Self) -> Self::Mask {
+ self.gt(other)
+ }
+
+ #[inline(always)]
+ fn ge_mask(self, other: Self) -> Self::Mask {
+ self.ge(other)
+ }
+
+ #[inline(always)]
+ fn decrease_masked(self, mask: Self::Mask) -> Self {
+ // Casting a mask into ints will produce all bits set for
+ // true, and 0 for false. Adding that to the binary
+ // representation of a float means subtracting one from
+ // the binary representation, resulting in the next lower
+ // value representable by $ty. This works even when the
+ // current value is infinity.
+ debug_assert!(mask.any(), "At least one lane must be set");
+ <$ty>::from_bits(<$uty>::from_bits(self) + <$uty>::from_bits(mask))
+ }
+
+ #[inline]
+ fn cast_from_int(i: Self::UInt) -> Self {
+ i.cast()
+ }
+ }
+ };
+}
+
+#[cfg(feature="simd_support")] simd_impl! { f32x2, f32, m32x2, u32x2 }
+#[cfg(feature="simd_support")] simd_impl! { f32x4, f32, m32x4, u32x4 }
+#[cfg(feature="simd_support")] simd_impl! { f32x8, f32, m32x8, u32x8 }
+#[cfg(feature="simd_support")] simd_impl! { f32x16, f32, m32x16, u32x16 }
+#[cfg(feature="simd_support")] simd_impl! { f64x2, f64, m64x2, u64x2 }
+#[cfg(feature="simd_support")] simd_impl! { f64x4, f64, m64x4, u64x4 }
+#[cfg(feature="simd_support")] simd_impl! { f64x8, f64, m64x8, u64x8 }
diff --git a/third_party/rust/rand/src/distributions/weighted.rs b/third_party/rust/rand/src/distributions/weighted.rs
new file mode 100644
index 0000000000..846b9df9c2
--- /dev/null
+++ b/third_party/rust/rand/src/distributions/weighted.rs
@@ -0,0 +1,47 @@
+// Copyright 2018 Developers of the Rand project.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Weighted index sampling
+//!
+//! This module is deprecated. Use [`crate::distributions::WeightedIndex`] and
+//! [`crate::distributions::WeightedError`] instead.
+
+pub use super::{WeightedIndex, WeightedError};
+
+#[allow(missing_docs)]
+#[deprecated(since = "0.8.0", note = "moved to rand_distr crate")]
+pub mod alias_method {
+ // This module exists to provide a deprecation warning which minimises
+ // compile errors, but still fails to compile if ever used.
+ use core::marker::PhantomData;
+ use alloc::vec::Vec;
+ use super::WeightedError;
+
+ #[derive(Debug)]
+ pub struct WeightedIndex<W: Weight> {
+ _phantom: PhantomData<W>,
+ }
+ impl<W: Weight> WeightedIndex<W> {
+ pub fn new(_weights: Vec<W>) -> Result<Self, WeightedError> {
+ Err(WeightedError::NoItem)
+ }
+ }
+
+ pub trait Weight {}
+ macro_rules! impl_weight {
+ () => {};
+ ($T:ident, $($more:ident,)*) => {
+ impl Weight for $T {}
+ impl_weight!($($more,)*);
+ };
+ }
+ impl_weight!(f64, f32,);
+ impl_weight!(u8, u16, u32, u64, usize,);
+ impl_weight!(i8, i16, i32, i64, isize,);
+ impl_weight!(u128, i128,);
+}
diff --git a/third_party/rust/rand/src/distributions/weighted_index.rs b/third_party/rust/rand/src/distributions/weighted_index.rs
new file mode 100644
index 0000000000..8252b172f7
--- /dev/null
+++ b/third_party/rust/rand/src/distributions/weighted_index.rs
@@ -0,0 +1,458 @@
+// Copyright 2018 Developers of the Rand project.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Weighted index sampling
+
+use crate::distributions::uniform::{SampleBorrow, SampleUniform, UniformSampler};
+use crate::distributions::Distribution;
+use crate::Rng;
+use core::cmp::PartialOrd;
+use core::fmt;
+
+// Note that this whole module is only imported if feature="alloc" is enabled.
+use alloc::vec::Vec;
+
+#[cfg(feature = "serde1")]
+use serde::{Serialize, Deserialize};
+
+/// A distribution using weighted sampling of discrete items
+///
+/// Sampling a `WeightedIndex` distribution returns the index of a randomly
+/// selected element from the iterator used when the `WeightedIndex` was
+/// created. The chance of a given element being picked is proportional to the
+/// value of the element. The weights can use any type `X` for which an
+/// implementation of [`Uniform<X>`] exists.
+///
+/// # Performance
+///
+/// Time complexity of sampling from `WeightedIndex` is `O(log N)` where
+/// `N` is the number of weights. As an alternative,
+/// [`rand_distr::weighted_alias`](https://docs.rs/rand_distr/*/rand_distr/weighted_alias/index.html)
+/// supports `O(1)` sampling, but with much higher initialisation cost.
+///
+/// A `WeightedIndex<X>` contains a `Vec<X>` and a [`Uniform<X>`] and so its
+/// size is the sum of the size of those objects, possibly plus some alignment.
+///
+/// Creating a `WeightedIndex<X>` will allocate enough space to hold `N - 1`
+/// weights of type `X`, where `N` is the number of weights. However, since
+/// `Vec` doesn't guarantee a particular growth strategy, additional memory
+/// might be allocated but not used. Since the `WeightedIndex` object also
+/// contains, this might cause additional allocations, though for primitive
+/// types, [`Uniform<X>`] doesn't allocate any memory.
+///
+/// Sampling from `WeightedIndex` will result in a single call to
+/// `Uniform<X>::sample` (method of the [`Distribution`] trait), which typically
+/// will request a single value from the underlying [`RngCore`], though the
+/// exact number depends on the implementation of `Uniform<X>::sample`.
+///
+/// # Example
+///
+/// ```
+/// use rand::prelude::*;
+/// use rand::distributions::WeightedIndex;
+///
+/// let choices = ['a', 'b', 'c'];
+/// let weights = [2, 1, 1];
+/// let dist = WeightedIndex::new(&weights).unwrap();
+/// let mut rng = thread_rng();
+/// for _ in 0..100 {
+/// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
+/// println!("{}", choices[dist.sample(&mut rng)]);
+/// }
+///
+/// let items = [('a', 0), ('b', 3), ('c', 7)];
+/// let dist2 = WeightedIndex::new(items.iter().map(|item| item.1)).unwrap();
+/// for _ in 0..100 {
+/// // 0% chance to print 'a', 30% chance to print 'b', 70% chance to print 'c'
+/// println!("{}", items[dist2.sample(&mut rng)].0);
+/// }
+/// ```
+///
+/// [`Uniform<X>`]: crate::distributions::Uniform
+/// [`RngCore`]: crate::RngCore
+#[derive(Debug, Clone, PartialEq)]
+#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
+#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
+pub struct WeightedIndex<X: SampleUniform + PartialOrd> {
+ cumulative_weights: Vec<X>,
+ total_weight: X,
+ weight_distribution: X::Sampler,
+}
+
+impl<X: SampleUniform + PartialOrd> WeightedIndex<X> {
+ /// Creates a new a `WeightedIndex` [`Distribution`] using the values
+ /// in `weights`. The weights can use any type `X` for which an
+ /// implementation of [`Uniform<X>`] exists.
+ ///
+ /// Returns an error if the iterator is empty, if any weight is `< 0`, or
+ /// if its total value is 0.
+ ///
+ /// [`Uniform<X>`]: crate::distributions::uniform::Uniform
+ pub fn new<I>(weights: I) -> Result<WeightedIndex<X>, WeightedError>
+ where
+ I: IntoIterator,
+ I::Item: SampleBorrow<X>,
+ X: for<'a> ::core::ops::AddAssign<&'a X> + Clone + Default,
+ {
+ let mut iter = weights.into_iter();
+ let mut total_weight: X = iter.next().ok_or(WeightedError::NoItem)?.borrow().clone();
+
+ let zero = <X as Default>::default();
+ if !(total_weight >= zero) {
+ return Err(WeightedError::InvalidWeight);
+ }
+
+ let mut weights = Vec::<X>::with_capacity(iter.size_hint().0);
+ for w in iter {
+ // Note that `!(w >= x)` is not equivalent to `w < x` for partially
+ // ordered types due to NaNs which are equal to nothing.
+ if !(w.borrow() >= &zero) {
+ return Err(WeightedError::InvalidWeight);
+ }
+ weights.push(total_weight.clone());
+ total_weight += w.borrow();
+ }
+
+ if total_weight == zero {
+ return Err(WeightedError::AllWeightsZero);
+ }
+ let distr = X::Sampler::new(zero, total_weight.clone());
+
+ Ok(WeightedIndex {
+ cumulative_weights: weights,
+ total_weight,
+ weight_distribution: distr,
+ })
+ }
+
+ /// Update a subset of weights, without changing the number of weights.
+ ///
+ /// `new_weights` must be sorted by the index.
+ ///
+ /// Using this method instead of `new` might be more efficient if only a small number of
+ /// weights is modified. No allocations are performed, unless the weight type `X` uses
+ /// allocation internally.
+ ///
+ /// In case of error, `self` is not modified.
+ pub fn update_weights(&mut self, new_weights: &[(usize, &X)]) -> Result<(), WeightedError>
+ where X: for<'a> ::core::ops::AddAssign<&'a X>
+ + for<'a> ::core::ops::SubAssign<&'a X>
+ + Clone
+ + Default {
+ if new_weights.is_empty() {
+ return Ok(());
+ }
+
+ let zero = <X as Default>::default();
+
+ let mut total_weight = self.total_weight.clone();
+
+ // Check for errors first, so we don't modify `self` in case something
+ // goes wrong.
+ let mut prev_i = None;
+ for &(i, w) in new_weights {
+ if let Some(old_i) = prev_i {
+ if old_i >= i {
+ return Err(WeightedError::InvalidWeight);
+ }
+ }
+ if !(*w >= zero) {
+ return Err(WeightedError::InvalidWeight);
+ }
+ if i > self.cumulative_weights.len() {
+ return Err(WeightedError::TooMany);
+ }
+
+ let mut old_w = if i < self.cumulative_weights.len() {
+ self.cumulative_weights[i].clone()
+ } else {
+ self.total_weight.clone()
+ };
+ if i > 0 {
+ old_w -= &self.cumulative_weights[i - 1];
+ }
+
+ total_weight -= &old_w;
+ total_weight += w;
+ prev_i = Some(i);
+ }
+ if total_weight <= zero {
+ return Err(WeightedError::AllWeightsZero);
+ }
+
+ // Update the weights. Because we checked all the preconditions in the
+ // previous loop, this should never panic.
+ let mut iter = new_weights.iter();
+
+ let mut prev_weight = zero.clone();
+ let mut next_new_weight = iter.next();
+ let &(first_new_index, _) = next_new_weight.unwrap();
+ let mut cumulative_weight = if first_new_index > 0 {
+ self.cumulative_weights[first_new_index - 1].clone()
+ } else {
+ zero.clone()
+ };
+ for i in first_new_index..self.cumulative_weights.len() {
+ match next_new_weight {
+ Some(&(j, w)) if i == j => {
+ cumulative_weight += w;
+ next_new_weight = iter.next();
+ }
+ _ => {
+ let mut tmp = self.cumulative_weights[i].clone();
+ tmp -= &prev_weight; // We know this is positive.
+ cumulative_weight += &tmp;
+ }
+ }
+ prev_weight = cumulative_weight.clone();
+ core::mem::swap(&mut prev_weight, &mut self.cumulative_weights[i]);
+ }
+
+ self.total_weight = total_weight;
+ self.weight_distribution = X::Sampler::new(zero, self.total_weight.clone());
+
+ Ok(())
+ }
+}
+
+impl<X> Distribution<usize> for WeightedIndex<X>
+where X: SampleUniform + PartialOrd
+{
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
+ use ::core::cmp::Ordering;
+ let chosen_weight = self.weight_distribution.sample(rng);
+ // Find the first item which has a weight *higher* than the chosen weight.
+ self.cumulative_weights
+ .binary_search_by(|w| {
+ if *w <= chosen_weight {
+ Ordering::Less
+ } else {
+ Ordering::Greater
+ }
+ })
+ .unwrap_err()
+ }
+}
+
+#[cfg(test)]
+mod test {
+ use super::*;
+
+ #[cfg(feature = "serde1")]
+ #[test]
+ fn test_weightedindex_serde1() {
+ let weighted_index = WeightedIndex::new(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).unwrap();
+
+ let ser_weighted_index = bincode::serialize(&weighted_index).unwrap();
+ let de_weighted_index: WeightedIndex<i32> =
+ bincode::deserialize(&ser_weighted_index).unwrap();
+
+ assert_eq!(
+ de_weighted_index.cumulative_weights,
+ weighted_index.cumulative_weights
+ );
+ assert_eq!(de_weighted_index.total_weight, weighted_index.total_weight);
+ }
+
+ #[test]
+ fn test_accepting_nan(){
+ assert_eq!(
+ WeightedIndex::new(&[core::f32::NAN, 0.5]).unwrap_err(),
+ WeightedError::InvalidWeight,
+ );
+ assert_eq!(
+ WeightedIndex::new(&[core::f32::NAN]).unwrap_err(),
+ WeightedError::InvalidWeight,
+ );
+ assert_eq!(
+ WeightedIndex::new(&[0.5, core::f32::NAN]).unwrap_err(),
+ WeightedError::InvalidWeight,
+ );
+
+ assert_eq!(
+ WeightedIndex::new(&[0.5, 7.0])
+ .unwrap()
+ .update_weights(&[(0, &core::f32::NAN)])
+ .unwrap_err(),
+ WeightedError::InvalidWeight,
+ )
+ }
+
+
+ #[test]
+ #[cfg_attr(miri, ignore)] // Miri is too slow
+ fn test_weightedindex() {
+ let mut r = crate::test::rng(700);
+ const N_REPS: u32 = 5000;
+ let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
+ let total_weight = weights.iter().sum::<u32>() as f32;
+
+ let verify = |result: [i32; 14]| {
+ for (i, count) in result.iter().enumerate() {
+ let exp = (weights[i] * N_REPS) as f32 / total_weight;
+ let mut err = (*count as f32 - exp).abs();
+ if err != 0.0 {
+ err /= exp;
+ }
+ assert!(err <= 0.25);
+ }
+ };
+
+ // WeightedIndex from vec
+ let mut chosen = [0i32; 14];
+ let distr = WeightedIndex::new(weights.to_vec()).unwrap();
+ for _ in 0..N_REPS {
+ chosen[distr.sample(&mut r)] += 1;
+ }
+ verify(chosen);
+
+ // WeightedIndex from slice
+ chosen = [0i32; 14];
+ let distr = WeightedIndex::new(&weights[..]).unwrap();
+ for _ in 0..N_REPS {
+ chosen[distr.sample(&mut r)] += 1;
+ }
+ verify(chosen);
+
+ // WeightedIndex from iterator
+ chosen = [0i32; 14];
+ let distr = WeightedIndex::new(weights.iter()).unwrap();
+ for _ in 0..N_REPS {
+ chosen[distr.sample(&mut r)] += 1;
+ }
+ verify(chosen);
+
+ for _ in 0..5 {
+ assert_eq!(WeightedIndex::new(&[0, 1]).unwrap().sample(&mut r), 1);
+ assert_eq!(WeightedIndex::new(&[1, 0]).unwrap().sample(&mut r), 0);
+ assert_eq!(
+ WeightedIndex::new(&[0, 0, 0, 0, 10, 0])
+ .unwrap()
+ .sample(&mut r),
+ 4
+ );
+ }
+
+ assert_eq!(
+ WeightedIndex::new(&[10][0..0]).unwrap_err(),
+ WeightedError::NoItem
+ );
+ assert_eq!(
+ WeightedIndex::new(&[0]).unwrap_err(),
+ WeightedError::AllWeightsZero
+ );
+ assert_eq!(
+ WeightedIndex::new(&[10, 20, -1, 30]).unwrap_err(),
+ WeightedError::InvalidWeight
+ );
+ assert_eq!(
+ WeightedIndex::new(&[-10, 20, 1, 30]).unwrap_err(),
+ WeightedError::InvalidWeight
+ );
+ assert_eq!(
+ WeightedIndex::new(&[-10]).unwrap_err(),
+ WeightedError::InvalidWeight
+ );
+ }
+
+ #[test]
+ fn test_update_weights() {
+ let data = [
+ (
+ &[10u32, 2, 3, 4][..],
+ &[(1, &100), (2, &4)][..], // positive change
+ &[10, 100, 4, 4][..],
+ ),
+ (
+ &[1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7][..],
+ &[(2, &1), (5, &1), (13, &100)][..], // negative change and last element
+ &[1u32, 2, 1, 0, 5, 1, 7, 1, 2, 3, 4, 5, 6, 100][..],
+ ),
+ ];
+
+ for (weights, update, expected_weights) in data.iter() {
+ let total_weight = weights.iter().sum::<u32>();
+ let mut distr = WeightedIndex::new(weights.to_vec()).unwrap();
+ assert_eq!(distr.total_weight, total_weight);
+
+ distr.update_weights(update).unwrap();
+ let expected_total_weight = expected_weights.iter().sum::<u32>();
+ let expected_distr = WeightedIndex::new(expected_weights.to_vec()).unwrap();
+ assert_eq!(distr.total_weight, expected_total_weight);
+ assert_eq!(distr.total_weight, expected_distr.total_weight);
+ assert_eq!(distr.cumulative_weights, expected_distr.cumulative_weights);
+ }
+ }
+
+ #[test]
+ fn value_stability() {
+ fn test_samples<X: SampleUniform + PartialOrd, I>(
+ weights: I, buf: &mut [usize], expected: &[usize],
+ ) where
+ I: IntoIterator,
+ I::Item: SampleBorrow<X>,
+ X: for<'a> ::core::ops::AddAssign<&'a X> + Clone + Default,
+ {
+ assert_eq!(buf.len(), expected.len());
+ let distr = WeightedIndex::new(weights).unwrap();
+ let mut rng = crate::test::rng(701);
+ for r in buf.iter_mut() {
+ *r = rng.sample(&distr);
+ }
+ assert_eq!(buf, expected);
+ }
+
+ let mut buf = [0; 10];
+ test_samples(&[1i32, 1, 1, 1, 1, 1, 1, 1, 1], &mut buf, &[
+ 0, 6, 2, 6, 3, 4, 7, 8, 2, 5,
+ ]);
+ test_samples(&[0.7f32, 0.1, 0.1, 0.1], &mut buf, &[
+ 0, 0, 0, 1, 0, 0, 2, 3, 0, 0,
+ ]);
+ test_samples(&[1.0f64, 0.999, 0.998, 0.997], &mut buf, &[
+ 2, 2, 1, 3, 2, 1, 3, 3, 2, 1,
+ ]);
+ }
+
+ #[test]
+ fn weighted_index_distributions_can_be_compared() {
+ assert_eq!(WeightedIndex::new(&[1, 2]), WeightedIndex::new(&[1, 2]));
+ }
+}
+
+/// Error type returned from `WeightedIndex::new`.
+#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
+#[derive(Debug, Clone, Copy, PartialEq, Eq)]
+pub enum WeightedError {
+ /// The provided weight collection contains no items.
+ NoItem,
+
+ /// A weight is either less than zero, greater than the supported maximum,
+ /// NaN, or otherwise invalid.
+ InvalidWeight,
+
+ /// All items in the provided weight collection are zero.
+ AllWeightsZero,
+
+ /// Too many weights are provided (length greater than `u32::MAX`)
+ TooMany,
+}
+
+#[cfg(feature = "std")]
+impl std::error::Error for WeightedError {}
+
+impl fmt::Display for WeightedError {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.write_str(match *self {
+ WeightedError::NoItem => "No weights provided in distribution",
+ WeightedError::InvalidWeight => "A weight is invalid in distribution",
+ WeightedError::AllWeightsZero => "All weights are zero in distribution",
+ WeightedError::TooMany => "Too many weights (hit u32::MAX) in distribution",
+ })
+ }
+}