diff options
Diffstat (limited to 'third_party/rust/regex-syntax/src/ast/visitor.rs')
-rw-r--r-- | third_party/rust/regex-syntax/src/ast/visitor.rs | 517 |
1 files changed, 517 insertions, 0 deletions
diff --git a/third_party/rust/regex-syntax/src/ast/visitor.rs b/third_party/rust/regex-syntax/src/ast/visitor.rs new file mode 100644 index 0000000000..78ee487cff --- /dev/null +++ b/third_party/rust/regex-syntax/src/ast/visitor.rs @@ -0,0 +1,517 @@ +use std::fmt; + +use crate::ast::{self, Ast}; + +/// A trait for visiting an abstract syntax tree (AST) in depth first order. +/// +/// The principle aim of this trait is to enable callers to perform case +/// analysis on an abstract syntax tree without necessarily using recursion. +/// In particular, this permits callers to do case analysis with constant stack +/// usage, which can be important since the size of an abstract syntax tree +/// may be proportional to end user input. +/// +/// Typical usage of this trait involves providing an implementation and then +/// running it using the [`visit`](fn.visit.html) function. +/// +/// Note that the abstract syntax tree for a regular expression is quite +/// complex. Unless you specifically need it, you might be able to use the +/// much simpler +/// [high-level intermediate representation](../hir/struct.Hir.html) +/// and its +/// [corresponding `Visitor` trait](../hir/trait.Visitor.html) +/// instead. +pub trait Visitor { + /// The result of visiting an AST. + type Output; + /// An error that visiting an AST might return. + type Err; + + /// All implementors of `Visitor` must provide a `finish` method, which + /// yields the result of visiting the AST or an error. + fn finish(self) -> Result<Self::Output, Self::Err>; + + /// This method is called before beginning traversal of the AST. + fn start(&mut self) {} + + /// This method is called on an `Ast` before descending into child `Ast` + /// nodes. + fn visit_pre(&mut self, _ast: &Ast) -> Result<(), Self::Err> { + Ok(()) + } + + /// This method is called on an `Ast` after descending all of its child + /// `Ast` nodes. + fn visit_post(&mut self, _ast: &Ast) -> Result<(), Self::Err> { + Ok(()) + } + + /// This method is called between child nodes of an + /// [`Alternation`](struct.Alternation.html). + fn visit_alternation_in(&mut self) -> Result<(), Self::Err> { + Ok(()) + } + + /// This method is called on every + /// [`ClassSetItem`](enum.ClassSetItem.html) + /// before descending into child nodes. + fn visit_class_set_item_pre( + &mut self, + _ast: &ast::ClassSetItem, + ) -> Result<(), Self::Err> { + Ok(()) + } + + /// This method is called on every + /// [`ClassSetItem`](enum.ClassSetItem.html) + /// after descending into child nodes. + fn visit_class_set_item_post( + &mut self, + _ast: &ast::ClassSetItem, + ) -> Result<(), Self::Err> { + Ok(()) + } + + /// This method is called on every + /// [`ClassSetBinaryOp`](struct.ClassSetBinaryOp.html) + /// before descending into child nodes. + fn visit_class_set_binary_op_pre( + &mut self, + _ast: &ast::ClassSetBinaryOp, + ) -> Result<(), Self::Err> { + Ok(()) + } + + /// This method is called on every + /// [`ClassSetBinaryOp`](struct.ClassSetBinaryOp.html) + /// after descending into child nodes. + fn visit_class_set_binary_op_post( + &mut self, + _ast: &ast::ClassSetBinaryOp, + ) -> Result<(), Self::Err> { + Ok(()) + } + + /// This method is called between the left hand and right hand child nodes + /// of a [`ClassSetBinaryOp`](struct.ClassSetBinaryOp.html). + fn visit_class_set_binary_op_in( + &mut self, + _ast: &ast::ClassSetBinaryOp, + ) -> Result<(), Self::Err> { + Ok(()) + } +} + +/// Executes an implementation of `Visitor` in constant stack space. +/// +/// This function will visit every node in the given `Ast` while calling the +/// appropriate methods provided by the +/// [`Visitor`](trait.Visitor.html) trait. +/// +/// The primary use case for this method is when one wants to perform case +/// analysis over an `Ast` without using a stack size proportional to the depth +/// of the `Ast`. Namely, this method will instead use constant stack size, but +/// will use heap space proportional to the size of the `Ast`. This may be +/// desirable in cases where the size of `Ast` is proportional to end user +/// input. +/// +/// If the visitor returns an error at any point, then visiting is stopped and +/// the error is returned. +pub fn visit<V: Visitor>(ast: &Ast, visitor: V) -> Result<V::Output, V::Err> { + HeapVisitor::new().visit(ast, visitor) +} + +/// HeapVisitor visits every item in an `Ast` recursively using constant stack +/// size and a heap size proportional to the size of the `Ast`. +struct HeapVisitor<'a> { + /// A stack of `Ast` nodes. This is roughly analogous to the call stack + /// used in a typical recursive visitor. + stack: Vec<(&'a Ast, Frame<'a>)>, + /// Similar to the `Ast` stack above, but is used only for character + /// classes. In particular, character classes embed their own mini + /// recursive syntax. + stack_class: Vec<(ClassInduct<'a>, ClassFrame<'a>)>, +} + +/// Represents a single stack frame while performing structural induction over +/// an `Ast`. +enum Frame<'a> { + /// A stack frame allocated just before descending into a repetition + /// operator's child node. + Repetition(&'a ast::Repetition), + /// A stack frame allocated just before descending into a group's child + /// node. + Group(&'a ast::Group), + /// The stack frame used while visiting every child node of a concatenation + /// of expressions. + Concat { + /// The child node we are currently visiting. + head: &'a Ast, + /// The remaining child nodes to visit (which may be empty). + tail: &'a [Ast], + }, + /// The stack frame used while visiting every child node of an alternation + /// of expressions. + Alternation { + /// The child node we are currently visiting. + head: &'a Ast, + /// The remaining child nodes to visit (which may be empty). + tail: &'a [Ast], + }, +} + +/// Represents a single stack frame while performing structural induction over +/// a character class. +enum ClassFrame<'a> { + /// The stack frame used while visiting every child node of a union of + /// character class items. + Union { + /// The child node we are currently visiting. + head: &'a ast::ClassSetItem, + /// The remaining child nodes to visit (which may be empty). + tail: &'a [ast::ClassSetItem], + }, + /// The stack frame used while a binary class operation. + Binary { op: &'a ast::ClassSetBinaryOp }, + /// A stack frame allocated just before descending into a binary operator's + /// left hand child node. + BinaryLHS { + op: &'a ast::ClassSetBinaryOp, + lhs: &'a ast::ClassSet, + rhs: &'a ast::ClassSet, + }, + /// A stack frame allocated just before descending into a binary operator's + /// right hand child node. + BinaryRHS { op: &'a ast::ClassSetBinaryOp, rhs: &'a ast::ClassSet }, +} + +/// A representation of the inductive step when performing structural induction +/// over a character class. +/// +/// Note that there is no analogous explicit type for the inductive step for +/// `Ast` nodes because the inductive step is just an `Ast`. For character +/// classes, the inductive step can produce one of two possible child nodes: +/// an item or a binary operation. (An item cannot be a binary operation +/// because that would imply binary operations can be unioned in the concrete +/// syntax, which is not possible.) +enum ClassInduct<'a> { + Item(&'a ast::ClassSetItem), + BinaryOp(&'a ast::ClassSetBinaryOp), +} + +impl<'a> HeapVisitor<'a> { + fn new() -> HeapVisitor<'a> { + HeapVisitor { stack: vec![], stack_class: vec![] } + } + + fn visit<V: Visitor>( + &mut self, + mut ast: &'a Ast, + mut visitor: V, + ) -> Result<V::Output, V::Err> { + self.stack.clear(); + self.stack_class.clear(); + + visitor.start(); + loop { + visitor.visit_pre(ast)?; + if let Some(x) = self.induct(ast, &mut visitor)? { + let child = x.child(); + self.stack.push((ast, x)); + ast = child; + continue; + } + // No induction means we have a base case, so we can post visit + // it now. + visitor.visit_post(ast)?; + + // At this point, we now try to pop our call stack until it is + // either empty or we hit another inductive case. + loop { + let (post_ast, frame) = match self.stack.pop() { + None => return visitor.finish(), + Some((post_ast, frame)) => (post_ast, frame), + }; + // If this is a concat/alternate, then we might have additional + // inductive steps to process. + if let Some(x) = self.pop(frame) { + if let Frame::Alternation { .. } = x { + visitor.visit_alternation_in()?; + } + ast = x.child(); + self.stack.push((post_ast, x)); + break; + } + // Otherwise, we've finished visiting all the child nodes for + // this AST, so we can post visit it now. + visitor.visit_post(post_ast)?; + } + } + } + + /// Build a stack frame for the given AST if one is needed (which occurs if + /// and only if there are child nodes in the AST). Otherwise, return None. + /// + /// If this visits a class, then the underlying visitor implementation may + /// return an error which will be passed on here. + fn induct<V: Visitor>( + &mut self, + ast: &'a Ast, + visitor: &mut V, + ) -> Result<Option<Frame<'a>>, V::Err> { + Ok(match *ast { + Ast::Class(ast::Class::Bracketed(ref x)) => { + self.visit_class(x, visitor)?; + None + } + Ast::Repetition(ref x) => Some(Frame::Repetition(x)), + Ast::Group(ref x) => Some(Frame::Group(x)), + Ast::Concat(ref x) if x.asts.is_empty() => None, + Ast::Concat(ref x) => { + Some(Frame::Concat { head: &x.asts[0], tail: &x.asts[1..] }) + } + Ast::Alternation(ref x) if x.asts.is_empty() => None, + Ast::Alternation(ref x) => Some(Frame::Alternation { + head: &x.asts[0], + tail: &x.asts[1..], + }), + _ => None, + }) + } + + /// Pops the given frame. If the frame has an additional inductive step, + /// then return it, otherwise return `None`. + fn pop(&self, induct: Frame<'a>) -> Option<Frame<'a>> { + match induct { + Frame::Repetition(_) => None, + Frame::Group(_) => None, + Frame::Concat { tail, .. } => { + if tail.is_empty() { + None + } else { + Some(Frame::Concat { head: &tail[0], tail: &tail[1..] }) + } + } + Frame::Alternation { tail, .. } => { + if tail.is_empty() { + None + } else { + Some(Frame::Alternation { + head: &tail[0], + tail: &tail[1..], + }) + } + } + } + } + + fn visit_class<V: Visitor>( + &mut self, + ast: &'a ast::ClassBracketed, + visitor: &mut V, + ) -> Result<(), V::Err> { + let mut ast = ClassInduct::from_bracketed(ast); + loop { + self.visit_class_pre(&ast, visitor)?; + if let Some(x) = self.induct_class(&ast) { + let child = x.child(); + self.stack_class.push((ast, x)); + ast = child; + continue; + } + self.visit_class_post(&ast, visitor)?; + + // At this point, we now try to pop our call stack until it is + // either empty or we hit another inductive case. + loop { + let (post_ast, frame) = match self.stack_class.pop() { + None => return Ok(()), + Some((post_ast, frame)) => (post_ast, frame), + }; + // If this is a union or a binary op, then we might have + // additional inductive steps to process. + if let Some(x) = self.pop_class(frame) { + if let ClassFrame::BinaryRHS { ref op, .. } = x { + visitor.visit_class_set_binary_op_in(op)?; + } + ast = x.child(); + self.stack_class.push((post_ast, x)); + break; + } + // Otherwise, we've finished visiting all the child nodes for + // this class node, so we can post visit it now. + self.visit_class_post(&post_ast, visitor)?; + } + } + } + + /// Call the appropriate `Visitor` methods given an inductive step. + fn visit_class_pre<V: Visitor>( + &self, + ast: &ClassInduct<'a>, + visitor: &mut V, + ) -> Result<(), V::Err> { + match *ast { + ClassInduct::Item(item) => { + visitor.visit_class_set_item_pre(item)?; + } + ClassInduct::BinaryOp(op) => { + visitor.visit_class_set_binary_op_pre(op)?; + } + } + Ok(()) + } + + /// Call the appropriate `Visitor` methods given an inductive step. + fn visit_class_post<V: Visitor>( + &self, + ast: &ClassInduct<'a>, + visitor: &mut V, + ) -> Result<(), V::Err> { + match *ast { + ClassInduct::Item(item) => { + visitor.visit_class_set_item_post(item)?; + } + ClassInduct::BinaryOp(op) => { + visitor.visit_class_set_binary_op_post(op)?; + } + } + Ok(()) + } + + /// Build a stack frame for the given class node if one is needed (which + /// occurs if and only if there are child nodes). Otherwise, return None. + fn induct_class(&self, ast: &ClassInduct<'a>) -> Option<ClassFrame<'a>> { + match *ast { + ClassInduct::Item(&ast::ClassSetItem::Bracketed(ref x)) => { + match x.kind { + ast::ClassSet::Item(ref item) => { + Some(ClassFrame::Union { head: item, tail: &[] }) + } + ast::ClassSet::BinaryOp(ref op) => { + Some(ClassFrame::Binary { op }) + } + } + } + ClassInduct::Item(&ast::ClassSetItem::Union(ref x)) => { + if x.items.is_empty() { + None + } else { + Some(ClassFrame::Union { + head: &x.items[0], + tail: &x.items[1..], + }) + } + } + ClassInduct::BinaryOp(op) => { + Some(ClassFrame::BinaryLHS { op, lhs: &op.lhs, rhs: &op.rhs }) + } + _ => None, + } + } + + /// Pops the given frame. If the frame has an additional inductive step, + /// then return it, otherwise return `None`. + fn pop_class(&self, induct: ClassFrame<'a>) -> Option<ClassFrame<'a>> { + match induct { + ClassFrame::Union { tail, .. } => { + if tail.is_empty() { + None + } else { + Some(ClassFrame::Union { + head: &tail[0], + tail: &tail[1..], + }) + } + } + ClassFrame::Binary { .. } => None, + ClassFrame::BinaryLHS { op, rhs, .. } => { + Some(ClassFrame::BinaryRHS { op, rhs }) + } + ClassFrame::BinaryRHS { .. } => None, + } + } +} + +impl<'a> Frame<'a> { + /// Perform the next inductive step on this frame and return the next + /// child AST node to visit. + fn child(&self) -> &'a Ast { + match *self { + Frame::Repetition(rep) => &rep.ast, + Frame::Group(group) => &group.ast, + Frame::Concat { head, .. } => head, + Frame::Alternation { head, .. } => head, + } + } +} + +impl<'a> ClassFrame<'a> { + /// Perform the next inductive step on this frame and return the next + /// child class node to visit. + fn child(&self) -> ClassInduct<'a> { + match *self { + ClassFrame::Union { head, .. } => ClassInduct::Item(head), + ClassFrame::Binary { op, .. } => ClassInduct::BinaryOp(op), + ClassFrame::BinaryLHS { ref lhs, .. } => { + ClassInduct::from_set(lhs) + } + ClassFrame::BinaryRHS { ref rhs, .. } => { + ClassInduct::from_set(rhs) + } + } + } +} + +impl<'a> ClassInduct<'a> { + fn from_bracketed(ast: &'a ast::ClassBracketed) -> ClassInduct<'a> { + ClassInduct::from_set(&ast.kind) + } + + fn from_set(ast: &'a ast::ClassSet) -> ClassInduct<'a> { + match *ast { + ast::ClassSet::Item(ref item) => ClassInduct::Item(item), + ast::ClassSet::BinaryOp(ref op) => ClassInduct::BinaryOp(op), + } + } +} + +impl<'a> fmt::Debug for ClassFrame<'a> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + let x = match *self { + ClassFrame::Union { .. } => "Union", + ClassFrame::Binary { .. } => "Binary", + ClassFrame::BinaryLHS { .. } => "BinaryLHS", + ClassFrame::BinaryRHS { .. } => "BinaryRHS", + }; + write!(f, "{}", x) + } +} + +impl<'a> fmt::Debug for ClassInduct<'a> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + let x = match *self { + ClassInduct::Item(it) => match *it { + ast::ClassSetItem::Empty(_) => "Item(Empty)", + ast::ClassSetItem::Literal(_) => "Item(Literal)", + ast::ClassSetItem::Range(_) => "Item(Range)", + ast::ClassSetItem::Ascii(_) => "Item(Ascii)", + ast::ClassSetItem::Perl(_) => "Item(Perl)", + ast::ClassSetItem::Unicode(_) => "Item(Unicode)", + ast::ClassSetItem::Bracketed(_) => "Item(Bracketed)", + ast::ClassSetItem::Union(_) => "Item(Union)", + }, + ClassInduct::BinaryOp(it) => match it.kind { + ast::ClassSetBinaryOpKind::Intersection => { + "BinaryOp(Intersection)" + } + ast::ClassSetBinaryOpKind::Difference => { + "BinaryOp(Difference)" + } + ast::ClassSetBinaryOpKind::SymmetricDifference => { + "BinaryOp(SymmetricDifference)" + } + }, + }; + write!(f, "{}", x) + } +} |