summaryrefslogtreecommitdiffstats
path: root/third_party/rust/regex-syntax/src/hir/visitor.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/regex-syntax/src/hir/visitor.rs')
-rw-r--r--third_party/rust/regex-syntax/src/hir/visitor.rs203
1 files changed, 203 insertions, 0 deletions
diff --git a/third_party/rust/regex-syntax/src/hir/visitor.rs b/third_party/rust/regex-syntax/src/hir/visitor.rs
new file mode 100644
index 0000000000..4f5a70909c
--- /dev/null
+++ b/third_party/rust/regex-syntax/src/hir/visitor.rs
@@ -0,0 +1,203 @@
+use crate::hir::{self, Hir, HirKind};
+
+/// A trait for visiting the high-level IR (HIR) in depth first order.
+///
+/// The principle aim of this trait is to enable callers to perform case
+/// analysis on a high-level intermediate representation of a regular
+/// expression without necessarily using recursion. In particular, this permits
+/// callers to do case analysis with constant stack usage, which can be
+/// important since the size of an HIR may be proportional to end user input.
+///
+/// Typical usage of this trait involves providing an implementation and then
+/// running it using the [`visit`](fn.visit.html) function.
+pub trait Visitor {
+ /// The result of visiting an HIR.
+ type Output;
+ /// An error that visiting an HIR might return.
+ type Err;
+
+ /// All implementors of `Visitor` must provide a `finish` method, which
+ /// yields the result of visiting the HIR or an error.
+ fn finish(self) -> Result<Self::Output, Self::Err>;
+
+ /// This method is called before beginning traversal of the HIR.
+ fn start(&mut self) {}
+
+ /// This method is called on an `Hir` before descending into child `Hir`
+ /// nodes.
+ fn visit_pre(&mut self, _hir: &Hir) -> Result<(), Self::Err> {
+ Ok(())
+ }
+
+ /// This method is called on an `Hir` after descending all of its child
+ /// `Hir` nodes.
+ fn visit_post(&mut self, _hir: &Hir) -> Result<(), Self::Err> {
+ Ok(())
+ }
+
+ /// This method is called between child nodes of an alternation.
+ fn visit_alternation_in(&mut self) -> Result<(), Self::Err> {
+ Ok(())
+ }
+}
+
+/// Executes an implementation of `Visitor` in constant stack space.
+///
+/// This function will visit every node in the given `Hir` while calling
+/// appropriate methods provided by the
+/// [`Visitor`](trait.Visitor.html) trait.
+///
+/// The primary use case for this method is when one wants to perform case
+/// analysis over an `Hir` without using a stack size proportional to the depth
+/// of the `Hir`. Namely, this method will instead use constant stack space,
+/// but will use heap space proportional to the size of the `Hir`. This may be
+/// desirable in cases where the size of `Hir` is proportional to end user
+/// input.
+///
+/// If the visitor returns an error at any point, then visiting is stopped and
+/// the error is returned.
+pub fn visit<V: Visitor>(hir: &Hir, visitor: V) -> Result<V::Output, V::Err> {
+ HeapVisitor::new().visit(hir, visitor)
+}
+
+/// HeapVisitor visits every item in an `Hir` recursively using constant stack
+/// size and a heap size proportional to the size of the `Hir`.
+struct HeapVisitor<'a> {
+ /// A stack of `Hir` nodes. This is roughly analogous to the call stack
+ /// used in a typical recursive visitor.
+ stack: Vec<(&'a Hir, Frame<'a>)>,
+}
+
+/// Represents a single stack frame while performing structural induction over
+/// an `Hir`.
+enum Frame<'a> {
+ /// A stack frame allocated just before descending into a repetition
+ /// operator's child node.
+ Repetition(&'a hir::Repetition),
+ /// A stack frame allocated just before descending into a group's child
+ /// node.
+ Group(&'a hir::Group),
+ /// The stack frame used while visiting every child node of a concatenation
+ /// of expressions.
+ Concat {
+ /// The child node we are currently visiting.
+ head: &'a Hir,
+ /// The remaining child nodes to visit (which may be empty).
+ tail: &'a [Hir],
+ },
+ /// The stack frame used while visiting every child node of an alternation
+ /// of expressions.
+ Alternation {
+ /// The child node we are currently visiting.
+ head: &'a Hir,
+ /// The remaining child nodes to visit (which may be empty).
+ tail: &'a [Hir],
+ },
+}
+
+impl<'a> HeapVisitor<'a> {
+ fn new() -> HeapVisitor<'a> {
+ HeapVisitor { stack: vec![] }
+ }
+
+ fn visit<V: Visitor>(
+ &mut self,
+ mut hir: &'a Hir,
+ mut visitor: V,
+ ) -> Result<V::Output, V::Err> {
+ self.stack.clear();
+
+ visitor.start();
+ loop {
+ visitor.visit_pre(hir)?;
+ if let Some(x) = self.induct(hir) {
+ let child = x.child();
+ self.stack.push((hir, x));
+ hir = child;
+ continue;
+ }
+ // No induction means we have a base case, so we can post visit
+ // it now.
+ visitor.visit_post(hir)?;
+
+ // At this point, we now try to pop our call stack until it is
+ // either empty or we hit another inductive case.
+ loop {
+ let (post_hir, frame) = match self.stack.pop() {
+ None => return visitor.finish(),
+ Some((post_hir, frame)) => (post_hir, frame),
+ };
+ // If this is a concat/alternate, then we might have additional
+ // inductive steps to process.
+ if let Some(x) = self.pop(frame) {
+ if let Frame::Alternation { .. } = x {
+ visitor.visit_alternation_in()?;
+ }
+ hir = x.child();
+ self.stack.push((post_hir, x));
+ break;
+ }
+ // Otherwise, we've finished visiting all the child nodes for
+ // this HIR, so we can post visit it now.
+ visitor.visit_post(post_hir)?;
+ }
+ }
+ }
+
+ /// Build a stack frame for the given HIR if one is needed (which occurs if
+ /// and only if there are child nodes in the HIR). Otherwise, return None.
+ fn induct(&mut self, hir: &'a Hir) -> Option<Frame<'a>> {
+ match *hir.kind() {
+ HirKind::Repetition(ref x) => Some(Frame::Repetition(x)),
+ HirKind::Group(ref x) => Some(Frame::Group(x)),
+ HirKind::Concat(ref x) if x.is_empty() => None,
+ HirKind::Concat(ref x) => {
+ Some(Frame::Concat { head: &x[0], tail: &x[1..] })
+ }
+ HirKind::Alternation(ref x) if x.is_empty() => None,
+ HirKind::Alternation(ref x) => {
+ Some(Frame::Alternation { head: &x[0], tail: &x[1..] })
+ }
+ _ => None,
+ }
+ }
+
+ /// Pops the given frame. If the frame has an additional inductive step,
+ /// then return it, otherwise return `None`.
+ fn pop(&self, induct: Frame<'a>) -> Option<Frame<'a>> {
+ match induct {
+ Frame::Repetition(_) => None,
+ Frame::Group(_) => None,
+ Frame::Concat { tail, .. } => {
+ if tail.is_empty() {
+ None
+ } else {
+ Some(Frame::Concat { head: &tail[0], tail: &tail[1..] })
+ }
+ }
+ Frame::Alternation { tail, .. } => {
+ if tail.is_empty() {
+ None
+ } else {
+ Some(Frame::Alternation {
+ head: &tail[0],
+ tail: &tail[1..],
+ })
+ }
+ }
+ }
+ }
+}
+
+impl<'a> Frame<'a> {
+ /// Perform the next inductive step on this frame and return the next
+ /// child HIR node to visit.
+ fn child(&self) -> &'a Hir {
+ match *self {
+ Frame::Repetition(rep) => &rep.hir,
+ Frame::Group(group) => &group.hir,
+ Frame::Concat { head, .. } => head,
+ Frame::Alternation { head, .. } => head,
+ }
+ }
+}