summaryrefslogtreecommitdiffstats
path: root/third_party/rust/regex/src/compile.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/regex/src/compile.rs')
-rw-r--r--third_party/rust/regex/src/compile.rs1264
1 files changed, 1264 insertions, 0 deletions
diff --git a/third_party/rust/regex/src/compile.rs b/third_party/rust/regex/src/compile.rs
new file mode 100644
index 0000000000..90ca25015f
--- /dev/null
+++ b/third_party/rust/regex/src/compile.rs
@@ -0,0 +1,1264 @@
+use std::collections::HashMap;
+use std::fmt;
+use std::iter;
+use std::result;
+use std::sync::Arc;
+
+use regex_syntax::hir::{self, Hir};
+use regex_syntax::is_word_byte;
+use regex_syntax::utf8::{Utf8Range, Utf8Sequence, Utf8Sequences};
+
+use crate::prog::{
+ EmptyLook, Inst, InstBytes, InstChar, InstEmptyLook, InstPtr, InstRanges,
+ InstSave, InstSplit, Program,
+};
+
+use crate::Error;
+
+type Result = result::Result<Patch, Error>;
+type ResultOrEmpty = result::Result<Option<Patch>, Error>;
+
+#[derive(Debug)]
+struct Patch {
+ hole: Hole,
+ entry: InstPtr,
+}
+
+/// A compiler translates a regular expression AST to a sequence of
+/// instructions. The sequence of instructions represents an NFA.
+// `Compiler` is only public via the `internal` module, so avoid deriving
+// `Debug`.
+#[allow(missing_debug_implementations)]
+pub struct Compiler {
+ insts: Vec<MaybeInst>,
+ compiled: Program,
+ capture_name_idx: HashMap<String, usize>,
+ num_exprs: usize,
+ size_limit: usize,
+ suffix_cache: SuffixCache,
+ utf8_seqs: Option<Utf8Sequences>,
+ byte_classes: ByteClassSet,
+ // This keeps track of extra bytes allocated while compiling the regex
+ // program. Currently, this corresponds to two things. First is the heap
+ // memory allocated by Unicode character classes ('InstRanges'). Second is
+ // a "fake" amount of memory used by empty sub-expressions, so that enough
+ // empty sub-expressions will ultimately trigger the compiler to bail
+ // because of a size limit restriction. (That empty sub-expressions don't
+ // add to heap memory usage is more-or-less an implementation detail.) In
+ // the second case, if we don't bail, then an excessively large repetition
+ // on an empty sub-expression can result in the compiler using a very large
+ // amount of CPU time.
+ extra_inst_bytes: usize,
+}
+
+impl Compiler {
+ /// Create a new regular expression compiler.
+ ///
+ /// Various options can be set before calling `compile` on an expression.
+ pub fn new() -> Self {
+ Compiler {
+ insts: vec![],
+ compiled: Program::new(),
+ capture_name_idx: HashMap::new(),
+ num_exprs: 0,
+ size_limit: 10 * (1 << 20),
+ suffix_cache: SuffixCache::new(1000),
+ utf8_seqs: Some(Utf8Sequences::new('\x00', '\x00')),
+ byte_classes: ByteClassSet::new(),
+ extra_inst_bytes: 0,
+ }
+ }
+
+ /// The size of the resulting program is limited by size_limit. If
+ /// the program approximately exceeds the given size (in bytes), then
+ /// compilation will stop and return an error.
+ pub fn size_limit(mut self, size_limit: usize) -> Self {
+ self.size_limit = size_limit;
+ self
+ }
+
+ /// If bytes is true, then the program is compiled as a byte based
+ /// automaton, which incorporates UTF-8 decoding into the machine. If it's
+ /// false, then the automaton is Unicode scalar value based, e.g., an
+ /// engine utilizing such an automaton is responsible for UTF-8 decoding.
+ ///
+ /// The specific invariant is that when returning a byte based machine,
+ /// the neither the `Char` nor `Ranges` instructions are produced.
+ /// Conversely, when producing a Unicode scalar value machine, the `Bytes`
+ /// instruction is never produced.
+ ///
+ /// Note that `dfa(true)` implies `bytes(true)`.
+ pub fn bytes(mut self, yes: bool) -> Self {
+ self.compiled.is_bytes = yes;
+ self
+ }
+
+ /// When disabled, the program compiled may match arbitrary bytes.
+ ///
+ /// When enabled (the default), all compiled programs exclusively match
+ /// valid UTF-8 bytes.
+ pub fn only_utf8(mut self, yes: bool) -> Self {
+ self.compiled.only_utf8 = yes;
+ self
+ }
+
+ /// When set, the machine returned is suitable for use in the DFA matching
+ /// engine.
+ ///
+ /// In particular, this ensures that if the regex is not anchored in the
+ /// beginning, then a preceding `.*?` is included in the program. (The NFA
+ /// based engines handle the preceding `.*?` explicitly, which is difficult
+ /// or impossible in the DFA engine.)
+ pub fn dfa(mut self, yes: bool) -> Self {
+ self.compiled.is_dfa = yes;
+ self
+ }
+
+ /// When set, the machine returned is suitable for matching text in
+ /// reverse. In particular, all concatenations are flipped.
+ pub fn reverse(mut self, yes: bool) -> Self {
+ self.compiled.is_reverse = yes;
+ self
+ }
+
+ /// Compile a regular expression given its AST.
+ ///
+ /// The compiler is guaranteed to succeed unless the program exceeds the
+ /// specified size limit. If the size limit is exceeded, then compilation
+ /// stops and returns an error.
+ pub fn compile(mut self, exprs: &[Hir]) -> result::Result<Program, Error> {
+ debug_assert!(!exprs.is_empty());
+ self.num_exprs = exprs.len();
+ if exprs.len() == 1 {
+ self.compile_one(&exprs[0])
+ } else {
+ self.compile_many(exprs)
+ }
+ }
+
+ fn compile_one(mut self, expr: &Hir) -> result::Result<Program, Error> {
+ // If we're compiling a forward DFA and we aren't anchored, then
+ // add a `.*?` before the first capture group.
+ // Other matching engines handle this by baking the logic into the
+ // matching engine itself.
+ let mut dotstar_patch = Patch { hole: Hole::None, entry: 0 };
+ self.compiled.is_anchored_start = expr.is_anchored_start();
+ self.compiled.is_anchored_end = expr.is_anchored_end();
+ if self.compiled.needs_dotstar() {
+ dotstar_patch = self.c_dotstar()?;
+ self.compiled.start = dotstar_patch.entry;
+ }
+ self.compiled.captures = vec![None];
+ let patch =
+ self.c_capture(0, expr)?.unwrap_or_else(|| self.next_inst());
+ if self.compiled.needs_dotstar() {
+ self.fill(dotstar_patch.hole, patch.entry);
+ } else {
+ self.compiled.start = patch.entry;
+ }
+ self.fill_to_next(patch.hole);
+ self.compiled.matches = vec![self.insts.len()];
+ self.push_compiled(Inst::Match(0));
+ self.compile_finish()
+ }
+
+ fn compile_many(
+ mut self,
+ exprs: &[Hir],
+ ) -> result::Result<Program, Error> {
+ debug_assert!(exprs.len() > 1);
+
+ self.compiled.is_anchored_start =
+ exprs.iter().all(|e| e.is_anchored_start());
+ self.compiled.is_anchored_end =
+ exprs.iter().all(|e| e.is_anchored_end());
+ let mut dotstar_patch = Patch { hole: Hole::None, entry: 0 };
+ if self.compiled.needs_dotstar() {
+ dotstar_patch = self.c_dotstar()?;
+ self.compiled.start = dotstar_patch.entry;
+ } else {
+ self.compiled.start = 0; // first instruction is always split
+ }
+ self.fill_to_next(dotstar_patch.hole);
+
+ let mut prev_hole = Hole::None;
+ for (i, expr) in exprs[0..exprs.len() - 1].iter().enumerate() {
+ self.fill_to_next(prev_hole);
+ let split = self.push_split_hole();
+ let Patch { hole, entry } =
+ self.c_capture(0, expr)?.unwrap_or_else(|| self.next_inst());
+ self.fill_to_next(hole);
+ self.compiled.matches.push(self.insts.len());
+ self.push_compiled(Inst::Match(i));
+ prev_hole = self.fill_split(split, Some(entry), None);
+ }
+ let i = exprs.len() - 1;
+ let Patch { hole, entry } =
+ self.c_capture(0, &exprs[i])?.unwrap_or_else(|| self.next_inst());
+ self.fill(prev_hole, entry);
+ self.fill_to_next(hole);
+ self.compiled.matches.push(self.insts.len());
+ self.push_compiled(Inst::Match(i));
+ self.compile_finish()
+ }
+
+ fn compile_finish(mut self) -> result::Result<Program, Error> {
+ self.compiled.insts =
+ self.insts.into_iter().map(|inst| inst.unwrap()).collect();
+ self.compiled.byte_classes = self.byte_classes.byte_classes();
+ self.compiled.capture_name_idx = Arc::new(self.capture_name_idx);
+ Ok(self.compiled)
+ }
+
+ /// Compile expr into self.insts, returning a patch on success,
+ /// or an error if we run out of memory.
+ ///
+ /// All of the c_* methods of the compiler share the contract outlined
+ /// here.
+ ///
+ /// The main thing that a c_* method does is mutate `self.insts`
+ /// to add a list of mostly compiled instructions required to execute
+ /// the given expression. `self.insts` contains MaybeInsts rather than
+ /// Insts because there is some backpatching required.
+ ///
+ /// The `Patch` value returned by each c_* method provides metadata
+ /// about the compiled instructions emitted to `self.insts`. The
+ /// `entry` member of the patch refers to the first instruction
+ /// (the entry point), while the `hole` member contains zero or
+ /// more offsets to partial instructions that need to be backpatched.
+ /// The c_* routine can't know where its list of instructions are going to
+ /// jump to after execution, so it is up to the caller to patch
+ /// these jumps to point to the right place. So compiling some
+ /// expression, e, we would end up with a situation that looked like:
+ ///
+ /// ```text
+ /// self.insts = [ ..., i1, i2, ..., iexit1, ..., iexitn, ...]
+ /// ^ ^ ^
+ /// | \ /
+ /// entry \ /
+ /// hole
+ /// ```
+ ///
+ /// To compile two expressions, e1 and e2, concatenated together we
+ /// would do:
+ ///
+ /// ```ignore
+ /// let patch1 = self.c(e1);
+ /// let patch2 = self.c(e2);
+ /// ```
+ ///
+ /// while leaves us with a situation that looks like
+ ///
+ /// ```text
+ /// self.insts = [ ..., i1, ..., iexit1, ..., i2, ..., iexit2 ]
+ /// ^ ^ ^ ^
+ /// | | | |
+ /// entry1 hole1 entry2 hole2
+ /// ```
+ ///
+ /// Then to merge the two patches together into one we would backpatch
+ /// hole1 with entry2 and return a new patch that enters at entry1
+ /// and has hole2 for a hole. In fact, if you look at the c_concat
+ /// method you will see that it does exactly this, though it handles
+ /// a list of expressions rather than just the two that we use for
+ /// an example.
+ ///
+ /// Ok(None) is returned when an expression is compiled to no
+ /// instruction, and so no patch.entry value makes sense.
+ fn c(&mut self, expr: &Hir) -> ResultOrEmpty {
+ use crate::prog;
+ use regex_syntax::hir::HirKind::*;
+
+ self.check_size()?;
+ match *expr.kind() {
+ Empty => self.c_empty(),
+ Literal(hir::Literal::Unicode(c)) => self.c_char(c),
+ Literal(hir::Literal::Byte(b)) => {
+ assert!(self.compiled.uses_bytes());
+ self.c_byte(b)
+ }
+ Class(hir::Class::Unicode(ref cls)) => self.c_class(cls.ranges()),
+ Class(hir::Class::Bytes(ref cls)) => {
+ if self.compiled.uses_bytes() {
+ self.c_class_bytes(cls.ranges())
+ } else {
+ assert!(cls.is_all_ascii());
+ let mut char_ranges = vec![];
+ for r in cls.iter() {
+ let (s, e) = (r.start() as char, r.end() as char);
+ char_ranges.push(hir::ClassUnicodeRange::new(s, e));
+ }
+ self.c_class(&char_ranges)
+ }
+ }
+ Anchor(hir::Anchor::StartLine) if self.compiled.is_reverse => {
+ self.byte_classes.set_range(b'\n', b'\n');
+ self.c_empty_look(prog::EmptyLook::EndLine)
+ }
+ Anchor(hir::Anchor::StartLine) => {
+ self.byte_classes.set_range(b'\n', b'\n');
+ self.c_empty_look(prog::EmptyLook::StartLine)
+ }
+ Anchor(hir::Anchor::EndLine) if self.compiled.is_reverse => {
+ self.byte_classes.set_range(b'\n', b'\n');
+ self.c_empty_look(prog::EmptyLook::StartLine)
+ }
+ Anchor(hir::Anchor::EndLine) => {
+ self.byte_classes.set_range(b'\n', b'\n');
+ self.c_empty_look(prog::EmptyLook::EndLine)
+ }
+ Anchor(hir::Anchor::StartText) if self.compiled.is_reverse => {
+ self.c_empty_look(prog::EmptyLook::EndText)
+ }
+ Anchor(hir::Anchor::StartText) => {
+ self.c_empty_look(prog::EmptyLook::StartText)
+ }
+ Anchor(hir::Anchor::EndText) if self.compiled.is_reverse => {
+ self.c_empty_look(prog::EmptyLook::StartText)
+ }
+ Anchor(hir::Anchor::EndText) => {
+ self.c_empty_look(prog::EmptyLook::EndText)
+ }
+ WordBoundary(hir::WordBoundary::Unicode) => {
+ if !cfg!(feature = "unicode-perl") {
+ return Err(Error::Syntax(
+ "Unicode word boundaries are unavailable when \
+ the unicode-perl feature is disabled"
+ .to_string(),
+ ));
+ }
+ self.compiled.has_unicode_word_boundary = true;
+ self.byte_classes.set_word_boundary();
+ // We also make sure that all ASCII bytes are in a different
+ // class from non-ASCII bytes. Otherwise, it's possible for
+ // ASCII bytes to get lumped into the same class as non-ASCII
+ // bytes. This in turn may cause the lazy DFA to falsely start
+ // when it sees an ASCII byte that maps to a byte class with
+ // non-ASCII bytes. This ensures that never happens.
+ self.byte_classes.set_range(0, 0x7F);
+ self.c_empty_look(prog::EmptyLook::WordBoundary)
+ }
+ WordBoundary(hir::WordBoundary::UnicodeNegate) => {
+ if !cfg!(feature = "unicode-perl") {
+ return Err(Error::Syntax(
+ "Unicode word boundaries are unavailable when \
+ the unicode-perl feature is disabled"
+ .to_string(),
+ ));
+ }
+ self.compiled.has_unicode_word_boundary = true;
+ self.byte_classes.set_word_boundary();
+ // See comments above for why we set the ASCII range here.
+ self.byte_classes.set_range(0, 0x7F);
+ self.c_empty_look(prog::EmptyLook::NotWordBoundary)
+ }
+ WordBoundary(hir::WordBoundary::Ascii) => {
+ self.byte_classes.set_word_boundary();
+ self.c_empty_look(prog::EmptyLook::WordBoundaryAscii)
+ }
+ WordBoundary(hir::WordBoundary::AsciiNegate) => {
+ self.byte_classes.set_word_boundary();
+ self.c_empty_look(prog::EmptyLook::NotWordBoundaryAscii)
+ }
+ Group(ref g) => match g.kind {
+ hir::GroupKind::NonCapturing => self.c(&g.hir),
+ hir::GroupKind::CaptureIndex(index) => {
+ if index as usize >= self.compiled.captures.len() {
+ self.compiled.captures.push(None);
+ }
+ self.c_capture(2 * index as usize, &g.hir)
+ }
+ hir::GroupKind::CaptureName { index, ref name } => {
+ if index as usize >= self.compiled.captures.len() {
+ let n = name.to_string();
+ self.compiled.captures.push(Some(n.clone()));
+ self.capture_name_idx.insert(n, index as usize);
+ }
+ self.c_capture(2 * index as usize, &g.hir)
+ }
+ },
+ Concat(ref es) => {
+ if self.compiled.is_reverse {
+ self.c_concat(es.iter().rev())
+ } else {
+ self.c_concat(es)
+ }
+ }
+ Alternation(ref es) => self.c_alternate(&**es),
+ Repetition(ref rep) => self.c_repeat(rep),
+ }
+ }
+
+ fn c_empty(&mut self) -> ResultOrEmpty {
+ // See: https://github.com/rust-lang/regex/security/advisories/GHSA-m5pq-gvj9-9vr8
+ // See: CVE-2022-24713
+ //
+ // Since 'empty' sub-expressions don't increase the size of
+ // the actual compiled object, we "fake" an increase in its
+ // size so that our 'check_size_limit' routine will eventually
+ // stop compilation if there are too many empty sub-expressions
+ // (e.g., via a large repetition).
+ self.extra_inst_bytes += std::mem::size_of::<Inst>();
+ Ok(None)
+ }
+
+ fn c_capture(&mut self, first_slot: usize, expr: &Hir) -> ResultOrEmpty {
+ if self.num_exprs > 1 || self.compiled.is_dfa {
+ // Don't ever compile Save instructions for regex sets because
+ // they are never used. They are also never used in DFA programs
+ // because DFAs can't handle captures.
+ self.c(expr)
+ } else {
+ let entry = self.insts.len();
+ let hole = self.push_hole(InstHole::Save { slot: first_slot });
+ let patch = self.c(expr)?.unwrap_or_else(|| self.next_inst());
+ self.fill(hole, patch.entry);
+ self.fill_to_next(patch.hole);
+ let hole = self.push_hole(InstHole::Save { slot: first_slot + 1 });
+ Ok(Some(Patch { hole, entry }))
+ }
+ }
+
+ fn c_dotstar(&mut self) -> Result {
+ Ok(if !self.compiled.only_utf8() {
+ self.c(&Hir::repetition(hir::Repetition {
+ kind: hir::RepetitionKind::ZeroOrMore,
+ greedy: false,
+ hir: Box::new(Hir::any(true)),
+ }))?
+ .unwrap()
+ } else {
+ self.c(&Hir::repetition(hir::Repetition {
+ kind: hir::RepetitionKind::ZeroOrMore,
+ greedy: false,
+ hir: Box::new(Hir::any(false)),
+ }))?
+ .unwrap()
+ })
+ }
+
+ fn c_char(&mut self, c: char) -> ResultOrEmpty {
+ if self.compiled.uses_bytes() {
+ if c.is_ascii() {
+ let b = c as u8;
+ let hole =
+ self.push_hole(InstHole::Bytes { start: b, end: b });
+ self.byte_classes.set_range(b, b);
+ Ok(Some(Patch { hole, entry: self.insts.len() - 1 }))
+ } else {
+ self.c_class(&[hir::ClassUnicodeRange::new(c, c)])
+ }
+ } else {
+ let hole = self.push_hole(InstHole::Char { c });
+ Ok(Some(Patch { hole, entry: self.insts.len() - 1 }))
+ }
+ }
+
+ fn c_class(&mut self, ranges: &[hir::ClassUnicodeRange]) -> ResultOrEmpty {
+ use std::mem::size_of;
+
+ assert!(!ranges.is_empty());
+ if self.compiled.uses_bytes() {
+ Ok(Some(CompileClass { c: self, ranges }.compile()?))
+ } else {
+ let ranges: Vec<(char, char)> =
+ ranges.iter().map(|r| (r.start(), r.end())).collect();
+ let hole = if ranges.len() == 1 && ranges[0].0 == ranges[0].1 {
+ self.push_hole(InstHole::Char { c: ranges[0].0 })
+ } else {
+ self.extra_inst_bytes +=
+ ranges.len() * (size_of::<char>() * 2);
+ self.push_hole(InstHole::Ranges { ranges })
+ };
+ Ok(Some(Patch { hole, entry: self.insts.len() - 1 }))
+ }
+ }
+
+ fn c_byte(&mut self, b: u8) -> ResultOrEmpty {
+ self.c_class_bytes(&[hir::ClassBytesRange::new(b, b)])
+ }
+
+ fn c_class_bytes(
+ &mut self,
+ ranges: &[hir::ClassBytesRange],
+ ) -> ResultOrEmpty {
+ debug_assert!(!ranges.is_empty());
+
+ let first_split_entry = self.insts.len();
+ let mut holes = vec![];
+ let mut prev_hole = Hole::None;
+ for r in &ranges[0..ranges.len() - 1] {
+ self.fill_to_next(prev_hole);
+ let split = self.push_split_hole();
+ let next = self.insts.len();
+ self.byte_classes.set_range(r.start(), r.end());
+ holes.push(self.push_hole(InstHole::Bytes {
+ start: r.start(),
+ end: r.end(),
+ }));
+ prev_hole = self.fill_split(split, Some(next), None);
+ }
+ let next = self.insts.len();
+ let r = &ranges[ranges.len() - 1];
+ self.byte_classes.set_range(r.start(), r.end());
+ holes.push(
+ self.push_hole(InstHole::Bytes { start: r.start(), end: r.end() }),
+ );
+ self.fill(prev_hole, next);
+ Ok(Some(Patch { hole: Hole::Many(holes), entry: first_split_entry }))
+ }
+
+ fn c_empty_look(&mut self, look: EmptyLook) -> ResultOrEmpty {
+ let hole = self.push_hole(InstHole::EmptyLook { look });
+ Ok(Some(Patch { hole, entry: self.insts.len() - 1 }))
+ }
+
+ fn c_concat<'a, I>(&mut self, exprs: I) -> ResultOrEmpty
+ where
+ I: IntoIterator<Item = &'a Hir>,
+ {
+ let mut exprs = exprs.into_iter();
+ let Patch { mut hole, entry } = loop {
+ match exprs.next() {
+ None => return self.c_empty(),
+ Some(e) => {
+ if let Some(p) = self.c(e)? {
+ break p;
+ }
+ }
+ }
+ };
+ for e in exprs {
+ if let Some(p) = self.c(e)? {
+ self.fill(hole, p.entry);
+ hole = p.hole;
+ }
+ }
+ Ok(Some(Patch { hole, entry }))
+ }
+
+ fn c_alternate(&mut self, exprs: &[Hir]) -> ResultOrEmpty {
+ debug_assert!(
+ exprs.len() >= 2,
+ "alternates must have at least 2 exprs"
+ );
+
+ // Initial entry point is always the first split.
+ let first_split_entry = self.insts.len();
+
+ // Save up all of the holes from each alternate. They will all get
+ // patched to point to the same location.
+ let mut holes = vec![];
+
+ // true indicates that the hole is a split where we want to fill
+ // the second branch.
+ let mut prev_hole = (Hole::None, false);
+ for e in &exprs[0..exprs.len() - 1] {
+ if prev_hole.1 {
+ let next = self.insts.len();
+ self.fill_split(prev_hole.0, None, Some(next));
+ } else {
+ self.fill_to_next(prev_hole.0);
+ }
+ let split = self.push_split_hole();
+ if let Some(Patch { hole, entry }) = self.c(e)? {
+ holes.push(hole);
+ prev_hole = (self.fill_split(split, Some(entry), None), false);
+ } else {
+ let (split1, split2) = split.dup_one();
+ holes.push(split1);
+ prev_hole = (split2, true);
+ }
+ }
+ if let Some(Patch { hole, entry }) = self.c(&exprs[exprs.len() - 1])? {
+ holes.push(hole);
+ if prev_hole.1 {
+ self.fill_split(prev_hole.0, None, Some(entry));
+ } else {
+ self.fill(prev_hole.0, entry);
+ }
+ } else {
+ // We ignore prev_hole.1. When it's true, it means we have two
+ // empty branches both pushing prev_hole.0 into holes, so both
+ // branches will go to the same place anyway.
+ holes.push(prev_hole.0);
+ }
+ Ok(Some(Patch { hole: Hole::Many(holes), entry: first_split_entry }))
+ }
+
+ fn c_repeat(&mut self, rep: &hir::Repetition) -> ResultOrEmpty {
+ use regex_syntax::hir::RepetitionKind::*;
+ match rep.kind {
+ ZeroOrOne => self.c_repeat_zero_or_one(&rep.hir, rep.greedy),
+ ZeroOrMore => self.c_repeat_zero_or_more(&rep.hir, rep.greedy),
+ OneOrMore => self.c_repeat_one_or_more(&rep.hir, rep.greedy),
+ Range(hir::RepetitionRange::Exactly(min_max)) => {
+ self.c_repeat_range(&rep.hir, rep.greedy, min_max, min_max)
+ }
+ Range(hir::RepetitionRange::AtLeast(min)) => {
+ self.c_repeat_range_min_or_more(&rep.hir, rep.greedy, min)
+ }
+ Range(hir::RepetitionRange::Bounded(min, max)) => {
+ self.c_repeat_range(&rep.hir, rep.greedy, min, max)
+ }
+ }
+ }
+
+ fn c_repeat_zero_or_one(
+ &mut self,
+ expr: &Hir,
+ greedy: bool,
+ ) -> ResultOrEmpty {
+ let split_entry = self.insts.len();
+ let split = self.push_split_hole();
+ let Patch { hole: hole_rep, entry: entry_rep } = match self.c(expr)? {
+ Some(p) => p,
+ None => return self.pop_split_hole(),
+ };
+ let split_hole = if greedy {
+ self.fill_split(split, Some(entry_rep), None)
+ } else {
+ self.fill_split(split, None, Some(entry_rep))
+ };
+ let holes = vec![hole_rep, split_hole];
+ Ok(Some(Patch { hole: Hole::Many(holes), entry: split_entry }))
+ }
+
+ fn c_repeat_zero_or_more(
+ &mut self,
+ expr: &Hir,
+ greedy: bool,
+ ) -> ResultOrEmpty {
+ let split_entry = self.insts.len();
+ let split = self.push_split_hole();
+ let Patch { hole: hole_rep, entry: entry_rep } = match self.c(expr)? {
+ Some(p) => p,
+ None => return self.pop_split_hole(),
+ };
+
+ self.fill(hole_rep, split_entry);
+ let split_hole = if greedy {
+ self.fill_split(split, Some(entry_rep), None)
+ } else {
+ self.fill_split(split, None, Some(entry_rep))
+ };
+ Ok(Some(Patch { hole: split_hole, entry: split_entry }))
+ }
+
+ fn c_repeat_one_or_more(
+ &mut self,
+ expr: &Hir,
+ greedy: bool,
+ ) -> ResultOrEmpty {
+ let Patch { hole: hole_rep, entry: entry_rep } = match self.c(expr)? {
+ Some(p) => p,
+ None => return Ok(None),
+ };
+ self.fill_to_next(hole_rep);
+ let split = self.push_split_hole();
+
+ let split_hole = if greedy {
+ self.fill_split(split, Some(entry_rep), None)
+ } else {
+ self.fill_split(split, None, Some(entry_rep))
+ };
+ Ok(Some(Patch { hole: split_hole, entry: entry_rep }))
+ }
+
+ fn c_repeat_range_min_or_more(
+ &mut self,
+ expr: &Hir,
+ greedy: bool,
+ min: u32,
+ ) -> ResultOrEmpty {
+ let min = u32_to_usize(min);
+ // Using next_inst() is ok, because we can't return it (concat would
+ // have to return Some(_) while c_repeat_range_min_or_more returns
+ // None).
+ let patch_concat = self
+ .c_concat(iter::repeat(expr).take(min))?
+ .unwrap_or_else(|| self.next_inst());
+ if let Some(patch_rep) = self.c_repeat_zero_or_more(expr, greedy)? {
+ self.fill(patch_concat.hole, patch_rep.entry);
+ Ok(Some(Patch { hole: patch_rep.hole, entry: patch_concat.entry }))
+ } else {
+ Ok(None)
+ }
+ }
+
+ fn c_repeat_range(
+ &mut self,
+ expr: &Hir,
+ greedy: bool,
+ min: u32,
+ max: u32,
+ ) -> ResultOrEmpty {
+ let (min, max) = (u32_to_usize(min), u32_to_usize(max));
+ debug_assert!(min <= max);
+ let patch_concat = self.c_concat(iter::repeat(expr).take(min))?;
+ if min == max {
+ return Ok(patch_concat);
+ }
+ // Same reasoning as in c_repeat_range_min_or_more (we know that min <
+ // max at this point).
+ let patch_concat = patch_concat.unwrap_or_else(|| self.next_inst());
+ let initial_entry = patch_concat.entry;
+ // It is much simpler to compile, e.g., `a{2,5}` as:
+ //
+ // aaa?a?a?
+ //
+ // But you end up with a sequence of instructions like this:
+ //
+ // 0: 'a'
+ // 1: 'a',
+ // 2: split(3, 4)
+ // 3: 'a'
+ // 4: split(5, 6)
+ // 5: 'a'
+ // 6: split(7, 8)
+ // 7: 'a'
+ // 8: MATCH
+ //
+ // This is *incredibly* inefficient because the splits end
+ // up forming a chain, which has to be resolved everything a
+ // transition is followed.
+ let mut holes = vec![];
+ let mut prev_hole = patch_concat.hole;
+ for _ in min..max {
+ self.fill_to_next(prev_hole);
+ let split = self.push_split_hole();
+ let Patch { hole, entry } = match self.c(expr)? {
+ Some(p) => p,
+ None => return self.pop_split_hole(),
+ };
+ prev_hole = hole;
+ if greedy {
+ holes.push(self.fill_split(split, Some(entry), None));
+ } else {
+ holes.push(self.fill_split(split, None, Some(entry)));
+ }
+ }
+ holes.push(prev_hole);
+ Ok(Some(Patch { hole: Hole::Many(holes), entry: initial_entry }))
+ }
+
+ /// Can be used as a default value for the c_* functions when the call to
+ /// c_function is followed by inserting at least one instruction that is
+ /// always executed after the ones written by the c* function.
+ fn next_inst(&self) -> Patch {
+ Patch { hole: Hole::None, entry: self.insts.len() }
+ }
+
+ fn fill(&mut self, hole: Hole, goto: InstPtr) {
+ match hole {
+ Hole::None => {}
+ Hole::One(pc) => {
+ self.insts[pc].fill(goto);
+ }
+ Hole::Many(holes) => {
+ for hole in holes {
+ self.fill(hole, goto);
+ }
+ }
+ }
+ }
+
+ fn fill_to_next(&mut self, hole: Hole) {
+ let next = self.insts.len();
+ self.fill(hole, next);
+ }
+
+ fn fill_split(
+ &mut self,
+ hole: Hole,
+ goto1: Option<InstPtr>,
+ goto2: Option<InstPtr>,
+ ) -> Hole {
+ match hole {
+ Hole::None => Hole::None,
+ Hole::One(pc) => match (goto1, goto2) {
+ (Some(goto1), Some(goto2)) => {
+ self.insts[pc].fill_split(goto1, goto2);
+ Hole::None
+ }
+ (Some(goto1), None) => {
+ self.insts[pc].half_fill_split_goto1(goto1);
+ Hole::One(pc)
+ }
+ (None, Some(goto2)) => {
+ self.insts[pc].half_fill_split_goto2(goto2);
+ Hole::One(pc)
+ }
+ (None, None) => unreachable!(
+ "at least one of the split \
+ holes must be filled"
+ ),
+ },
+ Hole::Many(holes) => {
+ let mut new_holes = vec![];
+ for hole in holes {
+ new_holes.push(self.fill_split(hole, goto1, goto2));
+ }
+ if new_holes.is_empty() {
+ Hole::None
+ } else if new_holes.len() == 1 {
+ new_holes.pop().unwrap()
+ } else {
+ Hole::Many(new_holes)
+ }
+ }
+ }
+ }
+
+ fn push_compiled(&mut self, inst: Inst) {
+ self.insts.push(MaybeInst::Compiled(inst));
+ }
+
+ fn push_hole(&mut self, inst: InstHole) -> Hole {
+ let hole = self.insts.len();
+ self.insts.push(MaybeInst::Uncompiled(inst));
+ Hole::One(hole)
+ }
+
+ fn push_split_hole(&mut self) -> Hole {
+ let hole = self.insts.len();
+ self.insts.push(MaybeInst::Split);
+ Hole::One(hole)
+ }
+
+ fn pop_split_hole(&mut self) -> ResultOrEmpty {
+ self.insts.pop();
+ Ok(None)
+ }
+
+ fn check_size(&self) -> result::Result<(), Error> {
+ use std::mem::size_of;
+
+ let size =
+ self.extra_inst_bytes + (self.insts.len() * size_of::<Inst>());
+ if size > self.size_limit {
+ Err(Error::CompiledTooBig(self.size_limit))
+ } else {
+ Ok(())
+ }
+ }
+}
+
+#[derive(Debug)]
+enum Hole {
+ None,
+ One(InstPtr),
+ Many(Vec<Hole>),
+}
+
+impl Hole {
+ fn dup_one(self) -> (Self, Self) {
+ match self {
+ Hole::One(pc) => (Hole::One(pc), Hole::One(pc)),
+ Hole::None | Hole::Many(_) => {
+ unreachable!("must be called on single hole")
+ }
+ }
+ }
+}
+
+#[derive(Clone, Debug)]
+enum MaybeInst {
+ Compiled(Inst),
+ Uncompiled(InstHole),
+ Split,
+ Split1(InstPtr),
+ Split2(InstPtr),
+}
+
+impl MaybeInst {
+ fn fill(&mut self, goto: InstPtr) {
+ let maybeinst = match *self {
+ MaybeInst::Split => MaybeInst::Split1(goto),
+ MaybeInst::Uncompiled(ref inst) => {
+ MaybeInst::Compiled(inst.fill(goto))
+ }
+ MaybeInst::Split1(goto1) => {
+ MaybeInst::Compiled(Inst::Split(InstSplit {
+ goto1,
+ goto2: goto,
+ }))
+ }
+ MaybeInst::Split2(goto2) => {
+ MaybeInst::Compiled(Inst::Split(InstSplit {
+ goto1: goto,
+ goto2,
+ }))
+ }
+ _ => unreachable!(
+ "not all instructions were compiled! \
+ found uncompiled instruction: {:?}",
+ self
+ ),
+ };
+ *self = maybeinst;
+ }
+
+ fn fill_split(&mut self, goto1: InstPtr, goto2: InstPtr) {
+ let filled = match *self {
+ MaybeInst::Split => Inst::Split(InstSplit { goto1, goto2 }),
+ _ => unreachable!(
+ "must be called on Split instruction, \
+ instead it was called on: {:?}",
+ self
+ ),
+ };
+ *self = MaybeInst::Compiled(filled);
+ }
+
+ fn half_fill_split_goto1(&mut self, goto1: InstPtr) {
+ let half_filled = match *self {
+ MaybeInst::Split => goto1,
+ _ => unreachable!(
+ "must be called on Split instruction, \
+ instead it was called on: {:?}",
+ self
+ ),
+ };
+ *self = MaybeInst::Split1(half_filled);
+ }
+
+ fn half_fill_split_goto2(&mut self, goto2: InstPtr) {
+ let half_filled = match *self {
+ MaybeInst::Split => goto2,
+ _ => unreachable!(
+ "must be called on Split instruction, \
+ instead it was called on: {:?}",
+ self
+ ),
+ };
+ *self = MaybeInst::Split2(half_filled);
+ }
+
+ fn unwrap(self) -> Inst {
+ match self {
+ MaybeInst::Compiled(inst) => inst,
+ _ => unreachable!(
+ "must be called on a compiled instruction, \
+ instead it was called on: {:?}",
+ self
+ ),
+ }
+ }
+}
+
+#[derive(Clone, Debug)]
+enum InstHole {
+ Save { slot: usize },
+ EmptyLook { look: EmptyLook },
+ Char { c: char },
+ Ranges { ranges: Vec<(char, char)> },
+ Bytes { start: u8, end: u8 },
+}
+
+impl InstHole {
+ fn fill(&self, goto: InstPtr) -> Inst {
+ match *self {
+ InstHole::Save { slot } => Inst::Save(InstSave { goto, slot }),
+ InstHole::EmptyLook { look } => {
+ Inst::EmptyLook(InstEmptyLook { goto, look })
+ }
+ InstHole::Char { c } => Inst::Char(InstChar { goto, c }),
+ InstHole::Ranges { ref ranges } => Inst::Ranges(InstRanges {
+ goto,
+ ranges: ranges.clone().into_boxed_slice(),
+ }),
+ InstHole::Bytes { start, end } => {
+ Inst::Bytes(InstBytes { goto, start, end })
+ }
+ }
+ }
+}
+
+struct CompileClass<'a, 'b> {
+ c: &'a mut Compiler,
+ ranges: &'b [hir::ClassUnicodeRange],
+}
+
+impl<'a, 'b> CompileClass<'a, 'b> {
+ fn compile(mut self) -> Result {
+ let mut holes = vec![];
+ let mut initial_entry = None;
+ let mut last_split = Hole::None;
+ let mut utf8_seqs = self.c.utf8_seqs.take().unwrap();
+ self.c.suffix_cache.clear();
+
+ for (i, range) in self.ranges.iter().enumerate() {
+ let is_last_range = i + 1 == self.ranges.len();
+ utf8_seqs.reset(range.start(), range.end());
+ let mut it = (&mut utf8_seqs).peekable();
+ loop {
+ let utf8_seq = match it.next() {
+ None => break,
+ Some(utf8_seq) => utf8_seq,
+ };
+ if is_last_range && it.peek().is_none() {
+ let Patch { hole, entry } = self.c_utf8_seq(&utf8_seq)?;
+ holes.push(hole);
+ self.c.fill(last_split, entry);
+ last_split = Hole::None;
+ if initial_entry.is_none() {
+ initial_entry = Some(entry);
+ }
+ } else {
+ if initial_entry.is_none() {
+ initial_entry = Some(self.c.insts.len());
+ }
+ self.c.fill_to_next(last_split);
+ last_split = self.c.push_split_hole();
+ let Patch { hole, entry } = self.c_utf8_seq(&utf8_seq)?;
+ holes.push(hole);
+ last_split =
+ self.c.fill_split(last_split, Some(entry), None);
+ }
+ }
+ }
+ self.c.utf8_seqs = Some(utf8_seqs);
+ Ok(Patch { hole: Hole::Many(holes), entry: initial_entry.unwrap() })
+ }
+
+ fn c_utf8_seq(&mut self, seq: &Utf8Sequence) -> Result {
+ if self.c.compiled.is_reverse {
+ self.c_utf8_seq_(seq)
+ } else {
+ self.c_utf8_seq_(seq.into_iter().rev())
+ }
+ }
+
+ fn c_utf8_seq_<'r, I>(&mut self, seq: I) -> Result
+ where
+ I: IntoIterator<Item = &'r Utf8Range>,
+ {
+ // The initial instruction for each UTF-8 sequence should be the same.
+ let mut from_inst = ::std::usize::MAX;
+ let mut last_hole = Hole::None;
+ for byte_range in seq {
+ let key = SuffixCacheKey {
+ from_inst,
+ start: byte_range.start,
+ end: byte_range.end,
+ };
+ {
+ let pc = self.c.insts.len();
+ if let Some(cached_pc) = self.c.suffix_cache.get(key, pc) {
+ from_inst = cached_pc;
+ continue;
+ }
+ }
+ self.c.byte_classes.set_range(byte_range.start, byte_range.end);
+ if from_inst == ::std::usize::MAX {
+ last_hole = self.c.push_hole(InstHole::Bytes {
+ start: byte_range.start,
+ end: byte_range.end,
+ });
+ } else {
+ self.c.push_compiled(Inst::Bytes(InstBytes {
+ goto: from_inst,
+ start: byte_range.start,
+ end: byte_range.end,
+ }));
+ }
+ from_inst = self.c.insts.len().checked_sub(1).unwrap();
+ debug_assert!(from_inst < ::std::usize::MAX);
+ }
+ debug_assert!(from_inst < ::std::usize::MAX);
+ Ok(Patch { hole: last_hole, entry: from_inst })
+ }
+}
+
+/// `SuffixCache` is a simple bounded hash map for caching suffix entries in
+/// UTF-8 automata. For example, consider the Unicode range \u{0}-\u{FFFF}.
+/// The set of byte ranges looks like this:
+///
+/// [0-7F]
+/// [C2-DF][80-BF]
+/// [E0][A0-BF][80-BF]
+/// [E1-EC][80-BF][80-BF]
+/// [ED][80-9F][80-BF]
+/// [EE-EF][80-BF][80-BF]
+///
+/// Each line above translates to one alternate in the compiled regex program.
+/// However, all but one of the alternates end in the same suffix, which is
+/// a waste of an instruction. The suffix cache facilitates reusing them across
+/// alternates.
+///
+/// Note that a HashMap could be trivially used for this, but we don't need its
+/// overhead. Some small bounded space (LRU style) is more than enough.
+///
+/// This uses similar idea to [`SparseSet`](../sparse/struct.SparseSet.html),
+/// except it uses hashes as original indices and then compares full keys for
+/// validation against `dense` array.
+#[derive(Debug)]
+struct SuffixCache {
+ sparse: Box<[usize]>,
+ dense: Vec<SuffixCacheEntry>,
+}
+
+#[derive(Clone, Copy, Debug, Default, Eq, Hash, PartialEq)]
+struct SuffixCacheEntry {
+ key: SuffixCacheKey,
+ pc: InstPtr,
+}
+
+#[derive(Clone, Copy, Debug, Default, Eq, Hash, PartialEq)]
+struct SuffixCacheKey {
+ from_inst: InstPtr,
+ start: u8,
+ end: u8,
+}
+
+impl SuffixCache {
+ fn new(size: usize) -> Self {
+ SuffixCache {
+ sparse: vec![0usize; size].into(),
+ dense: Vec::with_capacity(size),
+ }
+ }
+
+ fn get(&mut self, key: SuffixCacheKey, pc: InstPtr) -> Option<InstPtr> {
+ let hash = self.hash(&key);
+ let pos = &mut self.sparse[hash];
+ if let Some(entry) = self.dense.get(*pos) {
+ if entry.key == key {
+ return Some(entry.pc);
+ }
+ }
+ *pos = self.dense.len();
+ self.dense.push(SuffixCacheEntry { key, pc });
+ None
+ }
+
+ fn clear(&mut self) {
+ self.dense.clear();
+ }
+
+ fn hash(&self, suffix: &SuffixCacheKey) -> usize {
+ // Basic FNV-1a hash as described:
+ // https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
+ const FNV_PRIME: u64 = 1_099_511_628_211;
+ let mut h = 14_695_981_039_346_656_037;
+ h = (h ^ (suffix.from_inst as u64)).wrapping_mul(FNV_PRIME);
+ h = (h ^ (suffix.start as u64)).wrapping_mul(FNV_PRIME);
+ h = (h ^ (suffix.end as u64)).wrapping_mul(FNV_PRIME);
+ (h as usize) % self.sparse.len()
+ }
+}
+
+struct ByteClassSet([bool; 256]);
+
+impl ByteClassSet {
+ fn new() -> Self {
+ ByteClassSet([false; 256])
+ }
+
+ fn set_range(&mut self, start: u8, end: u8) {
+ debug_assert!(start <= end);
+ if start > 0 {
+ self.0[start as usize - 1] = true;
+ }
+ self.0[end as usize] = true;
+ }
+
+ fn set_word_boundary(&mut self) {
+ // We need to mark all ranges of bytes whose pairs result in
+ // evaluating \b differently.
+ let iswb = is_word_byte;
+ let mut b1: u16 = 0;
+ let mut b2: u16;
+ while b1 <= 255 {
+ b2 = b1 + 1;
+ while b2 <= 255 && iswb(b1 as u8) == iswb(b2 as u8) {
+ b2 += 1;
+ }
+ self.set_range(b1 as u8, (b2 - 1) as u8);
+ b1 = b2;
+ }
+ }
+
+ fn byte_classes(&self) -> Vec<u8> {
+ // N.B. If you're debugging the DFA, it's useful to simply return
+ // `(0..256).collect()`, which effectively removes the byte classes
+ // and makes the transitions easier to read.
+ // (0usize..256).map(|x| x as u8).collect()
+ let mut byte_classes = vec![0; 256];
+ let mut class = 0u8;
+ let mut i = 0;
+ loop {
+ byte_classes[i] = class as u8;
+ if i >= 255 {
+ break;
+ }
+ if self.0[i] {
+ class = class.checked_add(1).unwrap();
+ }
+ i += 1;
+ }
+ byte_classes
+ }
+}
+
+impl fmt::Debug for ByteClassSet {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_tuple("ByteClassSet").field(&&self.0[..]).finish()
+ }
+}
+
+fn u32_to_usize(n: u32) -> usize {
+ // In case usize is less than 32 bits, we need to guard against overflow.
+ // On most platforms this compiles to nothing.
+ // TODO Use `std::convert::TryFrom` once it's stable.
+ if (n as u64) > (::std::usize::MAX as u64) {
+ panic!("BUG: {} is too big to be pointer sized", n)
+ }
+ n as usize
+}
+
+#[cfg(test)]
+mod tests {
+ use super::ByteClassSet;
+
+ #[test]
+ fn byte_classes() {
+ let mut set = ByteClassSet::new();
+ set.set_range(b'a', b'z');
+ let classes = set.byte_classes();
+ assert_eq!(classes[0], 0);
+ assert_eq!(classes[1], 0);
+ assert_eq!(classes[2], 0);
+ assert_eq!(classes[b'a' as usize - 1], 0);
+ assert_eq!(classes[b'a' as usize], 1);
+ assert_eq!(classes[b'm' as usize], 1);
+ assert_eq!(classes[b'z' as usize], 1);
+ assert_eq!(classes[b'z' as usize + 1], 2);
+ assert_eq!(classes[254], 2);
+ assert_eq!(classes[255], 2);
+
+ let mut set = ByteClassSet::new();
+ set.set_range(0, 2);
+ set.set_range(4, 6);
+ let classes = set.byte_classes();
+ assert_eq!(classes[0], 0);
+ assert_eq!(classes[1], 0);
+ assert_eq!(classes[2], 0);
+ assert_eq!(classes[3], 1);
+ assert_eq!(classes[4], 2);
+ assert_eq!(classes[5], 2);
+ assert_eq!(classes[6], 2);
+ assert_eq!(classes[7], 3);
+ assert_eq!(classes[255], 3);
+ }
+
+ #[test]
+ fn full_byte_classes() {
+ let mut set = ByteClassSet::new();
+ for i in 0..256u16 {
+ set.set_range(i as u8, i as u8);
+ }
+ assert_eq!(set.byte_classes().len(), 256);
+ }
+}