summaryrefslogtreecommitdiffstats
path: root/third_party/rust/tokio-0.1.22/examples/tinyhttp.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/tokio-0.1.22/examples/tinyhttp.rs')
-rw-r--r--third_party/rust/tokio-0.1.22/examples/tinyhttp.rs325
1 files changed, 325 insertions, 0 deletions
diff --git a/third_party/rust/tokio-0.1.22/examples/tinyhttp.rs b/third_party/rust/tokio-0.1.22/examples/tinyhttp.rs
new file mode 100644
index 0000000000..cde1b79afb
--- /dev/null
+++ b/third_party/rust/tokio-0.1.22/examples/tinyhttp.rs
@@ -0,0 +1,325 @@
+//! A "tiny" example of HTTP request/response handling using transports.
+//!
+//! This example is intended for *learning purposes* to see how various pieces
+//! hook up together and how HTTP can get up and running. Note that this example
+//! is written with the restriction that it *can't* use any "big" library other
+//! than Tokio, if you'd like a "real world" HTTP library you likely want a
+//! crate like Hyper.
+//!
+//! Code here is based on the `echo-threads` example and implements two paths,
+//! the `/plaintext` and `/json` routes to respond with some text and json,
+//! respectively. By default this will run I/O on all the cores your system has
+//! available, and it doesn't support HTTP request bodies.
+
+#![deny(warnings)]
+
+extern crate bytes;
+extern crate http;
+extern crate httparse;
+#[macro_use]
+extern crate serde_derive;
+extern crate serde_json;
+extern crate time;
+extern crate tokio;
+extern crate tokio_io;
+
+use std::net::SocketAddr;
+use std::{env, fmt, io};
+
+use tokio::codec::{Decoder, Encoder};
+use tokio::net::{TcpListener, TcpStream};
+use tokio::prelude::*;
+
+use bytes::BytesMut;
+use http::header::HeaderValue;
+use http::{Request, Response, StatusCode};
+
+fn main() -> Result<(), Box<std::error::Error>> {
+ // Parse the arguments, bind the TCP socket we'll be listening to, spin up
+ // our worker threads, and start shipping sockets to those worker threads.
+ let addr = env::args().nth(1).unwrap_or("127.0.0.1:8080".to_string());
+ let addr = addr.parse::<SocketAddr>()?;
+
+ let listener = TcpListener::bind(&addr)?;
+ println!("Listening on: {}", addr);
+
+ tokio::run({
+ listener
+ .incoming()
+ .map_err(|e| println!("failed to accept socket; error = {:?}", e))
+ .for_each(|socket| {
+ process(socket);
+ Ok(())
+ })
+ });
+ Ok(())
+}
+
+fn process(socket: TcpStream) {
+ let (tx, rx) =
+ // Frame the socket using the `Http` protocol. This maps the TCP socket
+ // to a Stream + Sink of HTTP frames.
+ Http.framed(socket)
+ // This splits a single `Stream + Sink` value into two separate handles
+ // that can be used independently (even on different tasks or threads).
+ .split();
+
+ // Map all requests into responses and send them back to the client.
+ let task = tx.send_all(rx.and_then(respond)).then(|res| {
+ if let Err(e) = res {
+ println!("failed to process connection; error = {:?}", e);
+ }
+
+ Ok(())
+ });
+
+ // Spawn the task that handles the connection.
+ tokio::spawn(task);
+}
+
+/// "Server logic" is implemented in this function.
+///
+/// This function is a map from and HTTP request to a future of a response and
+/// represents the various handling a server might do. Currently the contents
+/// here are pretty uninteresting.
+fn respond(req: Request<()>) -> Box<Future<Item = Response<String>, Error = io::Error> + Send> {
+ let f = future::lazy(move || {
+ let mut response = Response::builder();
+ let body = match req.uri().path() {
+ "/plaintext" => {
+ response.header("Content-Type", "text/plain");
+ "Hello, World!".to_string()
+ }
+ "/json" => {
+ response.header("Content-Type", "application/json");
+
+ #[derive(Serialize)]
+ struct Message {
+ message: &'static str,
+ }
+ serde_json::to_string(&Message {
+ message: "Hello, World!",
+ })?
+ }
+ _ => {
+ response.status(StatusCode::NOT_FOUND);
+ String::new()
+ }
+ };
+ let response = response
+ .body(body)
+ .map_err(|err| io::Error::new(io::ErrorKind::Other, err))?;
+ Ok(response)
+ });
+
+ Box::new(f)
+}
+
+struct Http;
+
+/// Implementation of encoding an HTTP response into a `BytesMut`, basically
+/// just writing out an HTTP/1.1 response.
+impl Encoder for Http {
+ type Item = Response<String>;
+ type Error = io::Error;
+
+ fn encode(&mut self, item: Response<String>, dst: &mut BytesMut) -> io::Result<()> {
+ use std::fmt::Write;
+
+ write!(
+ BytesWrite(dst),
+ "\
+ HTTP/1.1 {}\r\n\
+ Server: Example\r\n\
+ Content-Length: {}\r\n\
+ Date: {}\r\n\
+ ",
+ item.status(),
+ item.body().len(),
+ date::now()
+ )
+ .unwrap();
+
+ for (k, v) in item.headers() {
+ dst.extend_from_slice(k.as_str().as_bytes());
+ dst.extend_from_slice(b": ");
+ dst.extend_from_slice(v.as_bytes());
+ dst.extend_from_slice(b"\r\n");
+ }
+
+ dst.extend_from_slice(b"\r\n");
+ dst.extend_from_slice(item.body().as_bytes());
+
+ return Ok(());
+
+ // Right now `write!` on `Vec<u8>` goes through io::Write and is not
+ // super speedy, so inline a less-crufty implementation here which
+ // doesn't go through io::Error.
+ struct BytesWrite<'a>(&'a mut BytesMut);
+
+ impl<'a> fmt::Write for BytesWrite<'a> {
+ fn write_str(&mut self, s: &str) -> fmt::Result {
+ self.0.extend_from_slice(s.as_bytes());
+ Ok(())
+ }
+
+ fn write_fmt(&mut self, args: fmt::Arguments) -> fmt::Result {
+ fmt::write(self, args)
+ }
+ }
+ }
+}
+
+/// Implementation of decoding an HTTP request from the bytes we've read so far.
+/// This leverages the `httparse` crate to do the actual parsing and then we use
+/// that information to construct an instance of a `http::Request` object,
+/// trying to avoid allocations where possible.
+impl Decoder for Http {
+ type Item = Request<()>;
+ type Error = io::Error;
+
+ fn decode(&mut self, src: &mut BytesMut) -> io::Result<Option<Request<()>>> {
+ // TODO: we should grow this headers array if parsing fails and asks
+ // for more headers
+ let mut headers = [None; 16];
+ let (method, path, version, amt) = {
+ let mut parsed_headers = [httparse::EMPTY_HEADER; 16];
+ let mut r = httparse::Request::new(&mut parsed_headers);
+ let status = r.parse(src).map_err(|e| {
+ let msg = format!("failed to parse http request: {:?}", e);
+ io::Error::new(io::ErrorKind::Other, msg)
+ })?;
+
+ let amt = match status {
+ httparse::Status::Complete(amt) => amt,
+ httparse::Status::Partial => return Ok(None),
+ };
+
+ let toslice = |a: &[u8]| {
+ let start = a.as_ptr() as usize - src.as_ptr() as usize;
+ assert!(start < src.len());
+ (start, start + a.len())
+ };
+
+ for (i, header) in r.headers.iter().enumerate() {
+ let k = toslice(header.name.as_bytes());
+ let v = toslice(header.value);
+ headers[i] = Some((k, v));
+ }
+
+ (
+ toslice(r.method.unwrap().as_bytes()),
+ toslice(r.path.unwrap().as_bytes()),
+ r.version.unwrap(),
+ amt,
+ )
+ };
+ if version != 1 {
+ return Err(io::Error::new(
+ io::ErrorKind::Other,
+ "only HTTP/1.1 accepted",
+ ));
+ }
+ let data = src.split_to(amt).freeze();
+ let mut ret = Request::builder();
+ ret.method(&data[method.0..method.1]);
+ ret.uri(data.slice(path.0, path.1));
+ ret.version(http::Version::HTTP_11);
+ for header in headers.iter() {
+ let (k, v) = match *header {
+ Some((ref k, ref v)) => (k, v),
+ None => break,
+ };
+ let value = unsafe { HeaderValue::from_shared_unchecked(data.slice(v.0, v.1)) };
+ ret.header(&data[k.0..k.1], value);
+ }
+
+ let req = ret
+ .body(())
+ .map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;
+ Ok(Some(req))
+ }
+}
+
+mod date {
+ use std::cell::RefCell;
+ use std::fmt::{self, Write};
+ use std::str;
+
+ use time::{self, Duration};
+
+ pub struct Now(());
+
+ /// Returns a struct, which when formatted, renders an appropriate `Date`
+ /// header value.
+ pub fn now() -> Now {
+ Now(())
+ }
+
+ // Gee Alex, doesn't this seem like premature optimization. Well you see
+ // there Billy, you're absolutely correct! If your server is *bottlenecked*
+ // on rendering the `Date` header, well then boy do I have news for you, you
+ // don't need this optimization.
+ //
+ // In all seriousness, though, a simple "hello world" benchmark which just
+ // sends back literally "hello world" with standard headers actually is
+ // bottlenecked on rendering a date into a byte buffer. Since it was at the
+ // top of a profile, and this was done for some competitive benchmarks, this
+ // module was written.
+ //
+ // Just to be clear, though, I was not intending on doing this because it
+ // really does seem kinda absurd, but it was done by someone else [1], so I
+ // blame them! :)
+ //
+ // [1]: https://github.com/rapidoid/rapidoid/blob/f1c55c0555007e986b5d069fe1086e6d09933f7b/rapidoid-commons/src/main/java/org/rapidoid/commons/Dates.java#L48-L66
+
+ struct LastRenderedNow {
+ bytes: [u8; 128],
+ amt: usize,
+ next_update: time::Timespec,
+ }
+
+ thread_local!(static LAST: RefCell<LastRenderedNow> = RefCell::new(LastRenderedNow {
+ bytes: [0; 128],
+ amt: 0,
+ next_update: time::Timespec::new(0, 0),
+ }));
+
+ impl fmt::Display for Now {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ LAST.with(|cache| {
+ let mut cache = cache.borrow_mut();
+ let now = time::get_time();
+ if now >= cache.next_update {
+ cache.update(now);
+ }
+ f.write_str(cache.buffer())
+ })
+ }
+ }
+
+ impl LastRenderedNow {
+ fn buffer(&self) -> &str {
+ str::from_utf8(&self.bytes[..self.amt]).unwrap()
+ }
+
+ fn update(&mut self, now: time::Timespec) {
+ self.amt = 0;
+ write!(LocalBuffer(self), "{}", time::at(now).rfc822()).unwrap();
+ self.next_update = now + Duration::seconds(1);
+ self.next_update.nsec = 0;
+ }
+ }
+
+ struct LocalBuffer<'a>(&'a mut LastRenderedNow);
+
+ impl<'a> fmt::Write for LocalBuffer<'a> {
+ fn write_str(&mut self, s: &str) -> fmt::Result {
+ let start = self.0.amt;
+ let end = start + s.len();
+ self.0.bytes[start..end].copy_from_slice(s.as_bytes());
+ self.0.amt += s.len();
+ Ok(())
+ }
+ }
+}