summaryrefslogtreecommitdiffstats
path: root/third_party/rust/tokio/src/task/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/tokio/src/task/mod.rs')
-rw-r--r--third_party/rust/tokio/src/task/mod.rs317
1 files changed, 317 insertions, 0 deletions
diff --git a/third_party/rust/tokio/src/task/mod.rs b/third_party/rust/tokio/src/task/mod.rs
new file mode 100644
index 0000000000..d532155a1f
--- /dev/null
+++ b/third_party/rust/tokio/src/task/mod.rs
@@ -0,0 +1,317 @@
+//! Asynchronous green-threads.
+//!
+//! ## What are Tasks?
+//!
+//! A _task_ is a light weight, non-blocking unit of execution. A task is similar
+//! to an OS thread, but rather than being managed by the OS scheduler, they are
+//! managed by the [Tokio runtime][rt]. Another name for this general pattern is
+//! [green threads]. If you are familiar with [Go's goroutines], [Kotlin's
+//! coroutines], or [Erlang's processes], you can think of Tokio's tasks as
+//! something similar.
+//!
+//! Key points about tasks include:
+//!
+//! * Tasks are **light weight**. Because tasks are scheduled by the Tokio
+//! runtime rather than the operating system, creating new tasks or switching
+//! between tasks does not require a context switch and has fairly low
+//! overhead. Creating, running, and destroying large numbers of tasks is
+//! quite cheap, especially compared to OS threads.
+//!
+//! * Tasks are scheduled **cooperatively**. Most operating systems implement
+//! _preemptive multitasking_. This is a scheduling technique where the
+//! operating system allows each thread to run for a period of time, and then
+//! _preempts_ it, temporarily pausing that thread and switching to another.
+//! Tasks, on the other hand, implement _cooperative multitasking_. In
+//! cooperative multitasking, a task is allowed to run until it _yields_,
+//! indicating to the Tokio runtime's scheduler that it cannot currently
+//! continue executing. When a task yields, the Tokio runtime switches to
+//! executing the next task.
+//!
+//! * Tasks are **non-blocking**. Typically, when an OS thread performs I/O or
+//! must synchronize with another thread, it _blocks_, allowing the OS to
+//! schedule another thread. When a task cannot continue executing, it must
+//! yield instead, allowing the Tokio runtime to schedule another task. Tasks
+//! should generally not perform system calls or other operations that could
+//! block a thread, as this would prevent other tasks running on the same
+//! thread from executing as well. Instead, this module provides APIs for
+//! running blocking operations in an asynchronous context.
+//!
+//! [rt]: crate::runtime
+//! [green threads]: https://en.wikipedia.org/wiki/Green_threads
+//! [Go's goroutines]: https://tour.golang.org/concurrency/1
+//! [Kotlin's coroutines]: https://kotlinlang.org/docs/reference/coroutines-overview.html
+//! [Erlang's processes]: http://erlang.org/doc/getting_started/conc_prog.html#processes
+//!
+//! ## Working with Tasks
+//!
+//! This module provides the following APIs for working with tasks:
+//!
+//! ### Spawning
+//!
+//! Perhaps the most important function in this module is [`task::spawn`]. This
+//! function can be thought of as an async equivalent to the standard library's
+//! [`thread::spawn`][`std::thread::spawn`]. It takes an `async` block or other
+//! [future], and creates a new task to run that work concurrently:
+//!
+//! ```
+//! use tokio::task;
+//!
+//! # async fn doc() {
+//! task::spawn(async {
+//! // perform some work here...
+//! });
+//! # }
+//! ```
+//!
+//! Like [`std::thread::spawn`], `task::spawn` returns a [`JoinHandle`] struct.
+//! A `JoinHandle` is itself a future which may be used to await the output of
+//! the spawned task. For example:
+//!
+//! ```
+//! use tokio::task;
+//!
+//! # #[tokio::main] async fn main() -> Result<(), Box<dyn std::error::Error>> {
+//! let join = task::spawn(async {
+//! // ...
+//! "hello world!"
+//! });
+//!
+//! // ...
+//!
+//! // Await the result of the spawned task.
+//! let result = join.await?;
+//! assert_eq!(result, "hello world!");
+//! # Ok(())
+//! # }
+//! ```
+//!
+//! Again, like `std::thread`'s [`JoinHandle` type][thread_join], if the spawned
+//! task panics, awaiting its `JoinHandle` will return a [`JoinError`]. For
+//! example:
+//!
+//! ```
+//! use tokio::task;
+//!
+//! # #[tokio::main] async fn main() {
+//! let join = task::spawn(async {
+//! panic!("something bad happened!")
+//! });
+//!
+//! // The returned result indicates that the task failed.
+//! assert!(join.await.is_err());
+//! # }
+//! ```
+//!
+//! `spawn`, `JoinHandle`, and `JoinError` are present when the "rt"
+//! feature flag is enabled.
+//!
+//! [`task::spawn`]: crate::task::spawn()
+//! [future]: std::future::Future
+//! [`std::thread::spawn`]: std::thread::spawn
+//! [`JoinHandle`]: crate::task::JoinHandle
+//! [thread_join]: std::thread::JoinHandle
+//! [`JoinError`]: crate::task::JoinError
+//!
+//! ### Blocking and Yielding
+//!
+//! As we discussed above, code running in asynchronous tasks should not perform
+//! operations that can block. A blocking operation performed in a task running
+//! on a thread that is also running other tasks would block the entire thread,
+//! preventing other tasks from running.
+//!
+//! Instead, Tokio provides two APIs for running blocking operations in an
+//! asynchronous context: [`task::spawn_blocking`] and [`task::block_in_place`].
+//!
+//! Be aware that if you call a non-async method from async code, that non-async
+//! method is still inside the asynchronous context, so you should also avoid
+//! blocking operations there. This includes destructors of objects destroyed in
+//! async code.
+//!
+//! #### spawn_blocking
+//!
+//! The `task::spawn_blocking` function is similar to the `task::spawn` function
+//! discussed in the previous section, but rather than spawning an
+//! _non-blocking_ future on the Tokio runtime, it instead spawns a
+//! _blocking_ function on a dedicated thread pool for blocking tasks. For
+//! example:
+//!
+//! ```
+//! use tokio::task;
+//!
+//! # async fn docs() {
+//! task::spawn_blocking(|| {
+//! // do some compute-heavy work or call synchronous code
+//! });
+//! # }
+//! ```
+//!
+//! Just like `task::spawn`, `task::spawn_blocking` returns a `JoinHandle`
+//! which we can use to await the result of the blocking operation:
+//!
+//! ```rust
+//! # use tokio::task;
+//! # async fn docs() -> Result<(), Box<dyn std::error::Error>>{
+//! let join = task::spawn_blocking(|| {
+//! // do some compute-heavy work or call synchronous code
+//! "blocking completed"
+//! });
+//!
+//! let result = join.await?;
+//! assert_eq!(result, "blocking completed");
+//! # Ok(())
+//! # }
+//! ```
+//!
+//! #### block_in_place
+//!
+//! When using the [multi-threaded runtime][rt-multi-thread], the [`task::block_in_place`]
+//! function is also available. Like `task::spawn_blocking`, this function
+//! allows running a blocking operation from an asynchronous context. Unlike
+//! `spawn_blocking`, however, `block_in_place` works by transitioning the
+//! _current_ worker thread to a blocking thread, moving other tasks running on
+//! that thread to another worker thread. This can improve performance by avoiding
+//! context switches.
+//!
+//! For example:
+//!
+//! ```
+//! use tokio::task;
+//!
+//! # async fn docs() {
+//! let result = task::block_in_place(|| {
+//! // do some compute-heavy work or call synchronous code
+//! "blocking completed"
+//! });
+//!
+//! assert_eq!(result, "blocking completed");
+//! # }
+//! ```
+//!
+//! #### yield_now
+//!
+//! In addition, this module provides a [`task::yield_now`] async function
+//! that is analogous to the standard library's [`thread::yield_now`]. Calling
+//! and `await`ing this function will cause the current task to yield to the
+//! Tokio runtime's scheduler, allowing other tasks to be
+//! scheduled. Eventually, the yielding task will be polled again, allowing it
+//! to execute. For example:
+//!
+//! ```rust
+//! use tokio::task;
+//!
+//! # #[tokio::main] async fn main() {
+//! async {
+//! task::spawn(async {
+//! // ...
+//! println!("spawned task done!")
+//! });
+//!
+//! // Yield, allowing the newly-spawned task to execute first.
+//! task::yield_now().await;
+//! println!("main task done!");
+//! }
+//! # .await;
+//! # }
+//! ```
+//!
+//! ### Cooperative scheduling
+//!
+//! A single call to [`poll`] on a top-level task may potentially do a lot of
+//! work before it returns `Poll::Pending`. If a task runs for a long period of
+//! time without yielding back to the executor, it can starve other tasks
+//! waiting on that executor to execute them, or drive underlying resources.
+//! Since Rust does not have a runtime, it is difficult to forcibly preempt a
+//! long-running task. Instead, this module provides an opt-in mechanism for
+//! futures to collaborate with the executor to avoid starvation.
+//!
+//! Consider a future like this one:
+//!
+//! ```
+//! # use tokio_stream::{Stream, StreamExt};
+//! async fn drop_all<I: Stream + Unpin>(mut input: I) {
+//! while let Some(_) = input.next().await {}
+//! }
+//! ```
+//!
+//! It may look harmless, but consider what happens under heavy load if the
+//! input stream is _always_ ready. If we spawn `drop_all`, the task will never
+//! yield, and will starve other tasks and resources on the same executor.
+//!
+//! To account for this, Tokio has explicit yield points in a number of library
+//! functions, which force tasks to return to the executor periodically.
+//!
+//!
+//! #### unconstrained
+//!
+//! If necessary, [`task::unconstrained`] lets you opt out a future of Tokio's cooperative
+//! scheduling. When a future is wrapped with `unconstrained`, it will never be forced to yield to
+//! Tokio. For example:
+//!
+//! ```
+//! # #[tokio::main]
+//! # async fn main() {
+//! use tokio::{task, sync::mpsc};
+//!
+//! let fut = async {
+//! let (tx, mut rx) = mpsc::unbounded_channel();
+//!
+//! for i in 0..1000 {
+//! let _ = tx.send(());
+//! // This will always be ready. If coop was in effect, this code would be forced to yield
+//! // periodically. However, if left unconstrained, then this code will never yield.
+//! rx.recv().await;
+//! }
+//! };
+//!
+//! task::unconstrained(fut).await;
+//! # }
+//! ```
+//!
+//! [`task::spawn_blocking`]: crate::task::spawn_blocking
+//! [`task::block_in_place`]: crate::task::block_in_place
+//! [rt-multi-thread]: ../runtime/index.html#threaded-scheduler
+//! [`task::yield_now`]: crate::task::yield_now()
+//! [`thread::yield_now`]: std::thread::yield_now
+//! [`task::unconstrained`]: crate::task::unconstrained()
+//! [`poll`]: method@std::future::Future::poll
+
+cfg_rt! {
+ pub use crate::runtime::task::{JoinError, JoinHandle};
+
+ mod blocking;
+ pub use blocking::spawn_blocking;
+
+ mod spawn;
+ pub use spawn::spawn;
+
+ cfg_rt_multi_thread! {
+ pub use blocking::block_in_place;
+ }
+
+ mod yield_now;
+ pub use yield_now::yield_now;
+
+ mod local;
+ pub use local::{spawn_local, LocalSet};
+
+ mod task_local;
+ pub use task_local::LocalKey;
+
+ mod unconstrained;
+ pub use unconstrained::{unconstrained, Unconstrained};
+
+ cfg_unstable! {
+ mod join_set;
+ pub use join_set::JoinSet;
+ }
+
+ cfg_trace! {
+ mod builder;
+ pub use builder::Builder;
+ }
+
+ /// Task-related futures.
+ pub mod futures {
+ pub use super::task_local::TaskLocalFuture;
+ }
+}