1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "DrawTargetWebglInternal.h"
#include "SourceSurfaceWebgl.h"
#include "mozilla/ClearOnShutdown.h"
#include "mozilla/StaticPrefs_gfx.h"
#include "mozilla/gfx/AAStroke.h"
#include "mozilla/gfx/Blur.h"
#include "mozilla/gfx/DrawTargetSkia.h"
#include "mozilla/gfx/gfxVars.h"
#include "mozilla/gfx/Helpers.h"
#include "mozilla/gfx/HelpersSkia.h"
#include "mozilla/gfx/Logging.h"
#include "mozilla/gfx/PathSkia.h"
#include "mozilla/gfx/Swizzle.h"
#include "mozilla/layers/ImageDataSerializer.h"
#include "ClientWebGLContext.h"
#include "WebGLChild.h"
#include "gfxPlatform.h"
namespace mozilla::gfx {
// Inserts (allocates) a rectangle of the requested size into the tree.
Maybe<IntPoint> TexturePacker::Insert(const IntSize& aSize) {
// Check if the available space could possibly fit the requested size. If
// not, there is no reason to continue searching within this sub-tree.
if (mAvailable < std::min(aSize.width, aSize.height) ||
mBounds.width < aSize.width || mBounds.height < aSize.height) {
return Nothing();
}
if (mChildren) {
// If this node has children, then try to insert into each of the children
// in turn.
Maybe<IntPoint> inserted = mChildren[0].Insert(aSize);
if (!inserted) {
inserted = mChildren[1].Insert(aSize);
}
// If the insertion succeeded, adjust the available state to reflect the
// remaining space in the children.
if (inserted) {
mAvailable = std::max(mChildren[0].mAvailable, mChildren[1].mAvailable);
if (!mAvailable) {
DiscardChildren();
}
}
return inserted;
}
// If we get here, we've encountered a leaf node. First check if its size is
// exactly the requested size. If so, mark the node as unavailable and return
// its offset.
if (mBounds.Size() == aSize) {
mAvailable = 0;
return Some(mBounds.TopLeft());
}
// The node is larger than the requested size. Choose the axis which has the
// most excess space beyond the requested size and split it so that at least
// one of the children matches the requested size for that axis.
if (mBounds.width - aSize.width > mBounds.height - aSize.height) {
mChildren.reset(new TexturePacker[2]{
TexturePacker(
IntRect(mBounds.x, mBounds.y, aSize.width, mBounds.height)),
TexturePacker(IntRect(mBounds.x + aSize.width, mBounds.y,
mBounds.width - aSize.width, mBounds.height))});
} else {
mChildren.reset(new TexturePacker[2]{
TexturePacker(
IntRect(mBounds.x, mBounds.y, mBounds.width, aSize.height)),
TexturePacker(IntRect(mBounds.x, mBounds.y + aSize.height,
mBounds.width, mBounds.height - aSize.height))});
}
// After splitting, try to insert into the first child, which should usually
// be big enough to accomodate the request. Adjust the available state to the
// remaining space.
Maybe<IntPoint> inserted = mChildren[0].Insert(aSize);
mAvailable = std::max(mChildren[0].mAvailable, mChildren[1].mAvailable);
return inserted;
}
// Removes (frees) a rectangle with the given bounds from the tree.
bool TexturePacker::Remove(const IntRect& aBounds) {
if (!mChildren) {
// If there are no children, we encountered a leaf node. Non-zero available
// state means that this node was already removed previously. Also, if the
// bounds don't contain the request, and assuming the tree was previously
// split during insertion, then this node is not the node we're searching
// for.
if (mAvailable > 0 || !mBounds.Contains(aBounds)) {
return false;
}
// The bounds match exactly and it was previously inserted, so in this case
// we can just remove it.
if (mBounds == aBounds) {
mAvailable = std::min(mBounds.width, mBounds.height);
return true;
}
// We need to split this leaf node so that it can exactly match the removed
// bounds. We know the leaf node at least contains the removed bounds, but
// needs to be subdivided until it has a child node that exactly matches.
// Choose the axis to split with the largest amount of excess space. Within
// that axis, choose the larger of the space before or after the subrect as
// the split point to the new children.
if (mBounds.width - aBounds.width > mBounds.height - aBounds.height) {
int split = aBounds.x - mBounds.x > mBounds.XMost() - aBounds.XMost()
? aBounds.x
: aBounds.XMost();
mChildren.reset(new TexturePacker[2]{
TexturePacker(
IntRect(mBounds.x, mBounds.y, split - mBounds.x, mBounds.height),
false),
TexturePacker(IntRect(split, mBounds.y, mBounds.XMost() - split,
mBounds.height),
false)});
} else {
int split = aBounds.y - mBounds.y > mBounds.YMost() - aBounds.YMost()
? aBounds.y
: aBounds.YMost();
mChildren.reset(new TexturePacker[2]{
TexturePacker(
IntRect(mBounds.x, mBounds.y, mBounds.width, split - mBounds.y),
false),
TexturePacker(
IntRect(mBounds.x, split, mBounds.width, mBounds.YMost() - split),
false)});
}
}
// We've encountered a branch node. Determine which of the two child nodes
// would possibly contain the removed bounds. We first check which axis the
// children were split on and then whether the removed bounds on that axis
// are past the start of the second child. Proceed to recurse into that
// child node for removal.
bool next = mChildren[0].mBounds.x < mChildren[1].mBounds.x
? aBounds.x >= mChildren[1].mBounds.x
: aBounds.y >= mChildren[1].mBounds.y;
bool removed = mChildren[next ? 1 : 0].Remove(aBounds);
if (removed) {
if (mChildren[0].IsFullyAvailable() && mChildren[1].IsFullyAvailable()) {
DiscardChildren();
mAvailable = std::min(mBounds.width, mBounds.height);
} else {
mAvailable = std::max(mChildren[0].mAvailable, mChildren[1].mAvailable);
}
}
return removed;
}
SharedTexture::SharedTexture(const IntSize& aSize, SurfaceFormat aFormat,
const RefPtr<WebGLTextureJS>& aTexture)
: mPacker(IntRect(IntPoint(0, 0), aSize)),
mFormat(aFormat),
mTexture(aTexture) {}
SharedTextureHandle::SharedTextureHandle(const IntRect& aBounds,
SharedTexture* aTexture)
: mBounds(aBounds), mTexture(aTexture) {}
already_AddRefed<SharedTextureHandle> SharedTexture::Allocate(
const IntSize& aSize) {
RefPtr<SharedTextureHandle> handle;
if (Maybe<IntPoint> origin = mPacker.Insert(aSize)) {
handle = new SharedTextureHandle(IntRect(*origin, aSize), this);
++mAllocatedHandles;
}
return handle.forget();
}
bool SharedTexture::Free(const SharedTextureHandle& aHandle) {
if (aHandle.mTexture != this) {
return false;
}
if (!mPacker.Remove(aHandle.mBounds)) {
return false;
}
--mAllocatedHandles;
return true;
}
StandaloneTexture::StandaloneTexture(const IntSize& aSize,
SurfaceFormat aFormat,
const RefPtr<WebGLTextureJS>& aTexture)
: mSize(aSize), mFormat(aFormat), mTexture(aTexture) {}
DrawTargetWebgl::DrawTargetWebgl() = default;
inline void DrawTargetWebgl::SharedContext::ClearLastTexture() {
mLastTexture = nullptr;
mLastClipMask = nullptr;
}
// Attempts to clear the snapshot state. If the snapshot is only referenced by
// this target, then it should simply be destroyed. If it is a WebGL surface in
// use by something else, then special cleanup such as reusing the texture or
// copy-on-write may be possible.
void DrawTargetWebgl::ClearSnapshot(bool aCopyOnWrite, bool aNeedHandle) {
if (!mSnapshot) {
return;
}
mSharedContext->ClearLastTexture();
if (mSnapshot->hasOneRef() || mSnapshot->GetType() != SurfaceType::WEBGL) {
mSnapshot = nullptr;
return;
}
RefPtr<SourceSurfaceWebgl> snapshot =
mSnapshot.forget().downcast<SourceSurfaceWebgl>();
if (aCopyOnWrite) {
// WebGL snapshots must be notified that the framebuffer contents will be
// changing so that it can copy the data.
snapshot->DrawTargetWillChange(aNeedHandle);
} else {
// If not copying, then give the backing texture to the surface for reuse.
snapshot->GiveTexture(
mSharedContext->WrapSnapshot(GetSize(), GetFormat(), mTex.forget()));
}
}
DrawTargetWebgl::~DrawTargetWebgl() {
ClearSnapshot(false);
if (mSharedContext) {
if (mShmem.IsWritable()) {
// Force any Skia snapshots to copy the shmem before it deallocs.
mSkia->DetachAllSnapshots();
// Ensure we're done using the shmem before dealloc.
mSharedContext->WaitForShmem(this);
auto* child = mSharedContext->mWebgl->GetChild();
if (child && child->CanSend()) {
child->DeallocShmem(mShmem);
}
}
if (mClipMask) {
mSharedContext->mWebgl->DeleteTexture(mClipMask);
}
if (mFramebuffer) {
mSharedContext->mWebgl->DeleteFramebuffer(mFramebuffer);
}
if (mTex) {
mSharedContext->mWebgl->DeleteTexture(mTex);
}
}
}
DrawTargetWebgl::SharedContext::SharedContext() = default;
DrawTargetWebgl::SharedContext::~SharedContext() {
if (sSharedContext.init() && sSharedContext.get() == this) {
sSharedContext.set(nullptr);
}
// Detect context loss before deletion.
if (mWebgl) {
mWebgl->ActiveTexture(LOCAL_GL_TEXTURE0);
}
ClearAllTextures();
UnlinkSurfaceTextures();
UnlinkGlyphCaches();
}
// Remove any SourceSurface user data associated with this TextureHandle.
inline void DrawTargetWebgl::SharedContext::UnlinkSurfaceTexture(
const RefPtr<TextureHandle>& aHandle) {
if (SourceSurface* surface = aHandle->GetSurface()) {
// Ensure any WebGL snapshot textures get unlinked.
if (surface->GetType() == SurfaceType::WEBGL) {
static_cast<SourceSurfaceWebgl*>(surface)->OnUnlinkTexture(this);
}
surface->RemoveUserData(aHandle->IsShadow() ? &mShadowTextureKey
: &mTextureHandleKey);
}
}
// Unlinks TextureHandles from any SourceSurface user data.
void DrawTargetWebgl::SharedContext::UnlinkSurfaceTextures() {
for (RefPtr<TextureHandle> handle = mTextureHandles.getFirst(); handle;
handle = handle->getNext()) {
UnlinkSurfaceTexture(handle);
}
}
// Unlinks GlyphCaches from any ScaledFont user data.
void DrawTargetWebgl::SharedContext::UnlinkGlyphCaches() {
GlyphCache* cache = mGlyphCaches.getFirst();
while (cache) {
ScaledFont* font = cache->GetFont();
// Access the next cache before removing the user data, as it might destroy
// the cache.
cache = cache->getNext();
font->RemoveUserData(&mGlyphCacheKey);
}
}
void DrawTargetWebgl::SharedContext::OnMemoryPressure() {
mShouldClearCaches = true;
}
// Clear out the entire list of texture handles from any source.
void DrawTargetWebgl::SharedContext::ClearAllTextures() {
while (!mTextureHandles.isEmpty()) {
PruneTextureHandle(mTextureHandles.popLast());
--mNumTextureHandles;
}
}
// Scan through the shared texture pages looking for any that are empty and
// delete them.
void DrawTargetWebgl::SharedContext::ClearEmptyTextureMemory() {
for (auto pos = mSharedTextures.begin(); pos != mSharedTextures.end();) {
if (!(*pos)->HasAllocatedHandles()) {
RefPtr<SharedTexture> shared = *pos;
size_t usedBytes = shared->UsedBytes();
mEmptyTextureMemory -= usedBytes;
mTotalTextureMemory -= usedBytes;
pos = mSharedTextures.erase(pos);
mWebgl->DeleteTexture(shared->GetWebGLTexture());
} else {
++pos;
}
}
}
// If there is a request to clear out the caches because of memory pressure,
// then first clear out all the texture handles in the texture cache. If there
// are still empty texture pages being kept around, then clear those too.
void DrawTargetWebgl::SharedContext::ClearCachesIfNecessary() {
if (!mShouldClearCaches.exchange(false)) {
return;
}
mZeroBuffer = nullptr;
ClearAllTextures();
if (mEmptyTextureMemory) {
ClearEmptyTextureMemory();
}
ClearLastTexture();
}
// If a non-recoverable error occurred that would stop the canvas from initing.
static Atomic<bool> sContextInitError(false);
MOZ_THREAD_LOCAL(DrawTargetWebgl::SharedContext*)
DrawTargetWebgl::sSharedContext;
RefPtr<DrawTargetWebgl::SharedContext> DrawTargetWebgl::sMainSharedContext;
// Try to initialize a new WebGL context. Verifies that the requested size does
// not exceed the available texture limits and that shader creation succeeded.
bool DrawTargetWebgl::Init(const IntSize& size, const SurfaceFormat format) {
MOZ_ASSERT(format == SurfaceFormat::B8G8R8A8 ||
format == SurfaceFormat::B8G8R8X8);
mSize = size;
mFormat = format;
if (!sSharedContext.init()) {
return false;
}
DrawTargetWebgl::SharedContext* sharedContext = sSharedContext.get();
if (!sharedContext || sharedContext->IsContextLost()) {
mSharedContext = new DrawTargetWebgl::SharedContext;
if (!mSharedContext->Initialize()) {
mSharedContext = nullptr;
return false;
}
sSharedContext.set(mSharedContext.get());
if (NS_IsMainThread()) {
// Keep the shared context alive for the main thread by adding a ref.
// Ensure the ref will get cleared on shutdown so it doesn't leak.
if (!sMainSharedContext) {
ClearOnShutdown(&sMainSharedContext);
}
sMainSharedContext = mSharedContext;
}
} else {
mSharedContext = sharedContext;
}
if (size_t(std::max(size.width, size.height)) >
mSharedContext->mMaxTextureSize) {
return false;
}
if (!CreateFramebuffer()) {
return false;
}
auto* child = mSharedContext->mWebgl->GetChild();
if (child && child->CanSend()) {
size_t byteSize = layers::ImageDataSerializer::ComputeRGBBufferSize(
mSize, SurfaceFormat::B8G8R8A8);
if (byteSize) {
(void)child->AllocUnsafeShmem(byteSize, &mShmem);
}
}
mSkia = new DrawTargetSkia;
if (mShmem.IsWritable()) {
auto stride = layers::ImageDataSerializer::ComputeRGBStride(
SurfaceFormat::B8G8R8A8, size.width);
if (!mSkia->Init(mShmem.get<uint8_t>(), size, stride,
SurfaceFormat::B8G8R8A8, true)) {
return false;
}
} else if (!mSkia->Init(size, SurfaceFormat::B8G8R8A8)) {
return false;
}
SetPermitSubpixelAA(IsOpaque(format));
return true;
}
bool DrawTargetWebgl::SharedContext::Initialize() {
WebGLContextOptions options = {};
options.alpha = true;
options.depth = false;
options.stencil = false;
options.antialias = false;
options.preserveDrawingBuffer = true;
options.failIfMajorPerformanceCaveat = true;
mWebgl = new ClientWebGLContext(true);
mWebgl->SetContextOptions(options);
if (mWebgl->SetDimensions(1, 1) != NS_OK || mWebgl->IsContextLost()) {
mWebgl = nullptr;
return false;
}
mMaxTextureSize = mWebgl->Limits().maxTex2dSize;
if (kIsMacOS) {
mRasterizationTruncates = mWebgl->Vendor() == gl::GLVendor::ATI;
}
CachePrefs();
if (!CreateShaders()) {
// There was a non-recoverable error when trying to init shaders.
sContextInitError = true;
mWebgl = nullptr;
return false;
}
return true;
}
void DrawTargetWebgl::SharedContext::SetBlendState(
CompositionOp aOp, const Maybe<DeviceColor>& aColor) {
if (aOp == mLastCompositionOp && mLastBlendColor == aColor) {
return;
}
mLastCompositionOp = aOp;
mLastBlendColor = aColor;
// AA is not supported for all composition ops, so switching blend modes may
// cause a toggle in AA state. Certain ops such as OP_SOURCE require output
// alpha that is blended separately from AA coverage. This would require two
// stage blending which can incur a substantial performance penalty, so to
// work around this currently we just disable AA for those ops.
mDirtyAA = true;
// Map the composition op to a WebGL blend mode, if possible.
mWebgl->Enable(LOCAL_GL_BLEND);
switch (aOp) {
case CompositionOp::OP_OVER:
if (aColor) {
// If a color is supplied, then we blend subpixel text.
mWebgl->BlendColor(aColor->b, aColor->g, aColor->r, 1.0f);
mWebgl->BlendFunc(LOCAL_GL_CONSTANT_COLOR,
LOCAL_GL_ONE_MINUS_SRC_COLOR);
} else {
mWebgl->BlendFunc(LOCAL_GL_ONE, LOCAL_GL_ONE_MINUS_SRC_ALPHA);
}
break;
case CompositionOp::OP_ADD:
mWebgl->BlendFunc(LOCAL_GL_ONE, LOCAL_GL_ONE);
break;
case CompositionOp::OP_ATOP:
mWebgl->BlendFunc(LOCAL_GL_DST_ALPHA, LOCAL_GL_ONE_MINUS_SRC_ALPHA);
break;
case CompositionOp::OP_SOURCE:
if (aColor) {
// If a color is supplied, then we assume there is clipping or AA. This
// requires that we still use an over blend func with the clip/AA alpha,
// while filling the interior with the unaltered color. Normally this
// would require dual source blending, but we can emulate it with only
// a blend color.
mWebgl->BlendColor(aColor->b, aColor->g, aColor->r, aColor->a);
mWebgl->BlendFunc(LOCAL_GL_CONSTANT_COLOR,
LOCAL_GL_ONE_MINUS_SRC_COLOR);
} else {
mWebgl->Disable(LOCAL_GL_BLEND);
}
break;
default:
mWebgl->Disable(LOCAL_GL_BLEND);
break;
}
}
// Ensure the WebGL framebuffer is set to the current target.
bool DrawTargetWebgl::SharedContext::SetTarget(DrawTargetWebgl* aDT) {
if (!mWebgl || mWebgl->IsContextLost()) {
return false;
}
if (aDT != mCurrentTarget) {
mCurrentTarget = aDT;
if (aDT) {
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, aDT->mFramebuffer);
mViewportSize = aDT->GetSize();
mWebgl->Viewport(0, 0, mViewportSize.width, mViewportSize.height);
// Force the viewport to be reset.
mDirtyViewport = true;
}
}
return true;
}
bool DrawTargetWebgl::SharedContext::SetClipMask(
const RefPtr<WebGLTextureJS>& aTex) {
if (mLastClipMask != aTex) {
if (!mWebgl) {
return false;
}
mWebgl->ActiveTexture(LOCAL_GL_TEXTURE1);
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, aTex);
mWebgl->ActiveTexture(LOCAL_GL_TEXTURE0);
mLastClipMask = aTex;
}
return true;
}
bool DrawTargetWebgl::SharedContext::SetNoClipMask() {
if (mNoClipMask) {
return SetClipMask(mNoClipMask);
}
if (!mWebgl) {
return false;
}
mNoClipMask = mWebgl->CreateTexture();
if (!mNoClipMask) {
return false;
}
mWebgl->ActiveTexture(LOCAL_GL_TEXTURE1);
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, mNoClipMask);
static const uint8_t solidMask[4] = {0xFF, 0xFF, 0xFF, 0xFF};
mWebgl->RawTexImage(
0, LOCAL_GL_RGBA8, {0, 0, 0}, {LOCAL_GL_RGBA, LOCAL_GL_UNSIGNED_BYTE},
{LOCAL_GL_TEXTURE_2D,
{1, 1, 1},
gfxAlphaType::NonPremult,
Some(RawBuffer(Range<const uint8_t>(solidMask, sizeof(solidMask))))});
InitTexParameters(mNoClipMask, false);
mWebgl->ActiveTexture(LOCAL_GL_TEXTURE0);
mLastClipMask = mNoClipMask;
return true;
}
inline bool DrawTargetWebgl::ClipStack::operator==(
const DrawTargetWebgl::ClipStack& aOther) const {
// Verify the transform and bounds match.
if (!mTransform.FuzzyEquals(aOther.mTransform) ||
!mRect.IsEqualInterior(aOther.mRect)) {
return false;
}
// Verify the paths match.
if (!mPath) {
return !aOther.mPath;
}
if (!aOther.mPath ||
mPath->GetBackendType() != aOther.mPath->GetBackendType()) {
return false;
}
if (mPath->GetBackendType() != BackendType::SKIA) {
return mPath == aOther.mPath;
}
return static_cast<const PathSkia*>(mPath.get())->GetPath() ==
static_cast<const PathSkia*>(aOther.mPath.get())->GetPath();
}
// If the clip region can't be approximated by a simple clip rect, then we need
// to generate a clip mask that can represent the clip region per-pixel. We
// render to the Skia target temporarily, transparent outside the clip region,
// opaque inside, and upload this to a texture that can be used by the shaders.
bool DrawTargetWebgl::GenerateComplexClipMask() {
if (!mClipChanged || (mClipMask && mCachedClipStack == mClipStack)) {
mClipChanged = false;
// If the clip mask was already generated, use the cached mask and bounds.
mSharedContext->SetClipMask(mClipMask);
mSharedContext->SetClipRect(mClipBounds);
return true;
}
if (!mWebglValid) {
// If the Skia target is currently being used, then we can't render the mask
// in it.
return false;
}
RefPtr<ClientWebGLContext> webgl = mSharedContext->mWebgl;
if (!webgl) {
return false;
}
bool init = false;
if (!mClipMask) {
mClipMask = webgl->CreateTexture();
if (!mClipMask) {
return false;
}
init = true;
}
// Try to get the bounds of the clip to limit the size of the mask.
if (Maybe<IntRect> clip = mSkia->GetDeviceClipRect(true)) {
mClipBounds = *clip;
} else {
// If we can't get bounds, then just use the entire viewport.
mClipBounds = IntRect(IntPoint(), mSize);
}
// If initializing the clip mask, then allocate the entire texture to ensure
// all pixels get filled with an empty mask regardless. Otherwise, restrict
// uploading to only the clip region.
RefPtr<DrawTargetSkia> dt = new DrawTargetSkia;
if (!dt->Init(mClipBounds.Size(), SurfaceFormat::A8)) {
return false;
}
// Set the clip region and fill the entire inside of it
// with opaque white.
mCachedClipStack.clear();
for (auto& clipStack : mClipStack) {
// Record the current state of the clip stack for this mask.
mCachedClipStack.push_back(clipStack);
dt->SetTransform(
Matrix(clipStack.mTransform).PostTranslate(-mClipBounds.TopLeft()));
if (clipStack.mPath) {
dt->PushClip(clipStack.mPath);
} else {
dt->PushClipRect(clipStack.mRect);
}
}
dt->SetTransform(Matrix::Translation(-mClipBounds.TopLeft()));
dt->FillRect(Rect(mClipBounds), ColorPattern(DeviceColor(1, 1, 1, 1)));
// Bind the clip mask for uploading.
webgl->ActiveTexture(LOCAL_GL_TEXTURE1);
webgl->BindTexture(LOCAL_GL_TEXTURE_2D, mClipMask);
if (init) {
mSharedContext->InitTexParameters(mClipMask, false);
}
RefPtr<DataSourceSurface> data;
if (RefPtr<SourceSurface> snapshot = dt->Snapshot()) {
data = snapshot->GetDataSurface();
}
// Finally, upload the texture data and initialize texture storage if
// necessary.
if (init && mClipBounds.Size() != mSize) {
mSharedContext->UploadSurface(nullptr, SurfaceFormat::A8,
IntRect(IntPoint(), mSize), IntPoint(), true,
true);
init = false;
}
mSharedContext->UploadSurface(data, SurfaceFormat::A8,
IntRect(IntPoint(), mClipBounds.Size()),
mClipBounds.TopLeft(), init);
webgl->ActiveTexture(LOCAL_GL_TEXTURE0);
// We already bound the texture, so notify the shared context that the clip
// mask changed to it.
mSharedContext->mLastClipMask = mClipMask;
mSharedContext->SetClipRect(mClipBounds);
// We uploaded a surface, just as if we missed the texture cache, so account
// for that here.
mProfile.OnCacheMiss();
return !!data;
}
bool DrawTargetWebgl::SetSimpleClipRect() {
// Determine whether the clipping rectangle is simple enough to accelerate.
// Check if there is a device space clip rectangle available from the Skia
// target.
Maybe<IntRect> clip = mSkia->GetDeviceClipRect(false);
if (!clip) {
return false;
}
// If the clip is empty, leave the final integer clip rectangle empty to
// trivially discard the draw request.
// If the clip rect is larger than the viewport, just set it to the
// viewport.
if (!clip->IsEmpty() && clip->Contains(IntRect(IntPoint(), mSize))) {
clip = Some(IntRect(IntPoint(), mSize));
}
mSharedContext->SetClipRect(*clip);
mSharedContext->SetNoClipMask();
return true;
}
// Installs the Skia clip rectangle, if applicable, onto the shared WebGL
// context as well as sets the WebGL framebuffer to the current target.
bool DrawTargetWebgl::PrepareContext(bool aClipped) {
if (!aClipped) {
// If no clipping requested, just set the clip rect to the viewport.
mSharedContext->SetClipRect(IntRect(IntPoint(), mSize));
mSharedContext->SetNoClipMask();
// Ensure the clip gets reset if clipping is later requested for the target.
mRefreshClipState = true;
} else if (mRefreshClipState || !mSharedContext->IsCurrentTarget(this)) {
// Try to use a simple clip rect if possible. Otherwise, fall back to
// generating a clip mask texture that can represent complex clip regions.
if (!SetSimpleClipRect() && !GenerateComplexClipMask()) {
return false;
}
mClipChanged = false;
mRefreshClipState = false;
}
return mSharedContext->SetTarget(this);
}
bool DrawTargetWebgl::SharedContext::IsContextLost() const {
return !mWebgl || mWebgl->IsContextLost();
}
// Signal to CanvasRenderingContext2D when the WebGL context is lost.
bool DrawTargetWebgl::IsValid() const {
return mSharedContext && !mSharedContext->IsContextLost();
}
already_AddRefed<DrawTargetWebgl> DrawTargetWebgl::Create(
const IntSize& aSize, SurfaceFormat aFormat) {
if (!gfxVars::UseAcceleratedCanvas2D()) {
return nullptr;
}
// If context initialization would fail, don't even try to create a context.
if (sContextInitError) {
return nullptr;
}
if (!Factory::AllowedSurfaceSize(aSize)) {
return nullptr;
}
// The interpretation of the min-size and max-size follows from the old
// SkiaGL prefs. First just ensure that the context is not unreasonably
// small.
static const int32_t kMinDimension = 16;
if (std::min(aSize.width, aSize.height) < kMinDimension) {
return nullptr;
}
int32_t minSize = StaticPrefs::gfx_canvas_accelerated_min_size();
if (aSize.width * aSize.height < minSize * minSize) {
return nullptr;
}
// Maximum pref allows 3 different options:
// 0 means unlimited size,
// > 0 means use value as an absolute threshold,
// < 0 means use the number of screen pixels as a threshold.
int32_t maxSize = StaticPrefs::gfx_canvas_accelerated_max_size();
if (maxSize > 0) {
if (std::max(aSize.width, aSize.height) > maxSize) {
return nullptr;
}
} else if (maxSize < 0) {
// Default to historical mobile screen size of 980x480, like FishIEtank.
// In addition, allow acceleration up to this size even if the screen is
// smaller. A lot content expects this size to work well. See Bug 999841
static const int32_t kScreenPixels = 980 * 480;
IntSize screenSize = gfxPlatform::GetPlatform()->GetScreenSize();
if (aSize.width * aSize.height >
std::max(screenSize.width * screenSize.height, kScreenPixels)) {
return nullptr;
}
}
RefPtr<DrawTargetWebgl> dt = new DrawTargetWebgl;
if (!dt->Init(aSize, aFormat) || !dt->IsValid()) {
return nullptr;
}
return dt.forget();
}
void* DrawTargetWebgl::GetNativeSurface(NativeSurfaceType aType) {
switch (aType) {
case NativeSurfaceType::WEBGL_CONTEXT:
// If the context is lost, then don't attempt to access it.
if (mSharedContext->IsContextLost()) {
return nullptr;
}
if (!mWebglValid) {
FlushFromSkia();
}
return mSharedContext->mWebgl.get();
default:
return nullptr;
}
}
// Wrap a WebGL texture holding a snapshot with a texture handle. Note that
// while the texture is still in use as the backing texture of a framebuffer,
// it's texture memory is not currently tracked with other texture handles.
// Once it is finally orphaned and used as a texture handle, it must be added
// to the resource usage totals.
already_AddRefed<TextureHandle> DrawTargetWebgl::SharedContext::WrapSnapshot(
const IntSize& aSize, SurfaceFormat aFormat, RefPtr<WebGLTextureJS> aTex) {
// Ensure there is enough space for the texture.
size_t usedBytes = TextureHandle::UsedBytes(aFormat, aSize);
PruneTextureMemory(usedBytes, false);
// Allocate a handle for the texture
RefPtr<StandaloneTexture> handle =
new StandaloneTexture(aSize, aFormat, aTex.forget());
mStandaloneTextures.push_back(handle);
mTextureHandles.insertFront(handle);
mTotalTextureMemory += usedBytes;
mUsedTextureMemory += usedBytes;
++mNumTextureHandles;
return handle.forget();
}
void DrawTargetWebgl::SharedContext::SetTexFilter(WebGLTextureJS* aTex,
bool aFilter) {
mWebgl->TexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MAG_FILTER,
aFilter ? LOCAL_GL_LINEAR : LOCAL_GL_NEAREST);
mWebgl->TexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MIN_FILTER,
aFilter ? LOCAL_GL_LINEAR : LOCAL_GL_NEAREST);
}
void DrawTargetWebgl::SharedContext::InitTexParameters(WebGLTextureJS* aTex,
bool aFilter) {
mWebgl->TexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_WRAP_S,
LOCAL_GL_CLAMP_TO_EDGE);
mWebgl->TexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_WRAP_T,
LOCAL_GL_CLAMP_TO_EDGE);
SetTexFilter(aTex, aFilter);
}
// Copy the contents of the WebGL framebuffer into a WebGL texture.
already_AddRefed<TextureHandle> DrawTargetWebgl::SharedContext::CopySnapshot(
const IntRect& aRect, TextureHandle* aHandle) {
if (!mWebgl || mWebgl->IsContextLost()) {
return nullptr;
}
// If the target is going away, then we can just directly reuse the
// framebuffer texture since it will never change.
RefPtr<WebGLTextureJS> tex = mWebgl->CreateTexture();
if (!tex) {
return nullptr;
}
// If copying from a non-DT source, we have to bind a scratch framebuffer for
// reading.
if (aHandle) {
if (!mScratchFramebuffer) {
mScratchFramebuffer = mWebgl->CreateFramebuffer();
}
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mScratchFramebuffer);
mWebgl->FramebufferTexture2D(
LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0, LOCAL_GL_TEXTURE_2D,
aHandle->GetWebGLTexture(), 0);
}
// Create a texture to hold the copy
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, tex);
mWebgl->TexStorage2D(LOCAL_GL_TEXTURE_2D, 1, LOCAL_GL_RGBA8, aRect.width,
aRect.height);
InitTexParameters(tex);
// Copy the framebuffer into the texture
mWebgl->CopyTexSubImage2D(LOCAL_GL_TEXTURE_2D, 0, 0, 0, aRect.x, aRect.y,
aRect.width, aRect.height);
ClearLastTexture();
SurfaceFormat format =
aHandle ? aHandle->GetFormat() : mCurrentTarget->GetFormat();
already_AddRefed<TextureHandle> result =
WrapSnapshot(aRect.Size(), format, tex.forget());
// Restore the actual framebuffer after reading is done.
if (aHandle && mCurrentTarget) {
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mCurrentTarget->mFramebuffer);
}
return result;
}
inline DrawTargetWebgl::AutoRestoreContext::AutoRestoreContext(
DrawTargetWebgl* aTarget)
: mTarget(aTarget),
mClipRect(aTarget->mSharedContext->mClipRect),
mLastClipMask(aTarget->mSharedContext->mLastClipMask) {}
inline DrawTargetWebgl::AutoRestoreContext::~AutoRestoreContext() {
mTarget->mSharedContext->SetClipRect(mClipRect);
if (mLastClipMask) {
mTarget->mSharedContext->SetClipMask(mLastClipMask);
}
mTarget->mRefreshClipState = true;
}
// Utility method to install the target before copying a snapshot.
already_AddRefed<TextureHandle> DrawTargetWebgl::CopySnapshot(
const IntRect& aRect) {
AutoRestoreContext restore(this);
if (!PrepareContext(false)) {
return nullptr;
}
return mSharedContext->CopySnapshot(aRect);
}
// Borrow a snapshot that may be used by another thread for composition. Only
// Skia snapshots are safe to pass around.
already_AddRefed<SourceSurface> DrawTargetWebgl::GetDataSnapshot() {
if (!mSkiaValid) {
ReadIntoSkia();
} else if (mSkiaLayer) {
FlattenSkia();
}
return mSkia->Snapshot(mFormat);
}
already_AddRefed<SourceSurface> DrawTargetWebgl::Snapshot() {
// If already using the Skia fallback, then just snapshot that.
if (mSkiaValid) {
return GetDataSnapshot();
}
// There's no valid Skia snapshot, so we need to get one from the WebGL
// context.
if (!mSnapshot) {
// Create a copy-on-write reference to this target.
mSnapshot = new SourceSurfaceWebgl(this);
}
return do_AddRef(mSnapshot);
}
// If we need to provide a snapshot for another DrawTargetWebgl that shares the
// same WebGL context, then it is safe to directly return a snapshot. Otherwise,
// we may be exporting to another thread and require a data snapshot.
already_AddRefed<SourceSurface> DrawTargetWebgl::GetOptimizedSnapshot(
DrawTarget* aTarget) {
if (aTarget && aTarget->GetBackendType() == BackendType::WEBGL &&
static_cast<DrawTargetWebgl*>(aTarget)->mSharedContext ==
mSharedContext) {
return Snapshot();
}
return GetDataSnapshot();
}
// Read from the WebGL context into a buffer. This handles both swizzling BGRA
// to RGBA and flipping the image.
bool DrawTargetWebgl::SharedContext::ReadInto(uint8_t* aDstData,
int32_t aDstStride,
SurfaceFormat aFormat,
const IntRect& aBounds,
TextureHandle* aHandle) {
MOZ_ASSERT(aFormat == SurfaceFormat::B8G8R8A8 ||
aFormat == SurfaceFormat::B8G8R8X8);
// If reading into a new texture, we have to bind it to a scratch framebuffer
// for reading.
if (aHandle) {
if (!mScratchFramebuffer) {
mScratchFramebuffer = mWebgl->CreateFramebuffer();
}
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mScratchFramebuffer);
mWebgl->FramebufferTexture2D(
LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0, LOCAL_GL_TEXTURE_2D,
aHandle->GetWebGLTexture(), 0);
}
webgl::ReadPixelsDesc desc;
desc.srcOffset = *ivec2::From(aBounds);
desc.size = *uvec2::FromSize(aBounds);
desc.packState.rowLength = aDstStride / 4;
bool success = false;
if (mCurrentTarget && mCurrentTarget->mShmem.IsWritable() &&
aDstData == mCurrentTarget->mShmem.get<uint8_t>()) {
success = mWebgl->DoReadPixels(desc, mCurrentTarget->mShmem);
} else {
Range<uint8_t> range = {aDstData, size_t(aDstStride) * aBounds.height};
success = mWebgl->DoReadPixels(desc, range);
}
// Restore the actual framebuffer after reading is done.
if (aHandle && mCurrentTarget) {
mWebgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mCurrentTarget->mFramebuffer);
}
return success;
}
already_AddRefed<DataSourceSurface>
DrawTargetWebgl::SharedContext::ReadSnapshot(TextureHandle* aHandle) {
// Allocate a data surface, map it, and read from the WebGL context into the
// surface.
SurfaceFormat format = SurfaceFormat::UNKNOWN;
IntRect bounds;
if (aHandle) {
format = aHandle->GetFormat();
bounds = aHandle->GetBounds();
} else {
format = mCurrentTarget->GetFormat();
bounds = mCurrentTarget->GetRect();
}
RefPtr<DataSourceSurface> surface =
Factory::CreateDataSourceSurface(bounds.Size(), format);
if (!surface) {
return nullptr;
}
DataSourceSurface::ScopedMap dstMap(surface, DataSourceSurface::WRITE);
if (!dstMap.IsMapped() || !ReadInto(dstMap.GetData(), dstMap.GetStride(),
format, bounds, aHandle)) {
return nullptr;
}
return surface.forget();
}
// Utility method to install the target before reading a snapshot.
bool DrawTargetWebgl::ReadInto(uint8_t* aDstData, int32_t aDstStride) {
if (!PrepareContext(false)) {
return false;
}
return mSharedContext->ReadInto(aDstData, aDstStride, GetFormat(), GetRect());
}
// Utility method to install the target before reading a snapshot.
already_AddRefed<DataSourceSurface> DrawTargetWebgl::ReadSnapshot() {
AutoRestoreContext restore(this);
if (!PrepareContext(false)) {
return nullptr;
}
mProfile.OnReadback();
return mSharedContext->ReadSnapshot();
}
already_AddRefed<SourceSurface> DrawTargetWebgl::GetBackingSurface() {
return Snapshot();
}
void DrawTargetWebgl::DetachAllSnapshots() {
mSkia->DetachAllSnapshots();
ClearSnapshot();
}
// Prepare the framebuffer for accelerated drawing. Any cached snapshots will
// be invalidated if not detached and copied here. Ensure the WebGL
// framebuffer's contents are updated if still somehow stored in the Skia
// framebuffer.
bool DrawTargetWebgl::MarkChanged() {
if (mSnapshot) {
// Try to copy the target into a new texture if possible.
ClearSnapshot(true, true);
}
if (!mWebglValid && !FlushFromSkia()) {
return false;
}
mSkiaValid = false;
return true;
}
bool DrawTargetWebgl::LockBits(uint8_t** aData, IntSize* aSize,
int32_t* aStride, SurfaceFormat* aFormat,
IntPoint* aOrigin) {
// Can only access pixels if there is valid, flattened Skia data.
if (mSkiaValid && !mSkiaLayer) {
MarkSkiaChanged();
return mSkia->LockBits(aData, aSize, aStride, aFormat, aOrigin);
}
return false;
}
void DrawTargetWebgl::ReleaseBits(uint8_t* aData) {
// Can only access pixels if there is valid, flattened Skia data.
if (mSkiaValid && !mSkiaLayer) {
mSkia->ReleaseBits(aData);
}
}
// Format is x, y, alpha
static const float kRectVertexData[12] = {0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,
1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f};
// Orphans the contents of the path vertex buffer. The beginning of the buffer
// always contains data for a simple rectangle draw to avoid needing to switch
// buffers.
void DrawTargetWebgl::SharedContext::ResetPathVertexBuffer(bool aChanged) {
mWebgl->BindBuffer(LOCAL_GL_ARRAY_BUFFER, mPathVertexBuffer.get());
mWebgl->RawBufferData(
LOCAL_GL_ARRAY_BUFFER, nullptr,
std::max(size_t(mPathVertexCapacity), sizeof(kRectVertexData)),
LOCAL_GL_DYNAMIC_DRAW);
mWebgl->RawBufferSubData(LOCAL_GL_ARRAY_BUFFER, 0,
(const uint8_t*)kRectVertexData,
sizeof(kRectVertexData));
mPathVertexOffset = sizeof(kRectVertexData);
if (aChanged) {
mWGROutputBuffer.reset(
mPathVertexCapacity > 0
? new (fallible) WGR::OutputVertex[mPathVertexCapacity /
sizeof(WGR::OutputVertex)]
: nullptr);
}
}
// Attempts to create all shaders and resources to be used for drawing commands.
// Returns whether or not this succeeded.
bool DrawTargetWebgl::SharedContext::CreateShaders() {
if (!mPathVertexArray) {
mPathVertexArray = mWebgl->CreateVertexArray();
}
if (!mPathVertexBuffer) {
mPathVertexBuffer = mWebgl->CreateBuffer();
mWebgl->BindVertexArray(mPathVertexArray.get());
ResetPathVertexBuffer();
mWebgl->EnableVertexAttribArray(0);
mWebgl->VertexAttribPointer(0, 3, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, 0);
}
if (!mSolidProgram) {
// AA is computed by using the basis vectors of the transform to determine
// both the scale and orientation. The scale is then used to extrude the
// rectangle outward by 1 screen-space pixel to account for the AA region.
// The distance to the rectangle edges is passed to the fragment shader in
// an interpolant, biased by 0.5 so it represents the desired coverage. The
// minimum coverage is then chosen by the fragment shader to use as an AA
// coverage value to modulate the color.
auto vsSource =
u"attribute vec3 a_vertex;\n"
"uniform vec2 u_transform[3];\n"
"uniform vec2 u_viewport;\n"
"uniform float u_aa;\n"
"varying vec2 v_cliptc;\n"
"varying vec4 v_dist;\n"
"varying float v_alpha;\n"
"void main() {\n"
" vec2 scale = vec2(dot(u_transform[0], u_transform[0]),\n"
" dot(u_transform[1], u_transform[1]));\n"
" vec2 invScale = u_aa * inversesqrt(scale + 1.0e-6);\n"
" scale *= invScale;\n"
" vec2 extrude = a_vertex.xy + invScale * (2.0 * a_vertex.xy - "
"1.0);\n"
" vec2 vertex = u_transform[0] * extrude.x +\n"
" u_transform[1] * extrude.y +\n"
" u_transform[2];\n"
" gl_Position = vec4(vertex * 2.0 / u_viewport - 1.0, 0.0, 1.0);\n"
" v_cliptc = vertex / u_viewport;\n"
" v_dist = vec4(extrude, 1.0 - extrude) * scale.xyxy + 1.5 - u_aa;\n"
" v_alpha = a_vertex.z;\n"
"}\n"_ns;
auto fsSource =
u"precision mediump float;\n"
"uniform vec4 u_color;\n"
"uniform sampler2D u_clipmask;\n"
"varying vec2 v_cliptc;\n"
"varying vec4 v_dist;\n"
"varying float v_alpha;\n"
"void main() {\n"
" float clip = texture2D(u_clipmask, v_cliptc).r;\n"
" vec2 dist = min(v_dist.xy, v_dist.zw);\n"
" float aa = v_alpha * clamp(min(dist.x, dist.y), 0.0, 1.0);\n"
" gl_FragColor = clip * aa * u_color;\n"
"}\n"_ns;
RefPtr<WebGLShaderJS> vsId = mWebgl->CreateShader(LOCAL_GL_VERTEX_SHADER);
mWebgl->ShaderSource(*vsId, vsSource);
mWebgl->CompileShader(*vsId);
if (!mWebgl->GetCompileResult(*vsId).success) {
return false;
}
RefPtr<WebGLShaderJS> fsId = mWebgl->CreateShader(LOCAL_GL_FRAGMENT_SHADER);
mWebgl->ShaderSource(*fsId, fsSource);
mWebgl->CompileShader(*fsId);
if (!mWebgl->GetCompileResult(*fsId).success) {
return false;
}
mSolidProgram = mWebgl->CreateProgram();
mWebgl->AttachShader(*mSolidProgram, *vsId);
mWebgl->AttachShader(*mSolidProgram, *fsId);
mWebgl->BindAttribLocation(*mSolidProgram, 0, u"a_vertex"_ns);
mWebgl->LinkProgram(*mSolidProgram);
if (!mWebgl->GetLinkResult(*mSolidProgram).success) {
return false;
}
mSolidProgramViewport =
mWebgl->GetUniformLocation(*mSolidProgram, u"u_viewport"_ns);
mSolidProgramAA = mWebgl->GetUniformLocation(*mSolidProgram, u"u_aa"_ns);
mSolidProgramTransform =
mWebgl->GetUniformLocation(*mSolidProgram, u"u_transform"_ns);
mSolidProgramColor =
mWebgl->GetUniformLocation(*mSolidProgram, u"u_color"_ns);
mSolidProgramClipMask =
mWebgl->GetUniformLocation(*mSolidProgram, u"u_clipmask"_ns);
if (!mSolidProgramViewport || !mSolidProgramAA || !mSolidProgramTransform ||
!mSolidProgramColor || !mSolidProgramClipMask) {
return false;
}
mWebgl->UseProgram(mSolidProgram);
int32_t clipMaskData = 1;
mWebgl->UniformData(LOCAL_GL_INT, mSolidProgramClipMask, false,
{(const uint8_t*)&clipMaskData, sizeof(clipMaskData)});
}
if (!mImageProgram) {
auto vsSource =
u"attribute vec3 a_vertex;\n"
"uniform vec2 u_viewport;\n"
"uniform float u_aa;\n"
"uniform vec2 u_transform[3];\n"
"uniform vec2 u_texmatrix[3];\n"
"varying vec2 v_cliptc;\n"
"varying vec2 v_texcoord;\n"
"varying vec4 v_dist;\n"
"varying float v_alpha;\n"
"void main() {\n"
" vec2 scale = vec2(dot(u_transform[0], u_transform[0]),\n"
" dot(u_transform[1], u_transform[1]));\n"
" vec2 invScale = u_aa * inversesqrt(scale + 1.0e-6);\n"
" scale *= invScale;\n"
" vec2 extrude = a_vertex.xy + invScale * (2.0 * a_vertex.xy - "
"1.0);\n"
" vec2 vertex = u_transform[0] * extrude.x +\n"
" u_transform[1] * extrude.y +\n"
" u_transform[2];\n"
" gl_Position = vec4(vertex * 2.0 / u_viewport - 1.0, 0.0, 1.0);\n"
" v_cliptc = vertex / u_viewport;\n"
" v_texcoord = u_texmatrix[0] * extrude.x +\n"
" u_texmatrix[1] * extrude.y +\n"
" u_texmatrix[2];\n"
" v_dist = vec4(extrude, 1.0 - extrude) * scale.xyxy + 1.5 - u_aa;\n"
" v_alpha = a_vertex.z;\n"
"}\n"_ns;
auto fsSource =
u"precision mediump float;\n"
"uniform vec4 u_texbounds;\n"
"uniform vec4 u_color;\n"
"uniform float u_swizzle;\n"
"uniform sampler2D u_sampler;\n"
"uniform sampler2D u_clipmask;\n"
"varying vec2 v_cliptc;\n"
"varying vec2 v_texcoord;\n"
"varying vec4 v_dist;\n"
"varying float v_alpha;\n"
"void main() {\n"
" vec2 tc = clamp(v_texcoord, u_texbounds.xy, u_texbounds.zw);\n"
" vec4 image = texture2D(u_sampler, tc);\n"
" float clip = texture2D(u_clipmask, v_cliptc).r;\n"
" vec2 dist = min(v_dist.xy, v_dist.zw);\n"
" float aa = v_alpha * clamp(min(dist.x, dist.y), 0.0, 1.0);\n"
" gl_FragColor = clip * aa * u_color *\n"
" mix(image, image.rrrr, u_swizzle);\n"
"}\n"_ns;
RefPtr<WebGLShaderJS> vsId = mWebgl->CreateShader(LOCAL_GL_VERTEX_SHADER);
mWebgl->ShaderSource(*vsId, vsSource);
mWebgl->CompileShader(*vsId);
if (!mWebgl->GetCompileResult(*vsId).success) {
return false;
}
RefPtr<WebGLShaderJS> fsId = mWebgl->CreateShader(LOCAL_GL_FRAGMENT_SHADER);
mWebgl->ShaderSource(*fsId, fsSource);
mWebgl->CompileShader(*fsId);
if (!mWebgl->GetCompileResult(*fsId).success) {
return false;
}
mImageProgram = mWebgl->CreateProgram();
mWebgl->AttachShader(*mImageProgram, *vsId);
mWebgl->AttachShader(*mImageProgram, *fsId);
mWebgl->BindAttribLocation(*mImageProgram, 0, u"a_vertex"_ns);
mWebgl->LinkProgram(*mImageProgram);
if (!mWebgl->GetLinkResult(*mImageProgram).success) {
return false;
}
mImageProgramViewport =
mWebgl->GetUniformLocation(*mImageProgram, u"u_viewport"_ns);
mImageProgramAA = mWebgl->GetUniformLocation(*mImageProgram, u"u_aa"_ns);
mImageProgramTransform =
mWebgl->GetUniformLocation(*mImageProgram, u"u_transform"_ns);
mImageProgramTexMatrix =
mWebgl->GetUniformLocation(*mImageProgram, u"u_texmatrix"_ns);
mImageProgramTexBounds =
mWebgl->GetUniformLocation(*mImageProgram, u"u_texbounds"_ns);
mImageProgramSwizzle =
mWebgl->GetUniformLocation(*mImageProgram, u"u_swizzle"_ns);
mImageProgramColor =
mWebgl->GetUniformLocation(*mImageProgram, u"u_color"_ns);
mImageProgramSampler =
mWebgl->GetUniformLocation(*mImageProgram, u"u_sampler"_ns);
mImageProgramClipMask =
mWebgl->GetUniformLocation(*mImageProgram, u"u_clipmask"_ns);
if (!mImageProgramViewport || !mImageProgramAA || !mImageProgramTransform ||
!mImageProgramTexMatrix || !mImageProgramTexBounds ||
!mImageProgramSwizzle || !mImageProgramColor || !mImageProgramSampler ||
!mImageProgramClipMask) {
return false;
}
mWebgl->UseProgram(mImageProgram);
int32_t samplerData = 0;
mWebgl->UniformData(LOCAL_GL_INT, mImageProgramSampler, false,
{(const uint8_t*)&samplerData, sizeof(samplerData)});
int32_t clipMaskData = 1;
mWebgl->UniformData(LOCAL_GL_INT, mImageProgramClipMask, false,
{(const uint8_t*)&clipMaskData, sizeof(clipMaskData)});
}
return true;
}
void DrawTargetWebgl::ClearRect(const Rect& aRect) {
// OP_SOURCE may not be bounded by a mask, so we ensure that a clip is pushed
// here to avoid a group being pushed for it.
PushClipRect(aRect);
ColorPattern pattern(
DeviceColor(0.0f, 0.0f, 0.0f, IsOpaque(mFormat) ? 1.0f : 0.0f));
DrawRect(aRect, pattern, DrawOptions(1.0f, CompositionOp::OP_SOURCE));
PopClip();
}
// Attempts to create the framebuffer used for drawing and also any relevant
// non-shared resources. Returns whether or not this succeeded.
bool DrawTargetWebgl::CreateFramebuffer() {
RefPtr<ClientWebGLContext> webgl = mSharedContext->mWebgl;
if (!mFramebuffer) {
mFramebuffer = webgl->CreateFramebuffer();
}
if (!mTex) {
mTex = webgl->CreateTexture();
webgl->BindTexture(LOCAL_GL_TEXTURE_2D, mTex);
webgl->TexStorage2D(LOCAL_GL_TEXTURE_2D, 1, LOCAL_GL_RGBA8, mSize.width,
mSize.height);
mSharedContext->InitTexParameters(mTex);
webgl->BindFramebuffer(LOCAL_GL_FRAMEBUFFER, mFramebuffer);
webgl->FramebufferTexture2D(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_COLOR_ATTACHMENT0, LOCAL_GL_TEXTURE_2D,
mTex, 0);
webgl->Viewport(0, 0, mSize.width, mSize.height);
webgl->ClearColor(0.0f, 0.0f, 0.0f, IsOpaque(mFormat) ? 1.0f : 0.0f);
webgl->Clear(LOCAL_GL_COLOR_BUFFER_BIT);
mSharedContext->ClearTarget();
mSharedContext->ClearLastTexture();
}
return true;
}
void DrawTargetWebgl::CopySurface(SourceSurface* aSurface,
const IntRect& aSourceRect,
const IntPoint& aDestination) {
if (mSkiaValid) {
if (mSkiaLayer) {
if (IntRect(aDestination, aSourceRect.Size()).Contains(GetRect())) {
// If the the destination would override the entire layer, discard the
// layer.
mSkiaLayer = false;
} else if (!IsOpaque(aSurface->GetFormat())) {
// If the surface is not opaque, copying it into the layer results in
// unintended blending rather than a copy to the destination.
FlattenSkia();
}
} else {
// If there is no layer, copying is safe.
MarkSkiaChanged();
}
mSkia->CopySurface(aSurface, aSourceRect, aDestination);
return;
}
Matrix matrix = Matrix::Translation(aDestination - aSourceRect.TopLeft());
SurfacePattern pattern(aSurface, ExtendMode::CLAMP, matrix);
DrawRect(Rect(IntRect(aDestination, aSourceRect.Size())), pattern,
DrawOptions(1.0f, CompositionOp::OP_SOURCE), Nothing(), nullptr,
false, false);
}
void DrawTargetWebgl::PushClip(const Path* aPath) {
if (aPath && aPath->GetBackendType() == BackendType::SKIA) {
// Detect if the path is really just a rect to simplify caching.
const PathSkia* pathSkia = static_cast<const PathSkia*>(aPath);
const SkPath& skPath = pathSkia->GetPath();
SkRect rect;
if (skPath.isRect(&rect)) {
PushClipRect(SkRectToRect(rect));
return;
}
}
mClipChanged = true;
mRefreshClipState = true;
mSkia->PushClip(aPath);
mClipStack.push_back({GetTransform(), Rect(), aPath});
}
void DrawTargetWebgl::PushClipRect(const Rect& aRect) {
mClipChanged = true;
mRefreshClipState = true;
mSkia->PushClipRect(aRect);
mClipStack.push_back({GetTransform(), aRect, nullptr});
}
void DrawTargetWebgl::PushDeviceSpaceClipRects(const IntRect* aRects,
uint32_t aCount) {
mClipChanged = true;
mRefreshClipState = true;
mSkia->PushDeviceSpaceClipRects(aRects, aCount);
for (uint32_t i = 0; i < aCount; i++) {
mClipStack.push_back({Matrix(), Rect(aRects[i]), nullptr});
}
}
void DrawTargetWebgl::PopClip() {
mClipChanged = true;
mRefreshClipState = true;
mSkia->PopClip();
mClipStack.pop_back();
}
bool DrawTargetWebgl::RemoveAllClips() {
if (mClipStack.empty()) {
return true;
}
if (!mSkia->RemoveAllClips()) {
return false;
}
mClipChanged = true;
mRefreshClipState = true;
mClipStack.clear();
return true;
}
// Whether a given composition operator can be mapped to a WebGL blend mode.
static inline bool SupportsDrawOptions(const DrawOptions& aOptions) {
switch (aOptions.mCompositionOp) {
case CompositionOp::OP_OVER:
case CompositionOp::OP_ADD:
case CompositionOp::OP_ATOP:
case CompositionOp::OP_SOURCE:
return true;
default:
return false;
}
}
// Whether a pattern can be mapped to an available WebGL shader.
bool DrawTargetWebgl::SharedContext::SupportsPattern(const Pattern& aPattern) {
switch (aPattern.GetType()) {
case PatternType::COLOR:
return true;
case PatternType::SURFACE: {
auto surfacePattern = static_cast<const SurfacePattern&>(aPattern);
if (surfacePattern.mExtendMode != ExtendMode::CLAMP) {
return false;
}
if (surfacePattern.mSurface) {
IntSize size = surfacePattern.mSurface->GetSize();
// The maximum size a surface can be before triggering a fallback to
// software. Bound the maximum surface size by the actual texture size
// limit.
int32_t maxSize = int32_t(
std::min(StaticPrefs::gfx_canvas_accelerated_max_surface_size(),
mMaxTextureSize));
// Check if either of the surface dimensions or the sampling rect,
// if supplied, exceed the maximum.
if (std::max(size.width, size.height) > maxSize &&
(surfacePattern.mSamplingRect.IsEmpty() ||
std::max(surfacePattern.mSamplingRect.width,
surfacePattern.mSamplingRect.height) > maxSize)) {
return false;
}
}
return true;
}
default:
// Patterns other than colors and surfaces are currently not accelerated.
return false;
}
}
// Whether a given composition operator is associative and thus allows drawing
// into a separate layer that can be later composited back into the WebGL
// context.
static inline bool SupportsLayering(const DrawOptions& aOptions) {
switch (aOptions.mCompositionOp) {
case CompositionOp::OP_OVER:
// Layering is only supported for the default source-over composition op.
return true;
default:
return false;
}
}
// When a texture handle is no longer referenced, it must mark itself unused
// by unlinking its owning surface.
static void ReleaseTextureHandle(void* aPtr) {
static_cast<TextureHandle*>(aPtr)->SetSurface(nullptr);
}
bool DrawTargetWebgl::DrawRect(const Rect& aRect, const Pattern& aPattern,
const DrawOptions& aOptions,
Maybe<DeviceColor> aMaskColor,
RefPtr<TextureHandle>* aHandle,
bool aTransformed, bool aClipped,
bool aAccelOnly, bool aForceUpdate,
const StrokeOptions* aStrokeOptions) {
// If there is nothing to draw, then don't draw...
if (aRect.IsEmpty()) {
return true;
}
// If we're already drawing directly to the WebGL context, then we want to
// continue to do so. However, if we're drawing into a Skia layer over the
// WebGL context, then we need to be careful to avoid repeatedly clearing
// and flushing the layer if we hit a drawing request that can be accelerated
// in between layered drawing requests, as clearing and flushing the layer
// can be significantly expensive when repeated. So when a Skia layer is
// active, if it is possible to continue drawing into the layer, then don't
// accelerate the drawing request.
if (mWebglValid || (mSkiaLayer && !mLayerDepth &&
(aAccelOnly || !SupportsLayering(aOptions)))) {
// If we get here, either the WebGL context is being directly drawn to
// or we are going to flush the Skia layer to it before doing so. The shared
// context still needs to be claimed and prepared for drawing. If this
// fails, we just fall back to drawing with Skia below.
if (PrepareContext(aClipped)) {
// The shared context is claimed and the framebuffer is now valid, so try
// accelerated drawing.
return mSharedContext->DrawRectAccel(
aRect, aPattern, aOptions, aMaskColor, aHandle, aTransformed,
aClipped, aAccelOnly, aForceUpdate, aStrokeOptions);
}
}
// Either there is no valid WebGL target to draw into, or we failed to prepare
// it for drawing. The only thing we can do at this point is fall back to
// drawing with Skia. If the request explicitly requires accelerated drawing,
// then draw nothing before returning failure.
if (!aAccelOnly) {
DrawRectFallback(aRect, aPattern, aOptions, aMaskColor, aTransformed,
aClipped, aStrokeOptions);
}
return false;
}
void DrawTargetWebgl::DrawRectFallback(const Rect& aRect,
const Pattern& aPattern,
const DrawOptions& aOptions,
Maybe<DeviceColor> aMaskColor,
bool aTransformed, bool aClipped,
const StrokeOptions* aStrokeOptions) {
// Invalidate the WebGL target and prepare the Skia target for drawing.
MarkSkiaChanged(aOptions);
if (aTransformed) {
// If transforms are requested, then just translate back to FillRect.
if (aMaskColor) {
mSkia->Mask(ColorPattern(*aMaskColor), aPattern, aOptions);
} else if (aStrokeOptions) {
mSkia->StrokeRect(aRect, aPattern, *aStrokeOptions, aOptions);
} else {
mSkia->FillRect(aRect, aPattern, aOptions);
}
} else if (aClipped) {
// If no transform was requested but clipping is still required, then
// temporarily reset the transform before translating to FillRect.
mSkia->SetTransform(Matrix());
if (aMaskColor) {
auto surfacePattern = static_cast<const SurfacePattern&>(aPattern);
if (surfacePattern.mSamplingRect.IsEmpty()) {
mSkia->MaskSurface(ColorPattern(*aMaskColor), surfacePattern.mSurface,
aRect.TopLeft(), aOptions);
} else {
mSkia->Mask(ColorPattern(*aMaskColor), aPattern, aOptions);
}
} else if (aStrokeOptions) {
mSkia->StrokeRect(aRect, aPattern, *aStrokeOptions, aOptions);
} else {
mSkia->FillRect(aRect, aPattern, aOptions);
}
mSkia->SetTransform(mTransform);
} else if (aPattern.GetType() == PatternType::SURFACE) {
// No transform nor clipping was requested, so it is essentially just a
// copy.
auto surfacePattern = static_cast<const SurfacePattern&>(aPattern);
mSkia->CopySurface(surfacePattern.mSurface,
surfacePattern.mSurface->GetRect(),
IntPoint::Round(aRect.TopLeft()));
} else {
MOZ_ASSERT(false);
}
}
inline already_AddRefed<WebGLTextureJS>
DrawTargetWebgl::SharedContext::GetCompatibleSnapshot(SourceSurface* aSurface) {
if (aSurface->GetType() == SurfaceType::WEBGL) {
RefPtr<SourceSurfaceWebgl> webglSurf =
static_cast<SourceSurfaceWebgl*>(aSurface);
if (this == webglSurf->mSharedContext) {
// If there is a snapshot copy in a texture handle, use that.
if (webglSurf->mHandle) {
return do_AddRef(webglSurf->mHandle->GetWebGLTexture());
}
if (RefPtr<DrawTargetWebgl> webglDT = webglSurf->GetTarget()) {
// If there is a copy-on-write reference to a target, use its backing
// texture directly. This is only safe if the targets don't match, but
// MarkChanged should ensure that any snapshots were copied into a
// texture handle before we ever get here.
if (!IsCurrentTarget(webglDT)) {
return do_AddRef(webglDT->mTex);
}
}
}
}
return nullptr;
}
bool DrawTargetWebgl::SharedContext::UploadSurface(DataSourceSurface* aData,
SurfaceFormat aFormat,
const IntRect& aSrcRect,
const IntPoint& aDstOffset,
bool aInit, bool aZero) {
webgl::TexUnpackBlobDesc texDesc = {
LOCAL_GL_TEXTURE_2D,
{uint32_t(aSrcRect.width), uint32_t(aSrcRect.height), 1}};
if (aData) {
// The surface needs to be uploaded to its backing texture either to
// initialize or update the texture handle contents. Map the data
// contents of the surface so it can be read.
DataSourceSurface::ScopedMap map(aData, DataSourceSurface::READ);
if (!map.IsMapped()) {
return false;
}
int32_t stride = map.GetStride();
int32_t bpp = BytesPerPixel(aFormat);
if (mCurrentTarget && mCurrentTarget->mShmem.IsWritable() &&
map.GetData() == mCurrentTarget->mShmem.get<uint8_t>()) {
texDesc.sd = Some(layers::SurfaceDescriptorBuffer(
layers::RGBDescriptor(mCurrentTarget->mSize, SurfaceFormat::R8G8B8A8),
mCurrentTarget->mShmem));
texDesc.structuredSrcSize =
uvec2::From(stride / bpp, mCurrentTarget->mSize.height);
texDesc.unpacking.skipPixels = aSrcRect.x;
texDesc.unpacking.skipRows = aSrcRect.y;
mWaitForShmem = true;
} else {
// Get the data pointer range considering the sampling rect offset and
// size.
Range<const uint8_t> range(
map.GetData() + aSrcRect.y * size_t(stride) + aSrcRect.x * bpp,
std::max(aSrcRect.height - 1, 0) * size_t(stride) +
aSrcRect.width * bpp);
texDesc.cpuData = Some(RawBuffer(range));
}
// If the stride happens to be 4 byte aligned, assume that is the
// desired alignment regardless of format (even A8). Otherwise, we
// default to byte alignment.
texDesc.unpacking.alignmentInTypeElems = stride % 4 ? 1 : 4;
texDesc.unpacking.rowLength = stride / bpp;
} else if (aZero) {
// Create a PBO filled with zero data to initialize the texture data and
// avoid slow initialization inside WebGL.
MOZ_ASSERT(aSrcRect.TopLeft() == IntPoint(0, 0));
size_t size =
size_t(GetAlignedStride<4>(aSrcRect.width, BytesPerPixel(aFormat))) *
aSrcRect.height;
if (!mZeroBuffer || size > mZeroSize) {
mZeroBuffer = mWebgl->CreateBuffer();
mZeroSize = size;
mWebgl->BindBuffer(LOCAL_GL_PIXEL_UNPACK_BUFFER, mZeroBuffer);
// WebGL will zero initialize the empty buffer, so we don't send zero data
// explicitly.
mWebgl->RawBufferData(LOCAL_GL_PIXEL_UNPACK_BUFFER, nullptr, size,
LOCAL_GL_STATIC_DRAW);
} else {
mWebgl->BindBuffer(LOCAL_GL_PIXEL_UNPACK_BUFFER, mZeroBuffer);
}
texDesc.pboOffset = Some(0);
}
// Upload as RGBA8 to avoid swizzling during upload. Surfaces provide
// data as BGRA, but we manually swizzle that in the shader. An A8
// surface will be stored as an R8 texture that will also be swizzled
// in the shader.
GLenum intFormat =
aFormat == SurfaceFormat::A8 ? LOCAL_GL_R8 : LOCAL_GL_RGBA8;
GLenum extFormat =
aFormat == SurfaceFormat::A8 ? LOCAL_GL_RED : LOCAL_GL_RGBA;
webgl::PackingInfo texPI = {extFormat, LOCAL_GL_UNSIGNED_BYTE};
// Do the (partial) upload for the shared or standalone texture.
mWebgl->RawTexImage(0, aInit ? intFormat : 0,
{uint32_t(aDstOffset.x), uint32_t(aDstOffset.y), 0},
texPI, std::move(texDesc));
if (!aData && aZero) {
mWebgl->BindBuffer(LOCAL_GL_PIXEL_UNPACK_BUFFER, 0);
}
return true;
}
static inline SamplingFilter GetSamplingFilter(const Pattern& aPattern) {
return aPattern.GetType() == PatternType::SURFACE
? static_cast<const SurfacePattern&>(aPattern).mSamplingFilter
: SamplingFilter::GOOD;
}
static inline bool UseNearestFilter(const Pattern& aPattern) {
return GetSamplingFilter(aPattern) == SamplingFilter::POINT;
}
// Determine if the rectangle is still axis-aligned and pixel-aligned.
static inline Maybe<IntRect> IsAlignedRect(bool aTransformed,
const Matrix& aCurrentTransform,
const Rect& aRect) {
if (!aTransformed || aCurrentTransform.HasOnlyIntegerTranslation()) {
auto intRect = RoundedToInt(aRect);
if (aRect.WithinEpsilonOf(Rect(intRect), 1.0e-3f)) {
if (aTransformed) {
intRect += RoundedToInt(aCurrentTransform.GetTranslation());
}
return Some(intRect);
}
}
return Nothing();
}
// Common rectangle and pattern drawing function shared by many DrawTarget
// commands. If aMaskColor is specified, the provided surface pattern will be
// treated as a mask. If aHandle is specified, then the surface pattern's
// texture will be cached in the supplied handle, as opposed to using the
// surface's user data. If aTransformed or aClipped are false, then transforms
// and/or clipping will be disabled. If aAccelOnly is specified, then this
// function will return before it would have otherwise drawn without
// acceleration. If aForceUpdate is specified, then the provided texture handle
// will be respecified with the provided surface.
bool DrawTargetWebgl::SharedContext::DrawRectAccel(
const Rect& aRect, const Pattern& aPattern, const DrawOptions& aOptions,
Maybe<DeviceColor> aMaskColor, RefPtr<TextureHandle>* aHandle,
bool aTransformed, bool aClipped, bool aAccelOnly, bool aForceUpdate,
const StrokeOptions* aStrokeOptions, const PathVertexRange* aVertexRange) {
// If the rect or clip rect is empty, then there is nothing to draw.
if (aRect.IsEmpty() || mClipRect.IsEmpty()) {
return true;
}
// Check if the drawing options and the pattern support acceleration. Also
// ensure the framebuffer is prepared for drawing. If not, fall back to using
// the Skia target.
if (!SupportsDrawOptions(aOptions) || !SupportsPattern(aPattern) ||
aStrokeOptions || !mCurrentTarget->MarkChanged()) {
// If only accelerated drawing was requested, bail out without software
// drawing fallback.
if (!aAccelOnly) {
MOZ_ASSERT(!aVertexRange);
mCurrentTarget->DrawRectFallback(aRect, aPattern, aOptions, aMaskColor,
aTransformed, aClipped, aStrokeOptions);
}
return false;
}
const Matrix& currentTransform = GetTransform();
if (aOptions.mCompositionOp == CompositionOp::OP_SOURCE && aTransformed &&
aClipped &&
(HasClipMask() || !currentTransform.PreservesAxisAlignedRectangles() ||
!currentTransform.TransformBounds(aRect).Contains(Rect(mClipRect)) ||
(aPattern.GetType() == PatternType::SURFACE &&
!IsAlignedRect(aTransformed, currentTransform, aRect)))) {
// Clear outside the mask region for masks that are not bounded by clip.
return DrawRectAccel(Rect(mClipRect), ColorPattern(DeviceColor(0, 0, 0, 0)),
DrawOptions(1.0f, CompositionOp::OP_SOURCE,
aOptions.mAntialiasMode),
Nothing(), nullptr, false, aClipped, aAccelOnly) &&
DrawRectAccel(aRect, aPattern,
DrawOptions(aOptions.mAlpha, CompositionOp::OP_ADD,
aOptions.mAntialiasMode),
aMaskColor, aHandle, aTransformed, aClipped,
aAccelOnly, aForceUpdate, aStrokeOptions,
aVertexRange);
}
// Set up the scissor test to reflect the clipping rectangle, if supplied.
bool scissor = false;
if (!mClipRect.Contains(IntRect(IntPoint(), mViewportSize))) {
scissor = true;
mWebgl->Enable(LOCAL_GL_SCISSOR_TEST);
mWebgl->Scissor(mClipRect.x, mClipRect.y, mClipRect.width,
mClipRect.height);
}
bool success = false;
// Now try to actually draw the pattern...
switch (aPattern.GetType()) {
case PatternType::COLOR: {
if (!aVertexRange) {
// Only an uncached draw if not using the vertex cache.
mCurrentTarget->mProfile.OnUncachedDraw();
}
auto color = static_cast<const ColorPattern&>(aPattern).mColor;
float a = color.a * aOptions.mAlpha;
DeviceColor premulColor(color.r * a, color.g * a, color.b * a, a);
if (((a == 1.0f && aOptions.mCompositionOp == CompositionOp::OP_OVER) ||
aOptions.mCompositionOp == CompositionOp::OP_SOURCE) &&
!aStrokeOptions && !aVertexRange && !HasClipMask()) {
// Certain color patterns can be mapped to scissored clears. The
// composition op must effectively overwrite the destination, and the
// transform must map to an axis-aligned integer rectangle.
if (Maybe<IntRect> intRect =
IsAlignedRect(aTransformed, currentTransform, aRect)) {
if (!intRect->Contains(mClipRect)) {
scissor = true;
mWebgl->Enable(LOCAL_GL_SCISSOR_TEST);
auto scissorRect = intRect->Intersect(mClipRect);
mWebgl->Scissor(scissorRect.x, scissorRect.y, scissorRect.width,
scissorRect.height);
}
mWebgl->ClearColor(premulColor.b, premulColor.g, premulColor.r,
premulColor.a);
mWebgl->Clear(LOCAL_GL_COLOR_BUFFER_BIT);
success = true;
break;
}
}
// Map the composition op to a WebGL blend mode, if possible.
Maybe<DeviceColor> blendColor;
if (aOptions.mCompositionOp == CompositionOp::OP_SOURCE) {
// The source operator can support clipping and AA by emulating it with
// the over op. Supply the color with blend state, and set the shader
// color to white, to avoid needing dual-source blending.
blendColor = Some(premulColor);
premulColor = DeviceColor(1, 1, 1, 1);
}
SetBlendState(aOptions.mCompositionOp, blendColor);
// Since it couldn't be mapped to a scissored clear, we need to use the
// solid color shader with supplied transform.
if (mLastProgram != mSolidProgram) {
mWebgl->UseProgram(mSolidProgram);
mLastProgram = mSolidProgram;
// Ensure viewport and AA state is current.
mDirtyViewport = true;
mDirtyAA = true;
}
if (mDirtyViewport) {
float viewportData[2] = {float(mViewportSize.width),
float(mViewportSize.height)};
mWebgl->UniformData(
LOCAL_GL_FLOAT_VEC2, mSolidProgramViewport, false,
{(const uint8_t*)viewportData, sizeof(viewportData)});
mDirtyViewport = false;
}
if (mDirtyAA || aVertexRange) {
// Generated paths provide their own AA as vertex alpha.
float aaData = aVertexRange ? 0.0f : 1.0f;
mWebgl->UniformData(LOCAL_GL_FLOAT, mSolidProgramAA, false,
{(const uint8_t*)&aaData, sizeof(aaData)});
mDirtyAA = aaData == 0.0f;
}
float colorData[4] = {premulColor.b, premulColor.g, premulColor.r,
premulColor.a};
Matrix xform(aRect.width, 0.0f, 0.0f, aRect.height, aRect.x, aRect.y);
if (aTransformed) {
xform *= currentTransform;
}
float xformData[6] = {xform._11, xform._12, xform._21,
xform._22, xform._31, xform._32};
mWebgl->UniformData(LOCAL_GL_FLOAT_VEC2, mSolidProgramTransform, false,
{(const uint8_t*)xformData, sizeof(xformData)});
mWebgl->UniformData(LOCAL_GL_FLOAT_VEC4, mSolidProgramColor, false,
{(const uint8_t*)colorData, sizeof(colorData)});
// Finally draw the colored rectangle.
if (aVertexRange) {
// If there's a vertex range, then we need to draw triangles within from
// generated from a path stored in the path vertex buffer.
mWebgl->DrawArrays(LOCAL_GL_TRIANGLES, GLint(aVertexRange->mOffset),
GLsizei(aVertexRange->mLength));
} else {
// Otherwise we're drawing a simple filled rectangle.
mWebgl->DrawArrays(LOCAL_GL_TRIANGLE_FAN, 0, 4);
}
success = true;
break;
}
case PatternType::SURFACE: {
auto surfacePattern = static_cast<const SurfacePattern&>(aPattern);
// If a texture handle was supplied, or if the surface already has an
// assigned texture handle stashed in its used data, try to use it.
RefPtr<TextureHandle> handle =
aHandle ? aHandle->get()
: (surfacePattern.mSurface
? static_cast<TextureHandle*>(
surfacePattern.mSurface->GetUserData(
&mTextureHandleKey))
: nullptr);
IntSize texSize;
IntPoint offset;
SurfaceFormat format;
// Check if the found handle is still valid and if its sampling rect
// matches the requested sampling rect.
if (handle && handle->IsValid() &&
(surfacePattern.mSamplingRect.IsEmpty() ||
handle->GetSamplingRect().IsEqualEdges(
surfacePattern.mSamplingRect))) {
texSize = handle->GetSize();
format = handle->GetFormat();
offset = handle->GetSamplingOffset();
} else {
// Otherwise, there is no handle that can be used yet, so extract
// information from the surface pattern.
handle = nullptr;
if (!surfacePattern.mSurface) {
// If there was no actual surface supplied, then we tried to draw
// using a texture handle, but the texture handle wasn't valid.
break;
}
texSize = surfacePattern.mSurface->GetSize();
format = surfacePattern.mSurface->GetFormat();
if (!surfacePattern.mSamplingRect.IsEmpty()) {
texSize = surfacePattern.mSamplingRect.Size();
offset = surfacePattern.mSamplingRect.TopLeft();
}
}
// We need to be able to transform from local space into texture space.
Matrix invMatrix = surfacePattern.mMatrix;
if (!invMatrix.Invert()) {
break;
}
RefPtr<WebGLTextureJS> tex;
IntRect bounds;
IntSize backingSize;
RefPtr<DataSourceSurface> data;
bool init = false;
if (handle) {
if (aForceUpdate) {
data = surfacePattern.mSurface->GetDataSurface();
if (!data) {
break;
}
// The size of the texture may change if we update contents.
mUsedTextureMemory -= handle->UsedBytes();
handle->UpdateSize(texSize);
mUsedTextureMemory += handle->UsedBytes();
handle->SetSamplingOffset(surfacePattern.mSamplingRect.TopLeft());
}
// If using an existing handle, move it to the front of the MRU list.
handle->remove();
mTextureHandles.insertFront(handle);
} else if ((tex = GetCompatibleSnapshot(surfacePattern.mSurface))) {
backingSize = surfacePattern.mSurface->GetSize();
bounds = IntRect(offset, texSize);
// Count reusing a snapshot texture (no readback) as a cache hit.
mCurrentTarget->mProfile.OnCacheHit();
} else {
// If we get here, we need a data surface for a texture upload.
data = surfacePattern.mSurface->GetDataSurface();
if (!data) {
break;
}
// There is no existing handle. Calculate the bytes that would be used
// by this texture, and prune enough other textures to ensure we have
// that much usable texture space available to allocate.
size_t usedBytes = TextureHandle::UsedBytes(format, texSize);
PruneTextureMemory(usedBytes, false);
// The requested page size for shared textures.
int32_t pageSize = int32_t(
std::min(StaticPrefs::gfx_canvas_accelerated_shared_page_size(),
mMaxTextureSize));
if (!aForceUpdate &&
std::max(texSize.width, texSize.height) <= pageSize / 2) {
// Ensure that the surface size won't change via forced update and
// that the surface is no bigger than a quadrant of a shared texture
// page. If so, try to allocate it to a shared texture. Look for any
// existing shared texture page with a matching format and allocate
// from that if possible.
for (auto& shared : mSharedTextures) {
if (shared->GetFormat() == format) {
bool wasEmpty = !shared->HasAllocatedHandles();
handle = shared->Allocate(texSize);
if (handle) {
if (wasEmpty) {
// If the page was previously empty, then deduct it from the
// empty memory reserves.
mEmptyTextureMemory -= shared->UsedBytes();
}
break;
}
}
}
// If we couldn't find an existing shared texture page with matching
// format, then allocate a new page to put the request in.
if (!handle) {
tex = mWebgl->CreateTexture();
if (!tex) {
MOZ_ASSERT(false);
break;
}
RefPtr<SharedTexture> shared =
new SharedTexture(IntSize(pageSize, pageSize), format, tex);
mSharedTextures.push_back(shared);
mTotalTextureMemory += shared->UsedBytes();
handle = shared->Allocate(texSize);
if (!handle) {
MOZ_ASSERT(false);
break;
}
init = true;
}
} else {
// The surface wouldn't fit in a shared texture page, so we need to
// allocate a standalone texture for it instead.
tex = mWebgl->CreateTexture();
if (!tex) {
MOZ_ASSERT(false);
break;
}
RefPtr<StandaloneTexture> standalone =
new StandaloneTexture(texSize, format, tex);
mStandaloneTextures.push_back(standalone);
mTotalTextureMemory += standalone->UsedBytes();
handle = standalone;
init = true;
}
// Insert the new texture handle into the front of the MRU list and
// update used space for it.
mTextureHandles.insertFront(handle);
++mNumTextureHandles;
mUsedTextureMemory += handle->UsedBytes();
// Link the handle to the surface's user data.
handle->SetSamplingOffset(surfacePattern.mSamplingRect.TopLeft());
if (aHandle) {
*aHandle = handle;
} else {
handle->SetSurface(surfacePattern.mSurface);
surfacePattern.mSurface->AddUserData(&mTextureHandleKey, handle.get(),
ReleaseTextureHandle);
}
}
// Map the composition op to a WebGL blend mode, if possible. If there is
// a mask color and a texture with multiple channels, assume subpixel
// blending. If we encounter the source op here, then assume the surface
// is opaque (non-opaque is handled above) and emulate it with over.
SetBlendState(aOptions.mCompositionOp,
format != SurfaceFormat::A8 ? aMaskColor : Nothing());
// Switch to the image shader and set up relevant transforms.
if (mLastProgram != mImageProgram) {
mWebgl->UseProgram(mImageProgram);
mLastProgram = mImageProgram;
// Ensure viewport and AA state is current.
mDirtyViewport = true;
mDirtyAA = true;
}
if (mDirtyViewport) {
float viewportData[2] = {float(mViewportSize.width),
float(mViewportSize.height)};
mWebgl->UniformData(
LOCAL_GL_FLOAT_VEC2, mImageProgramViewport, false,
{(const uint8_t*)viewportData, sizeof(viewportData)});
mDirtyViewport = false;
}
if (mDirtyAA || aVertexRange) {
// AA is not supported for OP_SOURCE. Generated paths provide their own
// AA as vertex alpha.
float aaData =
mLastCompositionOp == CompositionOp::OP_SOURCE || aVertexRange
? 0.0f
: 1.0f;
mWebgl->UniformData(LOCAL_GL_FLOAT, mImageProgramAA, false,
{(const uint8_t*)&aaData, sizeof(aaData)});
mDirtyAA = aaData == 0.0f;
}
DeviceColor color = aMaskColor && format != SurfaceFormat::A8
? DeviceColor::Mask(1.0f, aMaskColor->a)
: aMaskColor.valueOr(DeviceColor(1, 1, 1, 1));
float a = color.a * aOptions.mAlpha;
float colorData[4] = {color.b * a, color.g * a, color.r * a, a};
float swizzleData =
aMaskColor && format == SurfaceFormat::A8 ? 1.0f : 0.0f;
Matrix xform(aRect.width, 0.0f, 0.0f, aRect.height, aRect.x, aRect.y);
if (aTransformed) {
xform *= currentTransform;
}
float xformData[6] = {xform._11, xform._12, xform._21,
xform._22, xform._31, xform._32};
mWebgl->UniformData(LOCAL_GL_FLOAT_VEC2, mImageProgramTransform, false,
{(const uint8_t*)xformData, sizeof(xformData)});
mWebgl->UniformData(LOCAL_GL_FLOAT_VEC4, mImageProgramColor, false,
{(const uint8_t*)colorData, sizeof(colorData)});
mWebgl->UniformData(LOCAL_GL_FLOAT, mImageProgramSwizzle, false,
{(const uint8_t*)&swizzleData, sizeof(swizzleData)});
// Start binding the WebGL state for the texture.
if (handle) {
if (!tex) {
tex = handle->GetWebGLTexture();
}
bounds = handle->GetBounds();
backingSize = handle->GetBackingSize();
}
if (mLastTexture != tex) {
mWebgl->BindTexture(LOCAL_GL_TEXTURE_2D, tex);
mLastTexture = tex;
}
if (init) {
// If this is the first time the texture is used, we need to initialize
// the clamping and filtering state.
InitTexParameters(tex);
if (texSize != backingSize) {
// If this is a shared texture handle whose actual backing texture is
// larger than it, then we need to allocate the texture page to the
// full backing size before we can do a partial upload of the surface.
UploadSurface(nullptr, format, IntRect(IntPoint(), backingSize),
IntPoint(), true, true);
}
}
if (data) {
UploadSurface(data, format, IntRect(offset, texSize), bounds.TopLeft(),
texSize == backingSize);
// Signal that we had to upload new data to the texture cache.
mCurrentTarget->mProfile.OnCacheMiss();
} else {
// Signal that we are reusing data from the texture cache.
mCurrentTarget->mProfile.OnCacheHit();
}
// Set up the texture coordinate matrix to map from the input rectangle to
// the backing texture subrect.
Size backingSizeF(backingSize);
Matrix uvMatrix(aRect.width, 0.0f, 0.0f, aRect.height, aRect.x, aRect.y);
uvMatrix *= invMatrix;
uvMatrix *= Matrix(1.0f / backingSizeF.width, 0.0f, 0.0f,
1.0f / backingSizeF.height,
float(bounds.x - offset.x) / backingSizeF.width,
float(bounds.y - offset.y) / backingSizeF.height);
float uvData[6] = {uvMatrix._11, uvMatrix._12, uvMatrix._21,
uvMatrix._22, uvMatrix._31, uvMatrix._32};
mWebgl->UniformData(LOCAL_GL_FLOAT_VEC2, mImageProgramTexMatrix, false,
{(const uint8_t*)uvData, sizeof(uvData)});
// Clamp sampling to within the bounds of the backing texture subrect.
float texBounds[4] = {
(bounds.x + 0.5f) / backingSizeF.width,
(bounds.y + 0.5f) / backingSizeF.height,
(bounds.XMost() - 0.5f) / backingSizeF.width,
(bounds.YMost() - 0.5f) / backingSizeF.height,
};
mWebgl->UniformData(LOCAL_GL_FLOAT_VEC4, mImageProgramTexBounds, false,
{(const uint8_t*)texBounds, sizeof(texBounds)});
// Ensure we use nearest filtering when no antialiasing is requested.
if (UseNearestFilter(surfacePattern)) {
SetTexFilter(tex, false);
}
// Finally draw the image rectangle.
if (aVertexRange) {
// If there's a vertex range, then we need to draw triangles within from
// generated from a path stored in the path vertex buffer.
mWebgl->DrawArrays(LOCAL_GL_TRIANGLES, GLint(aVertexRange->mOffset),
GLsizei(aVertexRange->mLength));
} else {
// Otherwise we're drawing a simple filled rectangle.
mWebgl->DrawArrays(LOCAL_GL_TRIANGLE_FAN, 0, 4);
}
// Restore the default linear filter if overridden.
if (UseNearestFilter(surfacePattern)) {
SetTexFilter(tex, true);
}
success = true;
break;
}
default:
gfxWarning() << "Unknown DrawTargetWebgl::DrawRect pattern type: "
<< (int)aPattern.GetType();
break;
}
// mWebgl->Disable(LOCAL_GL_BLEND);
// Clean up any scissor state if there was clipping.
if (scissor) {
mWebgl->Disable(LOCAL_GL_SCISSOR_TEST);
}
return success;
}
bool DrawTargetWebgl::SharedContext::RemoveSharedTexture(
const RefPtr<SharedTexture>& aTexture) {
auto pos =
std::find(mSharedTextures.begin(), mSharedTextures.end(), aTexture);
if (pos == mSharedTextures.end()) {
return false;
}
// Keep around a reserve of empty pages to avoid initialization costs from
// allocating shared pages. If still below the limit of reserved pages, then
// just add it to the reserve. Otherwise, erase the empty texture page.
size_t maxBytes = StaticPrefs::gfx_canvas_accelerated_reserve_empty_cache()
<< 20;
size_t usedBytes = aTexture->UsedBytes();
if (mEmptyTextureMemory + usedBytes <= maxBytes) {
mEmptyTextureMemory += usedBytes;
} else {
mTotalTextureMemory -= usedBytes;
mSharedTextures.erase(pos);
ClearLastTexture();
mWebgl->DeleteTexture(aTexture->GetWebGLTexture());
}
return true;
}
void SharedTextureHandle::Cleanup(DrawTargetWebgl::SharedContext& aContext) {
mTexture->Free(*this);
// Check if the shared handle's owning page has no more allocated handles
// after we freed it. If so, remove the empty shared texture page also.
if (!mTexture->HasAllocatedHandles()) {
aContext.RemoveSharedTexture(mTexture);
}
}
bool DrawTargetWebgl::SharedContext::RemoveStandaloneTexture(
const RefPtr<StandaloneTexture>& aTexture) {
auto pos = std::find(mStandaloneTextures.begin(), mStandaloneTextures.end(),
aTexture);
if (pos == mStandaloneTextures.end()) {
return false;
}
mTotalTextureMemory -= aTexture->UsedBytes();
mStandaloneTextures.erase(pos);
ClearLastTexture();
mWebgl->DeleteTexture(aTexture->GetWebGLTexture());
return true;
}
void StandaloneTexture::Cleanup(DrawTargetWebgl::SharedContext& aContext) {
aContext.RemoveStandaloneTexture(this);
}
// Prune a given texture handle and release its associated resources.
void DrawTargetWebgl::SharedContext::PruneTextureHandle(
const RefPtr<TextureHandle>& aHandle) {
// Invalidate the handle so nothing will subsequently use its contents.
aHandle->Invalidate();
// If the handle has an associated SourceSurface, unlink it.
UnlinkSurfaceTexture(aHandle);
// If the handle has an associated CacheEntry, unlink it.
if (RefPtr<CacheEntry> entry = aHandle->GetCacheEntry()) {
entry->Unlink();
}
// Deduct the used space from the total.
mUsedTextureMemory -= aHandle->UsedBytes();
// Ensure any allocated shared or standalone texture regions get freed.
aHandle->Cleanup(*this);
}
// Prune any texture memory above the limit (or margin below the limit) or any
// least-recently-used handles that are no longer associated with any usable
// surface.
bool DrawTargetWebgl::SharedContext::PruneTextureMemory(size_t aMargin,
bool aPruneUnused) {
// The maximum amount of texture memory that may be used by textures.
size_t maxBytes = StaticPrefs::gfx_canvas_accelerated_cache_size() << 20;
maxBytes -= std::min(maxBytes, aMargin);
size_t maxItems = StaticPrefs::gfx_canvas_accelerated_cache_items();
size_t oldItems = mNumTextureHandles;
while (!mTextureHandles.isEmpty() &&
(mUsedTextureMemory > maxBytes || mNumTextureHandles > maxItems ||
(aPruneUnused && !mTextureHandles.getLast()->IsUsed()))) {
PruneTextureHandle(mTextureHandles.popLast());
--mNumTextureHandles;
}
return mNumTextureHandles < oldItems;
}
void DrawTargetWebgl::FillRect(const Rect& aRect, const Pattern& aPattern,
const DrawOptions& aOptions) {
if (SupportsPattern(aPattern)) {
DrawRect(aRect, aPattern, aOptions);
} else if (!mWebglValid) {
MarkSkiaChanged(aOptions);
mSkia->FillRect(aRect, aPattern, aOptions);
} else {
// If the pattern is unsupported, then transform the rect to a path so it
// can be cached.
SkPath skiaPath;
skiaPath.addRect(RectToSkRect(aRect));
RefPtr<PathSkia> path = new PathSkia(skiaPath, FillRule::FILL_WINDING);
DrawPath(path, aPattern, aOptions);
}
}
void CacheEntry::Link(const RefPtr<TextureHandle>& aHandle) {
mHandle = aHandle;
mHandle->SetCacheEntry(this);
}
// When the CacheEntry becomes unused, it marks the corresponding
// TextureHandle as unused and unlinks it from the CacheEntry. The
// entry is removed from its containing Cache, if applicable.
void CacheEntry::Unlink() {
// The entry may not have a valid handle if rasterization failed.
if (mHandle) {
mHandle->SetCacheEntry(nullptr);
mHandle = nullptr;
}
RemoveFromList();
}
// Hashes a path and pattern to a single hash value that can be used for quick
// comparisons. This currently avoids to expensive hashing of internal path
// and pattern data for speed, relying instead on later exact comparisons for
// disambiguation.
HashNumber PathCacheEntry::HashPath(const QuantizedPath& aPath,
const Pattern* aPattern,
const Matrix& aTransform,
const IntRect& aBounds,
const Point& aOrigin) {
HashNumber hash = 0;
hash = AddToHash(hash, aPath.mPath.num_types);
hash = AddToHash(hash, aPath.mPath.num_points);
// Quantize the relative offset of the path to its bounds.
IntPoint offset = RoundedToInt((aOrigin - Point(aBounds.TopLeft())) * 16.0f);
hash = AddToHash(hash, offset.x);
hash = AddToHash(hash, offset.y);
hash = AddToHash(hash, aBounds.width);
hash = AddToHash(hash, aBounds.height);
if (aPattern) {
hash = AddToHash(hash, (int)aPattern->GetType());
}
return hash;
}
// When caching rendered geometry, we need to ensure the scale and orientation
// is approximately the same. The offset will be considered separately.
static inline bool HasMatchingScale(const Matrix& aTransform1,
const Matrix& aTransform2) {
return FuzzyEqual(aTransform1._11, aTransform2._11) &&
FuzzyEqual(aTransform1._12, aTransform2._12) &&
FuzzyEqual(aTransform1._21, aTransform2._21) &&
FuzzyEqual(aTransform1._22, aTransform2._22);
}
// Determines if an existing path cache entry matches an incoming path and
// pattern.
inline bool PathCacheEntry::MatchesPath(const QuantizedPath& aPath,
const Pattern* aPattern,
const StrokeOptions* aStrokeOptions,
const Matrix& aTransform,
const IntRect& aBounds,
const Point& aOrigin, HashNumber aHash,
float aSigma) {
return aHash == mHash && HasMatchingScale(aTransform, mTransform) &&
// Ensure the clipped relative bounds fit inside those of the entry
aBounds.x - aOrigin.x >= mBounds.x - mOrigin.x &&
(aBounds.x - aOrigin.x) + aBounds.width <=
(mBounds.x - mOrigin.x) + mBounds.width &&
aBounds.y - aOrigin.y >= mBounds.y - mOrigin.y &&
(aBounds.y - aOrigin.y) + aBounds.height <=
(mBounds.y - mOrigin.y) + mBounds.height &&
aPath == mPath &&
(!aPattern ? !mPattern : mPattern && *aPattern == *mPattern) &&
(!aStrokeOptions
? !mStrokeOptions
: mStrokeOptions && *aStrokeOptions == *mStrokeOptions) &&
aSigma == mSigma;
}
PathCacheEntry::PathCacheEntry(QuantizedPath&& aPath, Pattern* aPattern,
StoredStrokeOptions* aStrokeOptions,
const Matrix& aTransform, const IntRect& aBounds,
const Point& aOrigin, HashNumber aHash,
float aSigma)
: CacheEntryImpl<PathCacheEntry>(aTransform, aBounds, aHash),
mPath(std::move(aPath)),
mOrigin(aOrigin),
mPattern(aPattern),
mStrokeOptions(aStrokeOptions),
mSigma(aSigma) {}
// Attempt to find a matching entry in the path cache. If one isn't found,
// a new entry will be created. The caller should check whether the contained
// texture handle is valid to determine if it will need to render the text run
// or just reuse the cached texture.
already_AddRefed<PathCacheEntry> PathCache::FindOrInsertEntry(
QuantizedPath aPath, const Pattern* aPattern,
const StrokeOptions* aStrokeOptions, const Matrix& aTransform,
const IntRect& aBounds, const Point& aOrigin, float aSigma) {
HashNumber hash =
PathCacheEntry::HashPath(aPath, aPattern, aTransform, aBounds, aOrigin);
for (const RefPtr<PathCacheEntry>& entry : GetChain(hash)) {
if (entry->MatchesPath(aPath, aPattern, aStrokeOptions, aTransform, aBounds,
aOrigin, hash, aSigma)) {
return do_AddRef(entry);
}
}
Pattern* pattern = nullptr;
if (aPattern) {
pattern = aPattern->CloneWeak();
if (!pattern) {
return nullptr;
}
}
StoredStrokeOptions* strokeOptions = nullptr;
if (aStrokeOptions) {
strokeOptions = aStrokeOptions->Clone();
if (!strokeOptions) {
return nullptr;
}
}
RefPtr<PathCacheEntry> entry =
new PathCacheEntry(std::move(aPath), pattern, strokeOptions, aTransform,
aBounds, aOrigin, hash, aSigma);
Insert(entry);
return entry.forget();
}
void DrawTargetWebgl::Fill(const Path* aPath, const Pattern& aPattern,
const DrawOptions& aOptions) {
if (!aPath || aPath->GetBackendType() != BackendType::SKIA) {
return;
}
const SkPath& skiaPath = static_cast<const PathSkia*>(aPath)->GetPath();
SkRect rect;
// Draw the path as a simple rectangle with a supported pattern when possible.
if (skiaPath.isRect(&rect) && SupportsPattern(aPattern)) {
DrawRect(SkRectToRect(rect), aPattern, aOptions);
} else {
DrawPath(aPath, aPattern, aOptions);
}
}
QuantizedPath::QuantizedPath(const WGR::Path& aPath) : mPath(aPath) {}
QuantizedPath::QuantizedPath(QuantizedPath&& aPath) noexcept
: mPath(aPath.mPath) {
aPath.mPath.points = nullptr;
aPath.mPath.num_points = 0;
aPath.mPath.types = nullptr;
aPath.mPath.num_types = 0;
}
QuantizedPath::~QuantizedPath() {
if (mPath.points || mPath.types) {
WGR::wgr_path_release(mPath);
}
}
bool QuantizedPath::operator==(const QuantizedPath& aOther) const {
return mPath.num_types == aOther.mPath.num_types &&
mPath.num_points == aOther.mPath.num_points &&
mPath.fill_mode == aOther.mPath.fill_mode &&
!memcmp(mPath.types, aOther.mPath.types,
mPath.num_types * sizeof(uint8_t)) &&
!memcmp(mPath.points, aOther.mPath.points,
mPath.num_points * sizeof(WGR::Point));
}
// Generate a quantized path from the Skia path using WGR. The supplied
// transform will be applied to the path. The path is stored relative to its
// bounds origin to support translation later.
static Maybe<QuantizedPath> GenerateQuantizedPath(const SkPath& aPath,
const Rect& aBounds,
const Matrix& aTransform) {
WGR::PathBuilder* pb = WGR::wgr_new_builder();
if (!pb) {
return Nothing();
}
WGR::wgr_builder_set_fill_mode(
pb, aPath.getFillType() == SkPath::kWinding_FillType
? WGR::FillMode::Winding
: WGR::FillMode::EvenOdd);
SkPath::RawIter iter(aPath);
SkPoint params[4];
SkPath::Verb currentVerb;
// printf_stderr("bounds: (%d, %d) %d x %d\n", aBounds.x, aBounds.y,
// aBounds.width, aBounds.height);
Matrix transform = aTransform;
transform.PostTranslate(-aBounds.TopLeft());
while ((currentVerb = iter.next(params)) != SkPath::kDone_Verb) {
switch (currentVerb) {
case SkPath::kMove_Verb: {
Point p0 = transform.TransformPoint(SkPointToPoint(params[0]));
// printf_stderr("move (%f, %f)\n", p0.x, p0.y);
WGR::wgr_builder_move_to(pb, p0.x, p0.y);
break;
}
case SkPath::kLine_Verb: {
Point p1 = transform.TransformPoint(SkPointToPoint(params[1]));
// printf_stderr("line (%f, %f)\n", p1.x, p1.y);
WGR::wgr_builder_line_to(pb, p1.x, p1.y);
break;
}
case SkPath::kCubic_Verb: {
Point p1 = transform.TransformPoint(SkPointToPoint(params[1]));
Point p2 = transform.TransformPoint(SkPointToPoint(params[2]));
Point p3 = transform.TransformPoint(SkPointToPoint(params[3]));
// printf_stderr("cubic (%f, %f), (%f, %f), (%f, %f)\n", p1.x, p1.y,
// p2.x, p2.y, p3.x, p3.y);
WGR::wgr_builder_curve_to(pb, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y);
break;
}
case SkPath::kQuad_Verb: {
Point p1 = transform.TransformPoint(SkPointToPoint(params[1]));
Point p2 = transform.TransformPoint(SkPointToPoint(params[2]));
// printf_stderr("quad (%f, %f), (%f, %f)\n", p1.x, p1.y, p2.x, p2.y);
WGR::wgr_builder_quad_to(pb, p1.x, p1.y, p2.x, p2.y);
break;
}
case SkPath::kConic_Verb: {
Point p0 = transform.TransformPoint(SkPointToPoint(params[0]));
Point p1 = transform.TransformPoint(SkPointToPoint(params[1]));
Point p2 = transform.TransformPoint(SkPointToPoint(params[2]));
float w = iter.conicWeight();
std::vector<Point> quads;
int numQuads = ConvertConicToQuads(p0, p1, p2, w, quads);
for (int i = 0; i < numQuads; i++) {
Point q1 = quads[2 * i + 1];
Point q2 = quads[2 * i + 2];
// printf_stderr("conic quad (%f, %f), (%f, %f)\n", q1.x, q1.y, q2.x,
// q2.y);
WGR::wgr_builder_quad_to(pb, q1.x, q1.y, q2.x, q2.y);
}
break;
}
case SkPath::kClose_Verb:
// printf_stderr("close\n");
WGR::wgr_builder_close(pb);
break;
default:
MOZ_ASSERT(false);
// Unexpected verb found in path!
WGR::wgr_builder_release(pb);
return Nothing();
}
}
WGR::Path p = WGR::wgr_builder_get_path(pb);
WGR::wgr_builder_release(pb);
if (!p.num_points || !p.num_types) {
WGR::wgr_path_release(p);
return Nothing();
}
return Some(QuantizedPath(p));
}
// Get the output vertex buffer using WGR from an input quantized path.
static Maybe<WGR::VertexBuffer> GeneratePathVertexBuffer(
const QuantizedPath& aPath, const IntRect& aClipRect,
bool aRasterizationTruncates, WGR::OutputVertex* aBuffer,
size_t aBufferCapacity) {
WGR::VertexBuffer vb = WGR::wgr_path_rasterize_to_tri_list(
&aPath.mPath, aClipRect.x, aClipRect.y, aClipRect.width, aClipRect.height,
true, false, aRasterizationTruncates, aBuffer, aBufferCapacity);
if (!vb.len || (aBuffer && vb.len > aBufferCapacity)) {
WGR::wgr_vertex_buffer_release(vb);
return Nothing();
}
return Some(vb);
}
static inline AAStroke::LineJoin ToAAStrokeLineJoin(JoinStyle aJoin) {
switch (aJoin) {
case JoinStyle::BEVEL:
return AAStroke::LineJoin::Bevel;
case JoinStyle::ROUND:
return AAStroke::LineJoin::Round;
case JoinStyle::MITER:
case JoinStyle::MITER_OR_BEVEL:
return AAStroke::LineJoin::Miter;
}
return AAStroke::LineJoin::Miter;
}
static inline AAStroke::LineCap ToAAStrokeLineCap(CapStyle aCap) {
switch (aCap) {
case CapStyle::BUTT:
return AAStroke::LineCap::Butt;
case CapStyle::ROUND:
return AAStroke::LineCap::Round;
case CapStyle::SQUARE:
return AAStroke::LineCap::Square;
}
return AAStroke::LineCap::Butt;
}
static inline Point WGRPointToPoint(const WGR::Point& aPoint) {
return Point(IntPoint(aPoint.x, aPoint.y)) * (1.0f / 16.0f);
}
// Generates a vertex buffer for a stroked path using aa-stroke.
static Maybe<AAStroke::VertexBuffer> GenerateStrokeVertexBuffer(
const QuantizedPath& aPath, const StrokeOptions* aStrokeOptions,
float aScale, WGR::OutputVertex* aBuffer, size_t aBufferCapacity) {
AAStroke::StrokeStyle style = {aStrokeOptions->mLineWidth * aScale,
ToAAStrokeLineCap(aStrokeOptions->mLineCap),
ToAAStrokeLineJoin(aStrokeOptions->mLineJoin),
aStrokeOptions->mMiterLimit};
if (style.width <= 0.0f || !IsFinite(style.width) ||
style.miter_limit <= 0.0f || !IsFinite(style.miter_limit)) {
return Nothing();
}
AAStroke::Stroker* s = AAStroke::aa_stroke_new(
&style, (AAStroke::OutputVertex*)aBuffer, aBufferCapacity);
bool valid = true;
size_t curPoint = 0;
for (size_t curType = 0; valid && curType < aPath.mPath.num_types;) {
// Verify that we are at the start of a sub-path.
if ((aPath.mPath.types[curType] & WGR::PathPointTypePathTypeMask) !=
WGR::PathPointTypeStart) {
valid = false;
break;
}
// Find where the next sub-path starts so we can locate the end.
size_t endType = curType + 1;
for (; endType < aPath.mPath.num_types; endType++) {
if ((aPath.mPath.types[endType] & WGR::PathPointTypePathTypeMask) ==
WGR::PathPointTypeStart) {
break;
}
}
// Check if the path is closed. This is a flag modifying the last type.
bool closed =
(aPath.mPath.types[endType - 1] & WGR::PathPointTypeCloseSubpath) != 0;
for (; curType < endType; curType++) {
// If this is the last type and the sub-path is not closed, determine if
// this segment should be capped.
bool end = curType + 1 == endType && !closed;
switch (aPath.mPath.types[curType] & WGR::PathPointTypePathTypeMask) {
case WGR::PathPointTypeStart: {
if (curPoint + 1 > aPath.mPath.num_points) {
valid = false;
break;
}
Point p1 = WGRPointToPoint(aPath.mPath.points[curPoint]);
AAStroke::aa_stroke_move_to(s, p1.x, p1.y, closed);
if (end) {
AAStroke::aa_stroke_line_to(s, p1.x, p1.y, true);
}
curPoint++;
break;
}
case WGR::PathPointTypeLine: {
if (curPoint + 1 > aPath.mPath.num_points) {
valid = false;
break;
}
Point p1 = WGRPointToPoint(aPath.mPath.points[curPoint]);
AAStroke::aa_stroke_line_to(s, p1.x, p1.y, end);
curPoint++;
break;
}
case WGR::PathPointTypeBezier: {
if (curPoint + 3 > aPath.mPath.num_points) {
valid = false;
break;
}
Point p1 = WGRPointToPoint(aPath.mPath.points[curPoint]);
Point p2 = WGRPointToPoint(aPath.mPath.points[curPoint + 1]);
Point p3 = WGRPointToPoint(aPath.mPath.points[curPoint + 2]);
AAStroke::aa_stroke_curve_to(s, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y,
end);
curPoint += 3;
break;
}
default:
MOZ_ASSERT(false, "Unknown WGR path point type");
valid = false;
break;
}
}
// Close the sub-path if necessary.
if (valid && closed) {
AAStroke::aa_stroke_close(s);
}
}
Maybe<AAStroke::VertexBuffer> result;
if (valid) {
AAStroke::VertexBuffer vb = AAStroke::aa_stroke_finish(s);
if (!vb.len || (aBuffer && vb.len > aBufferCapacity)) {
AAStroke::aa_stroke_vertex_buffer_release(vb);
} else {
result = Some(vb);
}
}
AAStroke::aa_stroke_release(s);
return result;
}
// Search the path cache for any entries stored in the path vertex buffer and
// remove them.
void PathCache::ClearVertexRanges() {
for (auto& chain : mChains) {
PathCacheEntry* entry = chain.getFirst();
while (entry) {
PathCacheEntry* next = entry->getNext();
if (entry->GetVertexRange().IsValid()) {
entry->Unlink();
}
entry = next;
}
}
}
inline bool DrawTargetWebgl::ShouldAccelPath(
const DrawOptions& aOptions, const StrokeOptions* aStrokeOptions) {
return mWebglValid && SupportsDrawOptions(aOptions) && PrepareContext();
}
// For now, we only support stroking solid color patterns to limit artifacts
// from blending of overlapping geometry generated by AAStroke.
static inline bool SupportsAAStroke(const Pattern& aPattern,
const DrawOptions& aOptions,
const StrokeOptions& aStrokeOptions) {
if (aStrokeOptions.mDashPattern) {
return false;
}
switch (aOptions.mCompositionOp) {
case CompositionOp::OP_SOURCE:
return true;
case CompositionOp::OP_OVER:
return aPattern.GetType() == PatternType::COLOR &&
static_cast<const ColorPattern&>(aPattern).mColor.a *
aOptions.mAlpha ==
1.0f;
default:
return false;
}
}
bool DrawTargetWebgl::SharedContext::DrawPathAccel(
const Path* aPath, const Pattern& aPattern, const DrawOptions& aOptions,
const StrokeOptions* aStrokeOptions, const ShadowOptions* aShadow,
bool aCacheable) {
// Get the transformed bounds for the path and conservatively check if the
// bounds overlap the canvas.
const PathSkia* pathSkia = static_cast<const PathSkia*>(aPath);
const Matrix& currentTransform = GetTransform();
Rect bounds = pathSkia->GetFastBounds(currentTransform, aStrokeOptions);
// If the path is empty, then there is nothing to draw.
if (bounds.IsEmpty()) {
return true;
}
IntRect viewport(IntPoint(), mViewportSize);
if (aShadow) {
// Inflate the bounds to account for the blur radius.
bounds += aShadow->mOffset;
int32_t blurRadius = aShadow->BlurRadius();
bounds.Inflate(blurRadius);
viewport.Inflate(blurRadius);
}
Point realOrigin = bounds.TopLeft();
if (aCacheable) {
// Quantize the path origin to increase the reuse of cache entries.
bounds.Scale(4.0f);
bounds.Round();
bounds.Scale(0.25f);
}
Point quantizedOrigin = bounds.TopLeft();
// If the path doesn't intersect the viewport, then there is nothing to draw.
IntRect intBounds = RoundedOut(bounds).Intersect(viewport);
if (intBounds.IsEmpty()) {
return true;
}
// Nudge the bounds to account for the quantization rounding.
Rect quantBounds = Rect(intBounds) + (realOrigin - quantizedOrigin);
// If a stroke path covers too much screen area, it is likely that most is
// empty space in the interior. This usually imposes too high a cost versus
// just rasterizing without acceleration.
if (aStrokeOptions &&
intBounds.width * intBounds.height >
(mViewportSize.width / 2) * (mViewportSize.height / 2)) {
return false;
}
// If the pattern is a solid color, then this will be used along with a path
// mask to render the path, as opposed to baking the pattern into the cached
// path texture.
Maybe<DeviceColor> color =
aPattern.GetType() == PatternType::COLOR
? Some(static_cast<const ColorPattern&>(aPattern).mColor)
: Nothing();
// Look for an existing path cache entry, if possible, or otherwise create
// one. If the draw request is not cacheable, then don't create an entry.
RefPtr<PathCacheEntry> entry;
RefPtr<TextureHandle> handle;
if (aCacheable) {
if (!mPathCache) {
mPathCache = MakeUnique<PathCache>();
}
// Use a quantized, relative (to its bounds origin) version of the path as
// a cache key to help limit cache bloat.
Maybe<QuantizedPath> qp = GenerateQuantizedPath(
pathSkia->GetPath(), quantBounds, currentTransform);
if (!qp) {
return false;
}
entry = mPathCache->FindOrInsertEntry(
std::move(*qp), color ? nullptr : &aPattern, aStrokeOptions,
currentTransform, intBounds, quantizedOrigin,
aShadow ? aShadow->mSigma : -1.0f);
if (!entry) {
return false;
}
handle = entry->GetHandle();
}
// If there is a shadow, it needs to draw with the shadow color rather than
// the path color.
Maybe<DeviceColor> shadowColor = color;
if (aShadow) {
shadowColor = Some(aShadow->mColor);
if (color) {
shadowColor->a *= color->a;
}
}
SamplingFilter filter =
aShadow ? SamplingFilter::GOOD : GetSamplingFilter(aPattern);
if (handle && handle->IsValid()) {
// If the entry has a valid texture handle still, use it. However, the
// entry texture is assumed to be located relative to its previous bounds.
// We need to offset the pattern by the difference between its new unclipped
// origin and its previous previous unclipped origin. Then when we finally
// draw a rectangle at the expected new bounds, it will overlap the portion
// of the old entry texture we actually need to sample from.
Point offset =
(realOrigin - entry->GetOrigin()) + entry->GetBounds().TopLeft();
SurfacePattern pathPattern(nullptr, ExtendMode::CLAMP,
Matrix::Translation(offset), filter);
return DrawRectAccel(quantBounds, pathPattern, aOptions, shadowColor,
&handle, false, true, true);
}
if (mPathVertexCapacity > 0 && !handle && entry && !aShadow &&
aOptions.mAntialiasMode != AntialiasMode::NONE &&
SupportsPattern(aPattern) &&
entry->GetPath().mPath.num_types <= mPathMaxComplexity) {
if (entry->GetVertexRange().IsValid()) {
// If there is a valid cached vertex data in the path vertex buffer, then
// just draw that. We must draw at integer pixel boundaries (using
// intBounds instead of quantBounds) due to WGR's reliance on pixel center
// location.
mCurrentTarget->mProfile.OnCacheHit();
return DrawRectAccel(Rect(intBounds.TopLeft(), Size(1, 1)), aPattern,
aOptions, Nothing(), nullptr, false, true, true,
false, nullptr, &entry->GetVertexRange());
}
// printf_stderr("Generating... verbs %d, points %d\n",
// int(pathSkia->GetPath().countVerbs()),
// int(pathSkia->GetPath().countPoints()));
WGR::OutputVertex* outputBuffer = nullptr;
size_t outputBufferCapacity = 0;
if (mWGROutputBuffer) {
outputBuffer = mWGROutputBuffer.get();
outputBufferCapacity = mPathVertexCapacity / sizeof(WGR::OutputVertex);
}
Maybe<WGR::VertexBuffer> wgrVB;
Maybe<AAStroke::VertexBuffer> strokeVB;
if (!aStrokeOptions) {
wgrVB = GeneratePathVertexBuffer(
entry->GetPath(), IntRect(-intBounds.TopLeft(), mViewportSize),
mRasterizationTruncates, outputBuffer, outputBufferCapacity);
} else {
if (mPathAAStroke &&
SupportsAAStroke(aPattern, aOptions, *aStrokeOptions)) {
auto scaleFactors = currentTransform.ScaleFactors();
if (scaleFactors.AreScalesSame()) {
strokeVB = GenerateStrokeVertexBuffer(
entry->GetPath(), aStrokeOptions, scaleFactors.xScale,
outputBuffer, outputBufferCapacity);
}
}
if (!strokeVB && mPathWGRStroke) {
// If stroking, then generate a path to fill the stroked region. This
// path will need to be quantized again because it differs from the
// path used for the cache entry, but this allows us to avoid
// generating a fill path on a cache hit.
SkPaint paint;
if (StrokeOptionsToPaint(paint, *aStrokeOptions)) {
Maybe<SkRect> cullRect;
Matrix invTransform = currentTransform;
if (invTransform.Invert()) {
// Transform the stroking clip rect from device space to local
// space.
Rect invRect = invTransform.TransformBounds(Rect(mClipRect));
invRect.RoundOut();
cullRect = Some(RectToSkRect(invRect));
}
SkPath fillPath;
if (paint.getFillPath(pathSkia->GetPath(), &fillPath,
cullRect.ptrOr(nullptr),
ComputeResScaleForStroking(currentTransform))) {
// printf_stderr(" stroke fill... verbs %d, points %d\n",
// int(fillPath.countVerbs()),
// int(fillPath.countPoints()));
if (Maybe<QuantizedPath> qp = GenerateQuantizedPath(
fillPath, quantBounds, currentTransform)) {
wgrVB = GeneratePathVertexBuffer(
*qp, IntRect(-intBounds.TopLeft(), mViewportSize),
mRasterizationTruncates, outputBuffer, outputBufferCapacity);
}
}
}
}
}
if (wgrVB || strokeVB) {
const uint8_t* vbData =
wgrVB ? (const uint8_t*)wgrVB->data : (const uint8_t*)strokeVB->data;
if (outputBuffer && !vbData) {
vbData = (const uint8_t*)outputBuffer;
}
size_t vbLen = wgrVB ? wgrVB->len : strokeVB->len;
uint32_t vertexBytes = uint32_t(
std::min(vbLen * sizeof(WGR::OutputVertex), size_t(UINT32_MAX)));
// printf_stderr(" ... %d verts, %d bytes\n", int(vbLen),
// int(vertexBytes));
if (vertexBytes > mPathVertexCapacity - mPathVertexOffset &&
vertexBytes <= mPathVertexCapacity - sizeof(kRectVertexData)) {
// If the vertex data is too large to fit in the remaining path vertex
// buffer, then orphan the contents of the vertex buffer to make room
// for it.
if (mPathCache) {
mPathCache->ClearVertexRanges();
}
ResetPathVertexBuffer(false);
}
if (vertexBytes <= mPathVertexCapacity - mPathVertexOffset) {
// If there is actually room to fit the vertex data in the vertex buffer
// after orphaning as necessary, then upload the data to the next
// available offset in the buffer.
PathVertexRange vertexRange(
uint32_t(mPathVertexOffset / sizeof(WGR::OutputVertex)),
uint32_t(vbLen));
if (entry) {
entry->SetVertexRange(vertexRange);
}
// printf_stderr(" ... offset %d\n", mPathVertexOffset);
mWebgl->RawBufferSubData(LOCAL_GL_ARRAY_BUFFER, mPathVertexOffset,
vbData, vertexBytes);
mPathVertexOffset += vertexBytes;
if (wgrVB) {
WGR::wgr_vertex_buffer_release(wgrVB.ref());
} else {
AAStroke::aa_stroke_vertex_buffer_release(strokeVB.ref());
}
// Finally, draw the uploaded vertex data.
mCurrentTarget->mProfile.OnCacheMiss();
return DrawRectAccel(Rect(intBounds.TopLeft(), Size(1, 1)), aPattern,
aOptions, Nothing(), nullptr, false, true, true,
false, nullptr, &vertexRange);
}
if (wgrVB) {
WGR::wgr_vertex_buffer_release(wgrVB.ref());
} else {
AAStroke::aa_stroke_vertex_buffer_release(strokeVB.ref());
}
// If we failed to draw the vertex data for some reason, then fall through
// to the texture rasterization path.
}
}
// If there isn't a valid texture handle, then we need to rasterize the
// path in a software canvas and upload this to a texture. Solid color
// patterns will be rendered as a path mask that can then be modulated
// with any color. Other pattern types have to rasterize the pattern
// directly into the cached texture.
handle = nullptr;
RefPtr<DrawTargetSkia> pathDT = new DrawTargetSkia;
if (pathDT->Init(intBounds.Size(), color || aShadow
? SurfaceFormat::A8
: SurfaceFormat::B8G8R8A8)) {
Point offset = -quantBounds.TopLeft();
if (aShadow) {
// Ensure the the shadow is drawn at the requested offset
offset += aShadow->mOffset;
}
pathDT->SetTransform(currentTransform * Matrix::Translation(offset));
DrawOptions drawOptions(1.0f, CompositionOp::OP_OVER,
aOptions.mAntialiasMode);
static const ColorPattern maskPattern(DeviceColor(1.0f, 1.0f, 1.0f, 1.0f));
const Pattern& cachePattern = color ? maskPattern : aPattern;
// If the source pattern is a DrawTargetWebgl snapshot, we may shift
// targets when drawing the path, so back up the old target.
DrawTargetWebgl* oldTarget = mCurrentTarget;
if (aStrokeOptions) {
pathDT->Stroke(aPath, cachePattern, *aStrokeOptions, drawOptions);
} else {
pathDT->Fill(aPath, cachePattern, drawOptions);
}
if (aShadow && aShadow->mSigma > 0.0f) {
// Blur the shadow if required.
uint8_t* data = nullptr;
IntSize size;
int32_t stride = 0;
SurfaceFormat format = SurfaceFormat::UNKNOWN;
if (pathDT->LockBits(&data, &size, &stride, &format)) {
AlphaBoxBlur blur(Rect(pathDT->GetRect()), stride, aShadow->mSigma,
aShadow->mSigma);
blur.Blur(data);
pathDT->ReleaseBits(data);
}
}
RefPtr<SourceSurface> pathSurface = pathDT->Snapshot();
if (pathSurface) {
// If the target changed, try to restore it.
if (mCurrentTarget != oldTarget && !oldTarget->PrepareContext()) {
return false;
}
SurfacePattern pathPattern(pathSurface, ExtendMode::CLAMP,
Matrix::Translation(quantBounds.TopLeft()),
filter);
// Try and upload the rasterized path to a texture. If there is a
// valid texture handle after this, then link it to the entry.
// Otherwise, we might have to fall back to software drawing the
// path, so unlink it from the entry.
if (DrawRectAccel(quantBounds, pathPattern, aOptions, shadowColor,
&handle, false, true) &&
handle) {
if (entry) {
entry->Link(handle);
}
} else if (entry) {
entry->Unlink();
}
return true;
}
}
return false;
}
void DrawTargetWebgl::DrawPath(const Path* aPath, const Pattern& aPattern,
const DrawOptions& aOptions,
const StrokeOptions* aStrokeOptions) {
// If there is a WebGL context, then try to cache the path to avoid slow
// fallbacks.
if (ShouldAccelPath(aOptions, aStrokeOptions) &&
mSharedContext->DrawPathAccel(aPath, aPattern, aOptions,
aStrokeOptions)) {
return;
}
// There was no path cache entry available to use, so fall back to drawing the
// path with Skia.
MarkSkiaChanged(aOptions);
if (aStrokeOptions) {
mSkia->Stroke(aPath, aPattern, *aStrokeOptions, aOptions);
} else {
mSkia->Fill(aPath, aPattern, aOptions);
}
}
void DrawTargetWebgl::DrawSurface(SourceSurface* aSurface, const Rect& aDest,
const Rect& aSource,
const DrawSurfaceOptions& aSurfOptions,
const DrawOptions& aOptions) {
Matrix matrix = Matrix::Scaling(aDest.width / aSource.width,
aDest.height / aSource.height);
matrix.PreTranslate(-aSource.x, -aSource.y);
matrix.PostTranslate(aDest.x, aDest.y);
SurfacePattern pattern(aSurface, ExtendMode::CLAMP, matrix,
aSurfOptions.mSamplingFilter);
DrawRect(aDest, pattern, aOptions);
}
void DrawTargetWebgl::Mask(const Pattern& aSource, const Pattern& aMask,
const DrawOptions& aOptions) {
if (!SupportsDrawOptions(aOptions) ||
aMask.GetType() != PatternType::SURFACE ||
aSource.GetType() != PatternType::COLOR) {
MarkSkiaChanged(aOptions);
mSkia->Mask(aSource, aMask, aOptions);
return;
}
auto sourceColor = static_cast<const ColorPattern&>(aSource).mColor;
auto maskPattern = static_cast<const SurfacePattern&>(aMask);
DrawRect(Rect(IntRect(IntPoint(), maskPattern.mSurface->GetSize())),
maskPattern, aOptions, Some(sourceColor));
}
void DrawTargetWebgl::MaskSurface(const Pattern& aSource, SourceSurface* aMask,
Point aOffset, const DrawOptions& aOptions) {
if (!SupportsDrawOptions(aOptions) ||
aSource.GetType() != PatternType::COLOR) {
MarkSkiaChanged(aOptions);
mSkia->MaskSurface(aSource, aMask, aOffset, aOptions);
} else {
auto sourceColor = static_cast<const ColorPattern&>(aSource).mColor;
SurfacePattern pattern(aMask, ExtendMode::CLAMP,
Matrix::Translation(aOffset));
DrawRect(Rect(aOffset, Size(aMask->GetSize())), pattern, aOptions,
Some(sourceColor));
}
}
// Extract the surface's alpha values into an A8 surface.
static already_AddRefed<DataSourceSurface> ExtractAlpha(SourceSurface* aSurface,
bool aAllowSubpixelAA) {
RefPtr<DataSourceSurface> surfaceData = aSurface->GetDataSurface();
if (!surfaceData) {
return nullptr;
}
DataSourceSurface::ScopedMap srcMap(surfaceData, DataSourceSurface::READ);
if (!srcMap.IsMapped()) {
return nullptr;
}
IntSize size = surfaceData->GetSize();
RefPtr<DataSourceSurface> alpha =
Factory::CreateDataSourceSurface(size, SurfaceFormat::A8, false);
if (!alpha) {
return nullptr;
}
DataSourceSurface::ScopedMap dstMap(alpha, DataSourceSurface::WRITE);
if (!dstMap.IsMapped()) {
return nullptr;
}
// For subpixel masks, ignore the alpha and instead sample one of the color
// channels as if they were alpha.
SwizzleData(
srcMap.GetData(), srcMap.GetStride(),
aAllowSubpixelAA ? SurfaceFormat::A8R8G8B8 : surfaceData->GetFormat(),
dstMap.GetData(), dstMap.GetStride(), SurfaceFormat::A8, size);
return alpha.forget();
}
void DrawTargetWebgl::DrawShadow(const Path* aPath, const Pattern& aPattern,
const ShadowOptions& aShadow,
const DrawOptions& aOptions,
const StrokeOptions* aStrokeOptions) {
// If there is a WebGL context, then try to cache the path to avoid slow
// fallbacks.
if (ShouldAccelPath(aOptions, aStrokeOptions) &&
mSharedContext->DrawPathAccel(aPath, aPattern, aOptions, aStrokeOptions,
&aShadow)) {
return;
}
// There was no path cache entry available to use, so fall back to drawing the
// path with Skia.
MarkSkiaChanged(aOptions);
mSkia->DrawShadow(aPath, aPattern, aShadow, aOptions, aStrokeOptions);
}
void DrawTargetWebgl::DrawSurfaceWithShadow(SourceSurface* aSurface,
const Point& aDest,
const ShadowOptions& aShadow,
CompositionOp aOperator) {
DrawOptions options(1.0f, aOperator);
if (ShouldAccelPath(options, nullptr)) {
SurfacePattern pattern(aSurface, ExtendMode::CLAMP,
Matrix::Translation(aDest));
SkPath skiaPath;
skiaPath.addRect(RectToSkRect(Rect(aSurface->GetRect()) + aDest));
RefPtr<PathSkia> path = new PathSkia(skiaPath, FillRule::FILL_WINDING);
AutoRestoreTransform restore(this);
SetTransform(Matrix());
if (mSharedContext->DrawPathAccel(path, pattern, options, nullptr, &aShadow,
false)) {
DrawRect(Rect(aSurface->GetRect()) + aDest, pattern, options);
return;
}
}
MarkSkiaChanged(options);
mSkia->DrawSurfaceWithShadow(aSurface, aDest, aShadow, aOperator);
}
already_AddRefed<PathBuilder> DrawTargetWebgl::CreatePathBuilder(
FillRule aFillRule) const {
return mSkia->CreatePathBuilder(aFillRule);
}
void DrawTargetWebgl::SetTransform(const Matrix& aTransform) {
DrawTarget::SetTransform(aTransform);
mSkia->SetTransform(aTransform);
}
void DrawTargetWebgl::StrokeRect(const Rect& aRect, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
if (!mWebglValid) {
MarkSkiaChanged(aOptions);
mSkia->StrokeRect(aRect, aPattern, aStrokeOptions, aOptions);
} else {
// If the stroke options are unsupported, then transform the rect to a path
// so it can be cached.
SkPath skiaPath;
skiaPath.addRect(RectToSkRect(aRect));
RefPtr<PathSkia> path = new PathSkia(skiaPath, FillRule::FILL_WINDING);
DrawPath(path, aPattern, aOptions, &aStrokeOptions);
}
}
static inline bool IsThinLine(const Matrix& aTransform,
const StrokeOptions& aStrokeOptions) {
auto scale = aTransform.ScaleFactors();
return std::max(scale.xScale, scale.yScale) * aStrokeOptions.mLineWidth <= 1;
}
bool DrawTargetWebgl::StrokeLineAccel(const Point& aStart, const Point& aEnd,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
// Approximating a wide line as a rectangle works only with certain cap styles
// in the general case (butt or square). However, if the line width is
// sufficiently thin, we can either ignore the round cap (or treat it like
// square for zero-length lines) without causing objectionable artifacts.
if (mWebglValid && SupportsPattern(aPattern) &&
(aStrokeOptions.mLineCap == CapStyle::BUTT ||
aStrokeOptions.mLineCap == CapStyle::SQUARE ||
(aStrokeOptions.mLineCap == CapStyle::ROUND &&
IsThinLine(GetTransform(), aStrokeOptions))) &&
aStrokeOptions.mDashPattern == nullptr && aStrokeOptions.mLineWidth > 0) {
// Treat the line as a rectangle whose center-line is the supplied line and
// for which the height is the supplied line width. Generate a matrix that
// maps the X axis to the orientation of the line and the Y axis to the
// normal vector to the line. This only works if the line caps are squared,
// as rounded rectangles are currently not supported for round line caps.
Point start = aStart;
Point dirX = aEnd - aStart;
Point dirY;
float dirLen = dirX.Length();
float scale = aStrokeOptions.mLineWidth;
if (dirLen == 0.0f) {
// If the line is zero-length, then only a cap is rendered.
switch (aStrokeOptions.mLineCap) {
case CapStyle::BUTT:
// The cap doesn't extend beyond the line so nothing is drawn.
return true;
case CapStyle::ROUND:
case CapStyle::SQUARE:
// Draw a unit square centered at the single point.
dirX = Point(scale, 0.0f);
dirY = Point(0.0f, scale);
// Offset the start by half a unit.
start.x -= 0.5f * scale;
break;
}
} else {
// Make the scale map to a single unit length.
scale /= dirLen;
dirY = Point(-dirX.y, dirX.x) * scale;
if (aStrokeOptions.mLineCap == CapStyle::SQUARE) {
// Offset the start by half a unit.
start -= (dirX * scale) * 0.5f;
// Ensure the extent also accounts for the start and end cap.
dirX += dirX * scale;
}
}
Matrix lineXform(dirX.x, dirX.y, dirY.x, dirY.y, start.x - 0.5f * dirY.x,
start.y - 0.5f * dirY.y);
AutoRestoreTransform restore(this);
ConcatTransform(lineXform);
if (DrawRect(Rect(0, 0, 1, 1), aPattern, aOptions, Nothing(), nullptr, true,
true, true)) {
return true;
}
}
return false;
}
void DrawTargetWebgl::StrokeLine(const Point& aStart, const Point& aEnd,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
if (!mWebglValid) {
MarkSkiaChanged(aOptions);
mSkia->StrokeLine(aStart, aEnd, aPattern, aStrokeOptions, aOptions);
} else if (!StrokeLineAccel(aStart, aEnd, aPattern, aStrokeOptions,
aOptions)) {
// If the stroke options are unsupported, then transform the line to a path
// so it can be cached.
SkPath skiaPath;
skiaPath.moveTo(PointToSkPoint(aStart));
skiaPath.lineTo(PointToSkPoint(aEnd));
RefPtr<PathSkia> path = new PathSkia(skiaPath, FillRule::FILL_WINDING);
DrawPath(path, aPattern, aOptions, &aStrokeOptions);
}
}
void DrawTargetWebgl::Stroke(const Path* aPath, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
if (!aPath || aPath->GetBackendType() != BackendType::SKIA) {
return;
}
const auto& skiaPath = static_cast<const PathSkia*>(aPath)->GetPath();
if (!mWebglValid) {
MarkSkiaChanged(aOptions);
mSkia->Stroke(aPath, aPattern, aStrokeOptions, aOptions);
return;
}
// Avoid using Skia's isLine here because some paths erroneously include a
// closePath at the end, causing isLine to not detect the line. In that case
// we just draw a line in reverse right over the original line.
int numVerbs = skiaPath.countVerbs();
if (numVerbs >= 2 && numVerbs <= 3) {
uint8_t verbs[3];
skiaPath.getVerbs(verbs, numVerbs);
if (verbs[0] == SkPath::kMove_Verb && verbs[1] == SkPath::kLine_Verb &&
(numVerbs < 3 || verbs[2] == SkPath::kClose_Verb)) {
Point start = SkPointToPoint(skiaPath.getPoint(0));
Point end = SkPointToPoint(skiaPath.getPoint(1));
if (StrokeLineAccel(start, end, aPattern, aStrokeOptions, aOptions)) {
if (numVerbs >= 3) {
StrokeLineAccel(end, start, aPattern, aStrokeOptions, aOptions);
}
return;
}
// If accelerated line drawing failed, just treat it as a path.
}
}
DrawPath(aPath, aPattern, aOptions, &aStrokeOptions);
}
bool DrawTargetWebgl::ShouldUseSubpixelAA(ScaledFont* aFont,
const DrawOptions& aOptions) {
AntialiasMode aaMode = aFont->GetDefaultAAMode();
if (aOptions.mAntialiasMode != AntialiasMode::DEFAULT) {
aaMode = aOptions.mAntialiasMode;
}
return GetPermitSubpixelAA() &&
(aaMode == AntialiasMode::DEFAULT ||
aaMode == AntialiasMode::SUBPIXEL) &&
aOptions.mCompositionOp == CompositionOp::OP_OVER;
}
void DrawTargetWebgl::StrokeGlyphs(ScaledFont* aFont,
const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
if (!aFont || !aBuffer.mNumGlyphs) {
return;
}
bool useSubpixelAA = ShouldUseSubpixelAA(aFont, aOptions);
if (mWebglValid && SupportsDrawOptions(aOptions) &&
aPattern.GetType() == PatternType::COLOR && PrepareContext() &&
mSharedContext->DrawGlyphsAccel(aFont, aBuffer, aPattern, aOptions,
&aStrokeOptions, useSubpixelAA)) {
return;
}
if (useSubpixelAA) {
// Subpixel AA does not support layering because the subpixel masks can't
// blend with the over op.
MarkSkiaChanged();
} else {
MarkSkiaChanged(aOptions);
}
mSkia->StrokeGlyphs(aFont, aBuffer, aPattern, aStrokeOptions, aOptions);
}
// Depending on whether we enable subpixel position for a given font, Skia may
// round transformed coordinates differently on each axis. By default, text is
// subpixel quantized horizontally and snapped to a whole integer vertical
// baseline. Axis-flip transforms instead snap to horizontal boundaries while
// subpixel quantizing along the vertical. For other types of transforms, Skia
// just applies subpixel quantization to both axes.
// We must duplicate the amount of quantization Skia applies carefully as a
// boundary value such as 0.49 may round to 0.5 with subpixel quantization,
// but if Skia actually snapped it to a whole integer instead, it would round
// down to 0. If a subsequent glyph with offset 0.51 came in, we might
// mistakenly round it down to 0.5, whereas Skia would round it up to 1. Thus
// we would alias 0.49 and 0.51 to the same cache entry, while Skia would
// actually snap the offset to 0 or 1, depending, resulting in mismatched
// hinting.
static inline IntPoint QuantizeScale(ScaledFont* aFont,
const Matrix& aTransform) {
if (!aFont->UseSubpixelPosition()) {
return {1, 1};
}
if (aTransform._12 == 0) {
// Glyphs are rendered subpixel horizontally, so snap vertically.
return {4, 1};
}
if (aTransform._11 == 0) {
// Glyphs are rendered subpixel vertically, so snap horizontally.
return {1, 4};
}
// The transform isn't aligned, so don't snap.
return {4, 4};
}
// Skia only supports subpixel positioning to the nearest 1/4 fraction. It
// would be wasteful to attempt to cache text runs with positioning that is
// anymore precise than this. To prevent this cache bloat, we quantize the
// transformed glyph positions to the nearest 1/4. The scaling factor for
// the quantization is baked into the transform, so that if subpixel rounding
// is used on a given axis, then the axis will be multiplied by 4 before
// rounding. Since the quantized position is not used for rasterization, the
// transform is safe to modify as such.
static inline IntPoint QuantizePosition(const Matrix& aTransform,
const IntPoint& aOffset,
const Point& aPosition) {
return RoundedToInt(aTransform.TransformPoint(aPosition)) - aOffset;
}
// Get a quantized starting offset for the glyph buffer. We want this offset
// to encapsulate the transform and buffer offset while still preserving the
// relative subpixel positions of the glyphs this offset is subtracted from.
static inline IntPoint QuantizeOffset(const Matrix& aTransform,
const IntPoint& aQuantizeScale,
const GlyphBuffer& aBuffer) {
IntPoint offset =
RoundedToInt(aTransform.TransformPoint(aBuffer.mGlyphs[0].mPosition));
offset.x.value &= ~(aQuantizeScale.x.value - 1);
offset.y.value &= ~(aQuantizeScale.y.value - 1);
return offset;
}
// Hashes a glyph buffer to a single hash value that can be used for quick
// comparisons. Each glyph position is transformed and quantized before
// hashing.
HashNumber GlyphCacheEntry::HashGlyphs(const GlyphBuffer& aBuffer,
const Matrix& aTransform,
const IntPoint& aQuantizeScale) {
HashNumber hash = 0;
IntPoint offset = QuantizeOffset(aTransform, aQuantizeScale, aBuffer);
for (size_t i = 0; i < aBuffer.mNumGlyphs; i++) {
const Glyph& glyph = aBuffer.mGlyphs[i];
hash = AddToHash(hash, glyph.mIndex);
IntPoint pos = QuantizePosition(aTransform, offset, glyph.mPosition);
hash = AddToHash(hash, pos.x);
hash = AddToHash(hash, pos.y);
}
return hash;
}
// Determines if an existing glyph cache entry matches an incoming text run.
inline bool GlyphCacheEntry::MatchesGlyphs(
const GlyphBuffer& aBuffer, const DeviceColor& aColor,
const Matrix& aTransform, const IntPoint& aQuantizeOffset,
const IntPoint& aBoundsOffset, const IntRect& aClipRect, HashNumber aHash,
const StrokeOptions* aStrokeOptions) {
// First check if the hash matches to quickly reject the text run before any
// more expensive checking. If it matches, then check if the color and
// transform are the same.
if (aHash != mHash || aBuffer.mNumGlyphs != mBuffer.mNumGlyphs ||
aColor != mColor || !HasMatchingScale(aTransform, mTransform)) {
return false;
}
// Finally check if all glyphs and their quantized positions match.
for (size_t i = 0; i < aBuffer.mNumGlyphs; i++) {
const Glyph& dst = mBuffer.mGlyphs[i];
const Glyph& src = aBuffer.mGlyphs[i];
if (dst.mIndex != src.mIndex ||
dst.mPosition != Point(QuantizePosition(aTransform, aQuantizeOffset,
src.mPosition))) {
return false;
}
}
// Check that stroke options actually match.
if (aStrokeOptions) {
// If stroking, verify that the entry is also stroked with the same options.
if (!(mStrokeOptions && *aStrokeOptions == *mStrokeOptions)) {
return false;
}
} else if (mStrokeOptions) {
// If not stroking, check if the entry is stroked. If so, don't match.
return false;
}
// Verify that the full bounds, once translated and clipped, are equal to the
// clipped bounds.
return (mFullBounds + aBoundsOffset)
.Intersect(aClipRect)
.IsEqualEdges(GetBounds() + aBoundsOffset);
}
GlyphCacheEntry::GlyphCacheEntry(const GlyphBuffer& aBuffer,
const DeviceColor& aColor,
const Matrix& aTransform,
const IntPoint& aQuantizeScale,
const IntRect& aBounds,
const IntRect& aFullBounds, HashNumber aHash,
StoredStrokeOptions* aStrokeOptions)
: CacheEntryImpl<GlyphCacheEntry>(aTransform, aBounds, aHash),
mColor(aColor),
mFullBounds(aFullBounds),
mStrokeOptions(aStrokeOptions) {
// Store a copy of the glyph buffer with positions already quantized for fast
// comparison later.
Glyph* glyphs = new Glyph[aBuffer.mNumGlyphs];
IntPoint offset = QuantizeOffset(aTransform, aQuantizeScale, aBuffer);
// Make the bounds relative to the offset so we can add a new offset later.
IntPoint boundsOffset(offset.x / aQuantizeScale.x,
offset.y / aQuantizeScale.y);
mBounds -= boundsOffset;
mFullBounds -= boundsOffset;
for (size_t i = 0; i < aBuffer.mNumGlyphs; i++) {
Glyph& dst = glyphs[i];
const Glyph& src = aBuffer.mGlyphs[i];
dst.mIndex = src.mIndex;
dst.mPosition = Point(QuantizePosition(aTransform, offset, src.mPosition));
}
mBuffer.mGlyphs = glyphs;
mBuffer.mNumGlyphs = aBuffer.mNumGlyphs;
}
GlyphCacheEntry::~GlyphCacheEntry() { delete[] mBuffer.mGlyphs; }
// Attempt to find a matching entry in the glyph cache. The caller should check
// whether the contained texture handle is valid to determine if it will need to
// render the text run or just reuse the cached texture.
already_AddRefed<GlyphCacheEntry> GlyphCache::FindEntry(
const GlyphBuffer& aBuffer, const DeviceColor& aColor,
const Matrix& aTransform, const IntPoint& aQuantizeScale,
const IntRect& aClipRect, HashNumber aHash,
const StrokeOptions* aStrokeOptions) {
IntPoint offset = QuantizeOffset(aTransform, aQuantizeScale, aBuffer);
IntPoint boundsOffset(offset.x / aQuantizeScale.x,
offset.y / aQuantizeScale.y);
for (const RefPtr<GlyphCacheEntry>& entry : GetChain(aHash)) {
if (entry->MatchesGlyphs(aBuffer, aColor, aTransform, offset, boundsOffset,
aClipRect, aHash, aStrokeOptions)) {
return do_AddRef(entry);
}
}
return nullptr;
}
// Insert a new entry in the glyph cache.
already_AddRefed<GlyphCacheEntry> GlyphCache::InsertEntry(
const GlyphBuffer& aBuffer, const DeviceColor& aColor,
const Matrix& aTransform, const IntPoint& aQuantizeScale,
const IntRect& aBounds, const IntRect& aFullBounds, HashNumber aHash,
const StrokeOptions* aStrokeOptions) {
StoredStrokeOptions* strokeOptions = nullptr;
if (aStrokeOptions) {
strokeOptions = aStrokeOptions->Clone();
if (!strokeOptions) {
return nullptr;
}
}
RefPtr<GlyphCacheEntry> entry =
new GlyphCacheEntry(aBuffer, aColor, aTransform, aQuantizeScale, aBounds,
aFullBounds, aHash, strokeOptions);
Insert(entry);
return entry.forget();
}
GlyphCache::GlyphCache(ScaledFont* aFont) : mFont(aFont) {}
static void ReleaseGlyphCache(void* aPtr) {
delete static_cast<GlyphCache*>(aPtr);
}
void DrawTargetWebgl::SetPermitSubpixelAA(bool aPermitSubpixelAA) {
DrawTarget::SetPermitSubpixelAA(aPermitSubpixelAA);
mSkia->SetPermitSubpixelAA(aPermitSubpixelAA);
}
// Check for any color glyphs contained within a rasterized BGRA8 text result.
static bool CheckForColorGlyphs(const RefPtr<SourceSurface>& aSurface) {
if (aSurface->GetFormat() != SurfaceFormat::B8G8R8A8) {
return false;
}
RefPtr<DataSourceSurface> dataSurf = aSurface->GetDataSurface();
if (!dataSurf) {
return true;
}
DataSourceSurface::ScopedMap map(dataSurf, DataSourceSurface::READ);
if (!map.IsMapped()) {
return true;
}
IntSize size = dataSurf->GetSize();
const uint8_t* data = map.GetData();
int32_t stride = map.GetStride();
for (int y = 0; y < size.height; y++) {
const uint32_t* x = (const uint32_t*)data;
const uint32_t* end = x + size.width;
for (; x < end; x++) {
// Verify if all components are the same as for premultiplied grayscale.
uint32_t color = *x;
uint32_t gray = color & 0xFF;
gray |= gray << 8;
gray |= gray << 16;
if (color != gray) return true;
}
data += stride;
}
return false;
}
// Draws glyphs to the WebGL target by trying to generate a cached texture for
// the text run that can be subsequently reused to quickly render the text run
// without using any software surfaces.
bool DrawTargetWebgl::SharedContext::DrawGlyphsAccel(
ScaledFont* aFont, const GlyphBuffer& aBuffer, const Pattern& aPattern,
const DrawOptions& aOptions, const StrokeOptions* aStrokeOptions,
bool aUseSubpixelAA) {
// Whether the font may use bitmaps. If so, we need to render the glyphs with
// color as grayscale bitmaps will use the color while color emoji will not,
// with no easy way to know ahead of time. We currently have to check the
// rasterized result to see if there are any color glyphs. To render subpixel
// masks, we need to know that the rasterized result actually represents a
// subpixel mask rather than try to interpret it as a normal RGBA result such
// as for color emoji.
bool useBitmaps = !aStrokeOptions && aFont->MayUseBitmaps();
// Look for an existing glyph cache on the font. If not there, create it.
GlyphCache* cache =
static_cast<GlyphCache*>(aFont->GetUserData(&mGlyphCacheKey));
if (!cache) {
cache = new GlyphCache(aFont);
aFont->AddUserData(&mGlyphCacheKey, cache, ReleaseGlyphCache);
mGlyphCaches.insertFront(cache);
}
// Hash the incoming text run and looking for a matching entry.
DeviceColor color = static_cast<const ColorPattern&>(aPattern).mColor;
#ifdef XP_MACOSX
// On macOS, depending on whether the text is classified as light-on-dark or
// dark-on-light, we may end up with different amounts of dilation applied, so
// we can't use the same mask in the two circumstances, or the glyphs will be
// dilated incorrectly.
bool lightOnDark =
useBitmaps || (color.r >= 0.33f && color.g >= 0.33f && color.b >= 0.33f &&
color.r + color.g + color.b >= 2.0f);
#else
// On other platforms, we assume no color-dependent dilation.
const bool lightOnDark = true;
#endif
// If the font has bitmaps, use the color directly. Otherwise, the texture
// will hold a grayscale mask, so encode the key's subpixel and light-or-dark
// state in the color.
const Matrix& currentTransform = GetTransform();
IntPoint quantizeScale = QuantizeScale(aFont, currentTransform);
Matrix quantizeTransform = currentTransform;
quantizeTransform.PostScale(quantizeScale.x, quantizeScale.y);
HashNumber hash =
GlyphCacheEntry::HashGlyphs(aBuffer, quantizeTransform, quantizeScale);
DeviceColor colorOrMask =
useBitmaps
? color
: DeviceColor::Mask(aUseSubpixelAA ? 1 : 0, lightOnDark ? 1 : 0);
IntRect clipRect(IntPoint(), mViewportSize);
RefPtr<GlyphCacheEntry> entry =
cache->FindEntry(aBuffer, colorOrMask, quantizeTransform, quantizeScale,
clipRect, hash, aStrokeOptions);
if (!entry) {
// For small text runs, bounds computations can be expensive relative to the
// cost of looking up a cache result. Avoid doing local bounds computations
// until actually inserting the entry into the cache.
Maybe<Rect> bounds = mCurrentTarget->mSkia->GetGlyphLocalBounds(
aFont, aBuffer, aPattern, aStrokeOptions, aOptions);
if (!bounds) {
return true;
}
// Transform the local bounds into device space so that we know how big
// the cached texture will be.
Rect xformBounds = currentTransform.TransformBounds(*bounds);
// Check if the transform flattens out the bounds before rounding.
if (xformBounds.IsEmpty()) {
return true;
}
IntRect fullBounds = RoundedOut(currentTransform.TransformBounds(*bounds));
IntRect clipBounds = fullBounds.Intersect(clipRect);
// Check if the bounds are completely clipped out.
if (clipBounds.IsEmpty()) {
return true;
}
entry = cache->InsertEntry(aBuffer, colorOrMask, quantizeTransform,
quantizeScale, clipBounds, fullBounds, hash,
aStrokeOptions);
if (!entry) {
return false;
}
}
// The bounds of the entry may have a different transform offset from the
// bounds of the currently drawn text run. The entry bounds are relative to
// the entry's quantized offset already, so just move the bounds to the new
// offset.
IntRect intBounds = entry->GetBounds();
IntPoint newOffset =
QuantizeOffset(quantizeTransform, quantizeScale, aBuffer);
intBounds +=
IntPoint(newOffset.x / quantizeScale.x, newOffset.y / quantizeScale.y);
// Ensure there is a clear border around the text. This must be applied only
// after clipping so that we always have some border texels for filtering.
intBounds.Inflate(2);
RefPtr<TextureHandle> handle = entry->GetHandle();
if (handle && handle->IsValid()) {
// If there is an entry with a valid cached texture handle, then try
// to draw with that. If that for some reason failed, then fall back
// to using the Skia target as that means we were preventing from
// drawing to the WebGL context based on something other than the
// texture.
SurfacePattern pattern(nullptr, ExtendMode::CLAMP,
Matrix::Translation(intBounds.TopLeft()));
if (DrawRectAccel(Rect(intBounds), pattern, aOptions,
useBitmaps ? Nothing() : Some(color), &handle, false,
true, true)) {
return true;
}
} else {
handle = nullptr;
// If we get here, either there wasn't a cached texture handle or it
// wasn't valid. Render the text run into a temporary target.
RefPtr<DrawTargetSkia> textDT = new DrawTargetSkia;
if (textDT->Init(intBounds.Size(),
lightOnDark && !useBitmaps && !aUseSubpixelAA
? SurfaceFormat::A8
: SurfaceFormat::B8G8R8A8)) {
if (!lightOnDark) {
// If rendering dark-on-light text, we need to clear the background to
// white while using an opaque alpha value to allow this.
textDT->FillRect(Rect(IntRect(IntPoint(), intBounds.Size())),
ColorPattern(DeviceColor(1, 1, 1, 1)),
DrawOptions(1.0f, CompositionOp::OP_OVER));
}
textDT->SetTransform(currentTransform *
Matrix::Translation(-intBounds.TopLeft()));
textDT->SetPermitSubpixelAA(aUseSubpixelAA);
DrawOptions drawOptions(1.0f, CompositionOp::OP_OVER,
aOptions.mAntialiasMode);
// If bitmaps might be used, then we have to supply the color, as color
// emoji may ignore it while grayscale bitmaps may use it, with no way to
// know ahead of time. Otherwise, assume the output will be a mask and
// just render it white to determine intensity. Depending on whether the
// text is light or dark, we render white or black text respectively.
ColorPattern colorPattern(
useBitmaps ? color : DeviceColor::Mask(lightOnDark ? 1 : 0, 1));
if (aStrokeOptions) {
textDT->StrokeGlyphs(aFont, aBuffer, colorPattern, *aStrokeOptions,
drawOptions);
} else {
textDT->FillGlyphs(aFont, aBuffer, colorPattern, drawOptions);
}
if (!lightOnDark) {
uint8_t* data = nullptr;
IntSize size;
int32_t stride = 0;
SurfaceFormat format = SurfaceFormat::UNKNOWN;
if (!textDT->LockBits(&data, &size, &stride, &format)) {
return false;
}
uint8_t* row = data;
for (int y = 0; y < size.height; ++y) {
uint8_t* px = row;
for (int x = 0; x < size.width; ++x) {
// If rendering dark-on-light text, we need to invert the final mask
// so that it is in the expected white text on transparent black
// format. The alpha will be initialized to the largest of the
// values.
px[0] = 255 - px[0];
px[1] = 255 - px[1];
px[2] = 255 - px[2];
px[3] = std::max(px[0], std::max(px[1], px[2]));
px += 4;
}
row += stride;
}
textDT->ReleaseBits(data);
}
RefPtr<SourceSurface> textSurface = textDT->Snapshot();
if (textSurface) {
// If we don't expect the text surface to contain color glyphs
// such as from subpixel AA, then do one final check to see if
// any ended up in the result. If not, extract the alpha values
// from the surface so we can render it as a mask.
if (textSurface->GetFormat() != SurfaceFormat::A8 &&
!CheckForColorGlyphs(textSurface)) {
textSurface = ExtractAlpha(textSurface, !useBitmaps);
if (!textSurface) {
// Failed extracting alpha for the text surface...
return false;
}
}
// Attempt to upload the rendered text surface into a texture
// handle and draw it.
SurfacePattern pattern(textSurface, ExtendMode::CLAMP,
Matrix::Translation(intBounds.TopLeft()));
if (DrawRectAccel(Rect(intBounds), pattern, aOptions,
useBitmaps ? Nothing() : Some(color), &handle, false,
true) &&
handle) {
// If drawing succeeded, then the text surface was uploaded to
// a texture handle. Assign it to the glyph cache entry.
entry->Link(handle);
} else {
// If drawing failed, remove the entry from the cache.
entry->Unlink();
}
return true;
}
}
}
return false;
}
void DrawTargetWebgl::FillGlyphs(ScaledFont* aFont, const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const DrawOptions& aOptions) {
if (!aFont || !aBuffer.mNumGlyphs) {
return;
}
bool useSubpixelAA = ShouldUseSubpixelAA(aFont, aOptions);
if (mWebglValid && SupportsDrawOptions(aOptions) &&
aPattern.GetType() == PatternType::COLOR && PrepareContext() &&
mSharedContext->DrawGlyphsAccel(aFont, aBuffer, aPattern, aOptions,
nullptr, useSubpixelAA)) {
return;
}
// If not able to cache the text run to a texture, then just fall back to
// drawing with the Skia target.
if (useSubpixelAA) {
// Subpixel AA does not support layering because the subpixel masks can't
// blend with the over op.
MarkSkiaChanged();
} else {
MarkSkiaChanged(aOptions);
}
mSkia->FillGlyphs(aFont, aBuffer, aPattern, aOptions);
}
void DrawTargetWebgl::SharedContext::WaitForShmem(DrawTargetWebgl* aTarget) {
if (mWaitForShmem) {
// GetError is a sync IPDL call that forces all dispatched commands to be
// flushed. Once it returns, we are certain that any commands processing
// the Shmem have finished.
(void)mWebgl->GetError();
mWaitForShmem = false;
// The sync IPDL call can cause expensive round-trips to add up over time,
// so account for that here.
if (aTarget) {
aTarget->mProfile.OnReadback();
}
}
}
void DrawTargetWebgl::MarkSkiaChanged(const DrawOptions& aOptions) {
if (SupportsLayering(aOptions)) {
WaitForShmem();
if (!mSkiaValid) {
// If the Skia context needs initialization, clear it and enable layering.
mSkiaValid = true;
if (mWebglValid) {
mProfile.OnLayer();
mSkiaLayer = true;
mSkia->Clear();
}
}
// The WebGL context is no longer up-to-date.
mWebglValid = false;
} else {
// For other composition ops, just overwrite the Skia data.
MarkSkiaChanged();
}
}
// Attempts to read the contents of the WebGL context into the Skia target.
void DrawTargetWebgl::ReadIntoSkia() {
if (mSkiaValid) {
return;
}
if (mWebglValid) {
uint8_t* data = nullptr;
IntSize size;
int32_t stride;
SurfaceFormat format;
// If there's no existing snapshot and we can successfully map the Skia
// target for reading, then try to read into that.
if (!mSnapshot && mSkia->LockBits(&data, &size, &stride, &format)) {
(void)ReadInto(data, stride);
mSkia->ReleaseBits(data);
} else if (RefPtr<SourceSurface> snapshot = Snapshot()) {
// Otherwise, fall back to getting a snapshot from WebGL if available
// and then copying that to Skia.
mSkia->CopySurface(snapshot, GetRect(), IntPoint(0, 0));
}
// Signal that we've hit a complete software fallback.
mProfile.OnFallback();
}
mSkiaValid = true;
// The Skia data is flat after reading, so disable any layering.
mSkiaLayer = false;
}
// Reads data from the WebGL context and blends it with the current Skia layer.
void DrawTargetWebgl::FlattenSkia() {
if (!mSkiaValid || !mSkiaLayer) {
return;
}
if (RefPtr<DataSourceSurface> base = ReadSnapshot()) {
mSkia->BlendSurface(base, GetRect(), IntPoint(),
CompositionOp::OP_DEST_OVER);
}
mSkiaLayer = false;
}
// Attempts to draw the contents of the Skia target into the WebGL context.
bool DrawTargetWebgl::FlushFromSkia() {
// If the WebGL context has been lost, then mark it as invalid and fail.
if (mSharedContext->IsContextLost()) {
mWebglValid = false;
return false;
}
// The WebGL target is already valid, so there is nothing to do.
if (mWebglValid) {
return true;
}
// Ensure that DrawRect doesn't recursively call into FlushFromSkia. If
// the Skia target isn't valid, then it doesn't matter what is in the the
// WebGL target either, so only try to blend if there is a valid Skia target.
mWebglValid = true;
if (mSkiaValid) {
RefPtr<SourceSurface> skiaSnapshot = mSkia->Snapshot();
if (!skiaSnapshot) {
// There's a valid Skia target to draw to, but for some reason there is
// no available snapshot, so just keep using the Skia target.
mWebglValid = false;
return false;
}
AutoRestoreContext restore(this);
SurfacePattern pattern(skiaSnapshot, ExtendMode::CLAMP);
// If there is a layer, blend the snapshot with the WebGL context,
// otherwise copy it.
if (!DrawRect(Rect(GetRect()), pattern,
DrawOptions(1.0f, mSkiaLayer ? CompositionOp::OP_OVER
: CompositionOp::OP_SOURCE),
Nothing(), mSkiaLayer ? &mSnapshotTexture : nullptr, false,
false, true, true)) {
// If accelerated drawing failed for some reason, then leave the Skia
// target unchanged.
mWebglValid = false;
return false;
}
}
return true;
}
void DrawTargetWebgl::UsageProfile::BeginFrame() {
// Reset the usage profile counters for the new frame.
mFallbacks = 0;
mLayers = 0;
mCacheMisses = 0;
mCacheHits = 0;
mUncachedDraws = 0;
mReadbacks = 0;
}
void DrawTargetWebgl::UsageProfile::EndFrame() {
bool failed = false;
// If we hit a complete fallback to software rendering, or if cache misses
// were more than cutoff ratio of all requests, then we consider the frame as
// having failed performance profiling.
float cacheRatio =
StaticPrefs::gfx_canvas_accelerated_profile_cache_miss_ratio();
if (mFallbacks > 0 ||
float(mCacheMisses + mReadbacks + mLayers) >
cacheRatio * float(mCacheMisses + mCacheHits + mUncachedDraws +
mReadbacks + mLayers)) {
failed = true;
}
if (failed) {
++mFailedFrames;
}
++mFrameCount;
}
bool DrawTargetWebgl::UsageProfile::RequiresRefresh() const {
// If we've rendered at least the required number of frames for a profile and
// more than the cutoff ratio of frames did not meet performance criteria,
// then we should stop using an accelerated canvas.
uint32_t profileFrames = StaticPrefs::gfx_canvas_accelerated_profile_frames();
if (!profileFrames || mFrameCount < profileFrames) {
return false;
}
float failRatio =
StaticPrefs::gfx_canvas_accelerated_profile_fallback_ratio();
return mFailedFrames > failRatio * mFrameCount;
}
void DrawTargetWebgl::SharedContext::CachePrefs() {
uint32_t capacity = StaticPrefs::gfx_canvas_accelerated_gpu_path_size() << 20;
if (capacity != mPathVertexCapacity) {
mPathVertexCapacity = capacity;
if (mPathCache) {
mPathCache->ClearVertexRanges();
}
if (mPathVertexBuffer) {
ResetPathVertexBuffer();
}
}
mPathMaxComplexity =
StaticPrefs::gfx_canvas_accelerated_gpu_path_complexity();
mPathAAStroke = StaticPrefs::gfx_canvas_accelerated_aa_stroke_enabled();
mPathWGRStroke = StaticPrefs::gfx_canvas_accelerated_stroke_to_fill_path();
}
// For use within CanvasRenderingContext2D, called on BorrowDrawTarget.
void DrawTargetWebgl::BeginFrame(const IntRect& aPersistedRect) {
if (mNeedsPresent) {
mNeedsPresent = false;
// If still rendering into the Skia target, switch back to the WebGL
// context.
if (!mWebglValid) {
if (aPersistedRect.IsEmpty()) {
// If nothing needs to persist, just mark the WebGL context valid.
mWebglValid = true;
} else {
FlushFromSkia();
}
}
}
// Check if we need to clear out any cached because of memory pressure.
mSharedContext->ClearCachesIfNecessary();
// Cache any prefs for the frame.
mSharedContext->CachePrefs();
mProfile.BeginFrame();
}
// For use within CanvasRenderingContext2D, called on ReturnDrawTarget.
void DrawTargetWebgl::EndFrame() {
if (StaticPrefs::gfx_canvas_accelerated_debug()) {
// Draw a green rectangle in the upper right corner to indicate
// acceleration.
IntRect corner = IntRect(mSize.width - 16, 0, 16, 16).Intersect(GetRect());
DrawRect(Rect(corner), ColorPattern(DeviceColor(0.0f, 1.0f, 0.0f, 1.0f)),
DrawOptions(), Nothing(), nullptr, false, false);
}
mProfile.EndFrame();
// Ensure we're not somehow using more than the allowed texture memory.
mSharedContext->PruneTextureMemory();
// Signal that we're done rendering the frame in case no present occurs.
mSharedContext->mWebgl->EndOfFrame();
// Check if we need to clear out any cached because of memory pressure.
mSharedContext->ClearCachesIfNecessary();
// The framebuffer is dirty, so it needs to be copied to the swapchain.
mNeedsPresent = true;
}
Maybe<layers::SurfaceDescriptor> DrawTargetWebgl::GetFrontBuffer() {
// Only try to present and retrieve the front buffer if there is a valid
// WebGL framebuffer that can be sent to the compositor. Otherwise, return
// nothing to try to reuse the Skia snapshot.
if (mNeedsPresent) {
mNeedsPresent = false;
if (mWebglValid || FlushFromSkia()) {
// Copy and swizzle the WebGL framebuffer to the swap chain front buffer.
webgl::SwapChainOptions options;
options.bgra = true;
// Allow async present to be toggled on for accelerated Canvas2D
// independent of WebGL via pref.
options.forceAsyncPresent =
StaticPrefs::gfx_canvas_accelerated_async_present();
mSharedContext->mWebgl->CopyToSwapChain(mFramebuffer, options);
}
}
if (mWebglValid) {
return mSharedContext->mWebgl->GetFrontBuffer(mFramebuffer);
}
return Nothing();
}
already_AddRefed<DrawTarget> DrawTargetWebgl::CreateSimilarDrawTarget(
const IntSize& aSize, SurfaceFormat aFormat) const {
return mSkia->CreateSimilarDrawTarget(aSize, aFormat);
}
bool DrawTargetWebgl::CanCreateSimilarDrawTarget(const IntSize& aSize,
SurfaceFormat aFormat) const {
return mSkia->CanCreateSimilarDrawTarget(aSize, aFormat);
}
RefPtr<DrawTarget> DrawTargetWebgl::CreateClippedDrawTarget(
const Rect& aBounds, SurfaceFormat aFormat) {
return mSkia->CreateClippedDrawTarget(aBounds, aFormat);
}
already_AddRefed<SourceSurface> DrawTargetWebgl::CreateSourceSurfaceFromData(
unsigned char* aData, const IntSize& aSize, int32_t aStride,
SurfaceFormat aFormat) const {
return mSkia->CreateSourceSurfaceFromData(aData, aSize, aStride, aFormat);
}
already_AddRefed<SourceSurface>
DrawTargetWebgl::CreateSourceSurfaceFromNativeSurface(
const NativeSurface& aSurface) const {
return mSkia->CreateSourceSurfaceFromNativeSurface(aSurface);
}
already_AddRefed<SourceSurface> DrawTargetWebgl::OptimizeSourceSurface(
SourceSurface* aSurface) const {
if (aSurface->GetType() == SurfaceType::WEBGL) {
return do_AddRef(aSurface);
}
return mSkia->OptimizeSourceSurface(aSurface);
}
already_AddRefed<SourceSurface>
DrawTargetWebgl::OptimizeSourceSurfaceForUnknownAlpha(
SourceSurface* aSurface) const {
return mSkia->OptimizeSourceSurfaceForUnknownAlpha(aSurface);
}
already_AddRefed<GradientStops> DrawTargetWebgl::CreateGradientStops(
GradientStop* aStops, uint32_t aNumStops, ExtendMode aExtendMode) const {
return mSkia->CreateGradientStops(aStops, aNumStops, aExtendMode);
}
already_AddRefed<FilterNode> DrawTargetWebgl::CreateFilter(FilterType aType) {
return mSkia->CreateFilter(aType);
}
void DrawTargetWebgl::DrawFilter(FilterNode* aNode, const Rect& aSourceRect,
const Point& aDestPoint,
const DrawOptions& aOptions) {
MarkSkiaChanged(aOptions);
mSkia->DrawFilter(aNode, aSourceRect, aDestPoint, aOptions);
}
bool DrawTargetWebgl::Draw3DTransformedSurface(SourceSurface* aSurface,
const Matrix4x4& aMatrix) {
MarkSkiaChanged();
return mSkia->Draw3DTransformedSurface(aSurface, aMatrix);
}
void DrawTargetWebgl::PushLayer(bool aOpaque, Float aOpacity,
SourceSurface* aMask,
const Matrix& aMaskTransform,
const IntRect& aBounds, bool aCopyBackground) {
PushLayerWithBlend(aOpaque, aOpacity, aMask, aMaskTransform, aBounds,
aCopyBackground, CompositionOp::OP_OVER);
}
void DrawTargetWebgl::PushLayerWithBlend(bool aOpaque, Float aOpacity,
SourceSurface* aMask,
const Matrix& aMaskTransform,
const IntRect& aBounds,
bool aCopyBackground,
CompositionOp aCompositionOp) {
MarkSkiaChanged(DrawOptions(aOpacity, aCompositionOp));
mSkia->PushLayerWithBlend(aOpaque, aOpacity, aMask, aMaskTransform, aBounds,
aCopyBackground, aCompositionOp);
++mLayerDepth;
}
void DrawTargetWebgl::PopLayer() {
MOZ_ASSERT(mSkiaValid);
MOZ_ASSERT(mLayerDepth > 0);
--mLayerDepth;
mSkia->PopLayer();
}
} // namespace mozilla::gfx
|