1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "WebAuthnCoseIdentifiers.h"
#include "mozilla/dom/U2FSoftTokenManager.h"
#include "CryptoBuffer.h"
#include "mozilla/Base64.h"
#include "mozilla/Casting.h"
#include "mozilla/Preferences.h"
#include "nsNSSComponent.h"
#include "nsThreadUtils.h"
#include "pk11pub.h"
#include "prerror.h"
#include "secerr.h"
#include "WebCryptoCommon.h"
#define PREF_U2F_NSSTOKEN_COUNTER "security.webauth.softtoken_counter"
namespace mozilla::dom {
using namespace mozilla;
using mozilla::dom::CreateECParamsForCurve;
const nsCString U2FSoftTokenManager::mSecretNickname = "U2F_NSSTOKEN"_ns;
namespace {
constexpr auto kAttestCertSubjectName = "CN=Firefox U2F Soft Token"_ns;
// This U2F-compatible soft token uses FIDO U2F-compatible ECDSA keypairs
// on the SEC_OID_SECG_EC_SECP256R1 curve. When asked to Register, it will
// generate and return a new keypair KP, where the private component is wrapped
// using AES-KW with the 128-bit mWrappingKey to make an opaque "key handle".
// In other words, Register yields { KP_pub, AES-KW(KP_priv, key=mWrappingKey) }
//
// The value mWrappingKey is long-lived; it is persisted as part of the NSS DB
// for the current profile. The attestation certificates that are produced are
// ephemeral to counteract profiling. They have little use for a soft-token
// at any rate, but are required by the specification.
const uint32_t kParamLen = 32;
const uint32_t kPublicKeyLen = 65;
const uint32_t kWrappedKeyBufLen = 256;
const uint32_t kWrappingKeyByteLen = 128 / 8;
const uint32_t kSaltByteLen = 64 / 8;
const uint32_t kVersion1KeyHandleLen = 162;
constexpr auto kEcAlgorithm =
NS_LITERAL_STRING_FROM_CSTRING(WEBCRYPTO_NAMED_CURVE_P256);
const PRTime kOneDay = PRTime(PR_USEC_PER_SEC) * PRTime(60) // sec
* PRTime(60) // min
* PRTime(24); // hours
const PRTime kExpirationSlack = kOneDay; // Pre-date for clock skew
const PRTime kExpirationLife = kOneDay;
static mozilla::LazyLogModule gNSSTokenLog("webauth_u2f");
enum SoftTokenHandle {
Version1 = 0,
};
} // namespace
U2FSoftTokenManager::U2FSoftTokenManager(uint32_t aCounter)
: mInitialized(false), mCounter(aCounter) {}
/**
* Gets the first key with the given nickname from the given slot. Any other
* keys found are not returned.
* PK11_GetNextSymKey() should not be called on the returned key.
*
* @param aSlot Slot to search.
* @param aNickname Nickname the key should have.
* @return The first key found. nullptr if no key could be found.
*/
static UniquePK11SymKey GetSymKeyByNickname(const UniquePK11SlotInfo& aSlot,
const nsCString& aNickname) {
MOZ_ASSERT(aSlot);
if (NS_WARN_IF(!aSlot)) {
return nullptr;
}
MOZ_LOG(gNSSTokenLog, LogLevel::Debug,
("Searching for a symmetric key named %s", aNickname.get()));
UniquePK11SymKey keyListHead(
PK11_ListFixedKeysInSlot(aSlot.get(), const_cast<char*>(aNickname.get()),
/* wincx */ nullptr));
if (NS_WARN_IF(!keyListHead)) {
MOZ_LOG(gNSSTokenLog, LogLevel::Debug, ("Symmetric key not found."));
return nullptr;
}
// Sanity check PK11_ListFixedKeysInSlot() only returns keys with the correct
// nickname.
MOZ_ASSERT(aNickname ==
UniquePORTString(PK11_GetSymKeyNickname(keyListHead.get())).get());
MOZ_LOG(gNSSTokenLog, LogLevel::Debug, ("Symmetric key found!"));
// Free any remaining keys in the key list.
UniquePK11SymKey freeKey(PK11_GetNextSymKey(keyListHead.get()));
while (freeKey) {
freeKey = UniquePK11SymKey(PK11_GetNextSymKey(freeKey.get()));
}
return keyListHead;
}
static nsresult GenEcKeypair(const UniquePK11SlotInfo& aSlot,
/*out*/ UniqueSECKEYPrivateKey& aPrivKey,
/*out*/ UniqueSECKEYPublicKey& aPubKey) {
MOZ_ASSERT(aSlot);
if (NS_WARN_IF(!aSlot)) {
return NS_ERROR_INVALID_ARG;
}
UniquePLArenaPool arena(PORT_NewArena(DER_DEFAULT_CHUNKSIZE));
if (NS_WARN_IF(!arena)) {
return NS_ERROR_OUT_OF_MEMORY;
}
// Set the curve parameters; keyParams belongs to the arena memory space
SECItem* keyParams = CreateECParamsForCurve(kEcAlgorithm, arena.get());
if (NS_WARN_IF(!keyParams)) {
return NS_ERROR_OUT_OF_MEMORY;
}
// Generate a key pair
CK_MECHANISM_TYPE mechanism = CKM_EC_KEY_PAIR_GEN;
SECKEYPublicKey* pubKeyRaw;
aPrivKey = UniqueSECKEYPrivateKey(
PK11_GenerateKeyPair(aSlot.get(), mechanism, keyParams, &pubKeyRaw,
/* ephemeral */ false, false,
/* wincx */ nullptr));
aPubKey = UniqueSECKEYPublicKey(pubKeyRaw);
pubKeyRaw = nullptr;
if (NS_WARN_IF(!aPrivKey.get() || !aPubKey.get())) {
return NS_ERROR_FAILURE;
}
// Check that the public key has the correct length
if (NS_WARN_IF(aPubKey->u.ec.publicValue.len != kPublicKeyLen)) {
return NS_ERROR_FAILURE;
}
return NS_OK;
}
nsresult U2FSoftTokenManager::GetOrCreateWrappingKey(
const UniquePK11SlotInfo& aSlot) {
MOZ_ASSERT(aSlot);
if (NS_WARN_IF(!aSlot)) {
return NS_ERROR_INVALID_ARG;
}
// Search for an existing wrapping key. If we find it,
// store it for later and mark ourselves initialized.
mWrappingKey = GetSymKeyByNickname(aSlot, mSecretNickname);
if (mWrappingKey) {
MOZ_LOG(gNSSTokenLog, LogLevel::Debug, ("U2F Soft Token Key found."));
mInitialized = true;
return NS_OK;
}
MOZ_LOG(gNSSTokenLog, LogLevel::Info,
("No keys found. Generating new U2F Soft Token wrapping key."));
// We did not find an existing wrapping key, so we generate one in the
// persistent database (e.g, Token).
mWrappingKey = UniquePK11SymKey(PK11_TokenKeyGenWithFlags(
aSlot.get(), CKM_AES_KEY_GEN,
/* default params */ nullptr, kWrappingKeyByteLen,
/* empty keyid */ nullptr,
/* flags */ CKF_WRAP | CKF_UNWRAP,
/* attributes */ PK11_ATTR_TOKEN | PK11_ATTR_PRIVATE,
/* wincx */ nullptr));
if (NS_WARN_IF(!mWrappingKey)) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
("Failed to store wrapping key, NSS error #%d", PORT_GetError()));
return NS_ERROR_FAILURE;
}
SECStatus srv =
PK11_SetSymKeyNickname(mWrappingKey.get(), mSecretNickname.get());
if (NS_WARN_IF(srv != SECSuccess)) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
("Failed to set nickname, NSS error #%d", PORT_GetError()));
return NS_ERROR_FAILURE;
}
MOZ_LOG(gNSSTokenLog, LogLevel::Debug,
("Key stored, nickname set to %s.", mSecretNickname.get()));
GetMainThreadEventTarget()->Dispatch(NS_NewRunnableFunction(
"dom::U2FSoftTokenManager::GetOrCreateWrappingKey", []() {
MOZ_ASSERT(NS_IsMainThread());
Preferences::SetUint(PREF_U2F_NSSTOKEN_COUNTER, 0);
}));
return NS_OK;
}
static nsresult GetAttestationCertificate(
const UniquePK11SlotInfo& aSlot,
/*out*/ UniqueSECKEYPrivateKey& aAttestPrivKey,
/*out*/ UniqueCERTCertificate& aAttestCert) {
MOZ_ASSERT(aSlot);
if (NS_WARN_IF(!aSlot)) {
return NS_ERROR_INVALID_ARG;
}
UniqueSECKEYPublicKey pubKey;
// Construct an ephemeral keypair for this Attestation Certificate
nsresult rv = GenEcKeypair(aSlot, aAttestPrivKey, pubKey);
if (NS_WARN_IF(NS_FAILED(rv) || !aAttestPrivKey || !pubKey)) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
("Failed to gen keypair, NSS error #%d", PORT_GetError()));
return NS_ERROR_FAILURE;
}
// Construct the Attestation Certificate itself
UniqueCERTName subjectName(CERT_AsciiToName(kAttestCertSubjectName.get()));
if (NS_WARN_IF(!subjectName)) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
("Failed to set subject name, NSS error #%d", PORT_GetError()));
return NS_ERROR_FAILURE;
}
UniqueCERTSubjectPublicKeyInfo spki(
SECKEY_CreateSubjectPublicKeyInfo(pubKey.get()));
if (NS_WARN_IF(!spki)) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
("Failed to set SPKI, NSS error #%d", PORT_GetError()));
return NS_ERROR_FAILURE;
}
UniqueCERTCertificateRequest certreq(
CERT_CreateCertificateRequest(subjectName.get(), spki.get(), nullptr));
if (NS_WARN_IF(!certreq)) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
("Failed to gen CSR, NSS error #%d", PORT_GetError()));
return NS_ERROR_FAILURE;
}
PRTime now = PR_Now();
PRTime notBefore = now - kExpirationSlack;
PRTime notAfter = now + kExpirationLife;
UniqueCERTValidity validity(CERT_CreateValidity(notBefore, notAfter));
if (NS_WARN_IF(!validity)) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
("Failed to gen validity, NSS error #%d", PORT_GetError()));
return NS_ERROR_FAILURE;
}
unsigned long serial;
unsigned char* serialBytes =
mozilla::BitwiseCast<unsigned char*, unsigned long*>(&serial);
SECStatus srv =
PK11_GenerateRandomOnSlot(aSlot.get(), serialBytes, sizeof(serial));
if (NS_WARN_IF(srv != SECSuccess)) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
("Failed to gen serial, NSS error #%d", PORT_GetError()));
return NS_ERROR_FAILURE;
}
// Ensure that the most significant bit isn't set (which would
// indicate a negative number, which isn't valid for serial
// numbers).
serialBytes[0] &= 0x7f;
// Also ensure that the least significant bit on the most
// significant byte is set (to prevent a leading zero byte,
// which also wouldn't be valid).
serialBytes[0] |= 0x01;
aAttestCert = UniqueCERTCertificate(CERT_CreateCertificate(
serial, subjectName.get(), validity.get(), certreq.get()));
if (NS_WARN_IF(!aAttestCert)) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
("Failed to gen certificate, NSS error #%d", PORT_GetError()));
return NS_ERROR_FAILURE;
}
PLArenaPool* arena = aAttestCert->arena;
srv = SECOID_SetAlgorithmID(arena, &aAttestCert->signature,
SEC_OID_ANSIX962_ECDSA_SHA256_SIGNATURE,
/* wincx */ nullptr);
if (NS_WARN_IF(srv != SECSuccess)) {
return NS_ERROR_FAILURE;
}
// Set version to X509v3.
*(aAttestCert->version.data) = SEC_CERTIFICATE_VERSION_3;
aAttestCert->version.len = 1;
SECItem innerDER = {siBuffer, nullptr, 0};
if (NS_WARN_IF(!SEC_ASN1EncodeItem(arena, &innerDER, aAttestCert.get(),
SEC_ASN1_GET(CERT_CertificateTemplate)))) {
return NS_ERROR_FAILURE;
}
SECItem* signedCert = PORT_ArenaZNew(arena, SECItem);
if (NS_WARN_IF(!signedCert)) {
return NS_ERROR_FAILURE;
}
srv = SEC_DerSignData(arena, signedCert, innerDER.data, innerDER.len,
aAttestPrivKey.get(),
SEC_OID_ANSIX962_ECDSA_SHA256_SIGNATURE);
if (NS_WARN_IF(srv != SECSuccess)) {
return NS_ERROR_FAILURE;
}
aAttestCert->derCert = *signedCert;
MOZ_LOG(gNSSTokenLog, LogLevel::Debug,
("U2F Soft Token attestation certificate generated."));
return NS_OK;
}
// Set up the context for the soft U2F Token. This is called by NSS
// initialization.
nsresult U2FSoftTokenManager::Init() {
// If we've already initialized, just return.
if (mInitialized) {
return NS_OK;
}
UniquePK11SlotInfo slot(PK11_GetInternalKeySlot());
MOZ_ASSERT(slot.get());
// Search for an existing wrapping key, or create one.
nsresult rv = GetOrCreateWrappingKey(slot);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
mInitialized = true;
MOZ_LOG(gNSSTokenLog, LogLevel::Debug, ("U2F Soft Token initialized."));
return NS_OK;
}
// Convert a Private Key object into an opaque key handle, using AES Key Wrap
// with the long-lived aPersistentKey mixed with aAppParam to convert aPrivKey.
// The key handle's format is version || saltLen || salt || wrappedPrivateKey
static UniqueSECItem KeyHandleFromPrivateKey(
const UniquePK11SlotInfo& aSlot, const UniquePK11SymKey& aPersistentKey,
uint8_t* aAppParam, uint32_t aAppParamLen,
const UniqueSECKEYPrivateKey& aPrivKey) {
MOZ_ASSERT(aSlot);
MOZ_ASSERT(aPersistentKey);
MOZ_ASSERT(aAppParam);
MOZ_ASSERT(aPrivKey);
if (NS_WARN_IF(!aSlot || !aPersistentKey || !aPrivKey || !aAppParam)) {
return nullptr;
}
// Generate a random salt
uint8_t saltParam[kSaltByteLen];
SECStatus srv =
PK11_GenerateRandomOnSlot(aSlot.get(), saltParam, sizeof(saltParam));
if (NS_WARN_IF(srv != SECSuccess)) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
("Failed to generate a salt, NSS error #%d", PORT_GetError()));
return nullptr;
}
// Prepare the HKDF (https://tools.ietf.org/html/rfc5869)
CK_NSS_HKDFParams hkdfParams = {true, saltParam, sizeof(saltParam),
true, aAppParam, aAppParamLen};
SECItem kdfParams = {siBuffer, (unsigned char*)&hkdfParams,
sizeof(hkdfParams)};
// Derive a wrapping key from aPersistentKey, the salt, and the aAppParam.
// CKM_AES_KEY_GEN and CKA_WRAP are key type and usage attributes of the
// derived symmetric key and don't matter because we ignore them anyway.
UniquePK11SymKey wrapKey(
PK11_Derive(aPersistentKey.get(), CKM_NSS_HKDF_SHA256, &kdfParams,
CKM_AES_KEY_GEN, CKA_WRAP, kWrappingKeyByteLen));
if (NS_WARN_IF(!wrapKey.get())) {
MOZ_LOG(
gNSSTokenLog, LogLevel::Warning,
("Failed to derive a wrapping key, NSS error #%d", PORT_GetError()));
return nullptr;
}
UniqueSECItem wrappedKey(::SECITEM_AllocItem(/* default arena */ nullptr,
/* no buffer */ nullptr,
kWrappedKeyBufLen));
if (NS_WARN_IF(!wrappedKey)) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning, ("Failed to allocate memory"));
return nullptr;
}
UniqueSECItem param(PK11_ParamFromIV(CKM_NSS_AES_KEY_WRAP_PAD,
/* default IV */ nullptr));
srv =
PK11_WrapPrivKey(aSlot.get(), wrapKey.get(), aPrivKey.get(),
CKM_NSS_AES_KEY_WRAP_PAD, param.get(), wrappedKey.get(),
/* wincx */ nullptr);
if (NS_WARN_IF(srv != SECSuccess)) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
("Failed to wrap U2F key, NSS error #%d", PORT_GetError()));
return nullptr;
}
// Concatenate the salt and the wrapped Private Key together
mozilla::dom::CryptoBuffer keyHandleBuf;
if (NS_WARN_IF(!keyHandleBuf.SetCapacity(
wrappedKey.get()->len + sizeof(saltParam) + 2, mozilla::fallible))) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning, ("Failed to allocate memory"));
return nullptr;
}
// It's OK to ignore the return values here because we're writing into
// pre-allocated space
(void)keyHandleBuf.AppendElement(SoftTokenHandle::Version1,
mozilla::fallible);
(void)keyHandleBuf.AppendElement(sizeof(saltParam), mozilla::fallible);
(void)keyHandleBuf.AppendElements(saltParam, sizeof(saltParam),
mozilla::fallible);
keyHandleBuf.AppendSECItem(wrappedKey.get());
UniqueSECItem keyHandle(::SECITEM_AllocItem(nullptr, nullptr, 0));
if (NS_WARN_IF(!keyHandle)) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning, ("Failed to allocate memory"));
return nullptr;
}
if (NS_WARN_IF(!keyHandleBuf.ToSECItem(/* default arena */ nullptr,
keyHandle.get()))) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning, ("Failed to allocate memory"));
return nullptr;
}
return keyHandle;
}
// Convert an opaque key handle aKeyHandle back into a Private Key object, using
// the long-lived aPersistentKey mixed with aAppParam and the AES Key Wrap
// algorithm.
static UniqueSECKEYPrivateKey PrivateKeyFromKeyHandle(
const UniquePK11SlotInfo& aSlot, const UniquePK11SymKey& aPersistentKey,
uint8_t* aKeyHandle, uint32_t aKeyHandleLen, uint8_t* aAppParam,
uint32_t aAppParamLen) {
MOZ_ASSERT(aSlot);
MOZ_ASSERT(aPersistentKey);
MOZ_ASSERT(aKeyHandle);
MOZ_ASSERT(aAppParam);
MOZ_ASSERT(aAppParamLen == SHA256_LENGTH);
if (NS_WARN_IF(!aSlot || !aPersistentKey || !aKeyHandle || !aAppParam ||
aAppParamLen != SHA256_LENGTH)) {
return nullptr;
}
// As we only support one key format ourselves (right now), fail early if
// we aren't that length
if (NS_WARN_IF(aKeyHandleLen != kVersion1KeyHandleLen)) {
return nullptr;
}
if (NS_WARN_IF(aKeyHandle[0] != SoftTokenHandle::Version1)) {
// Unrecognized version
return nullptr;
}
uint8_t saltLen = aKeyHandle[1];
uint8_t* saltPtr = aKeyHandle + 2;
if (NS_WARN_IF(saltLen != kSaltByteLen)) {
return nullptr;
}
// Prepare the HKDF (https://tools.ietf.org/html/rfc5869)
CK_NSS_HKDFParams hkdfParams = {true, saltPtr, saltLen,
true, aAppParam, aAppParamLen};
SECItem kdfParams = {siBuffer, (unsigned char*)&hkdfParams,
sizeof(hkdfParams)};
// Derive a wrapping key from aPersistentKey, the salt, and the aAppParam.
// CKM_AES_KEY_GEN and CKA_WRAP are key type and usage attributes of the
// derived symmetric key and don't matter because we ignore them anyway.
UniquePK11SymKey wrapKey(
PK11_Derive(aPersistentKey.get(), CKM_NSS_HKDF_SHA256, &kdfParams,
CKM_AES_KEY_GEN, CKA_WRAP, kWrappingKeyByteLen));
if (NS_WARN_IF(!wrapKey.get())) {
MOZ_LOG(
gNSSTokenLog, LogLevel::Warning,
("Failed to derive a wrapping key, NSS error #%d", PORT_GetError()));
return nullptr;
}
uint8_t wrappedLen = aKeyHandleLen - saltLen - 2;
uint8_t* wrappedPtr = aKeyHandle + saltLen + 2;
ScopedAutoSECItem wrappedKeyItem(wrappedLen);
memcpy(wrappedKeyItem.data, wrappedPtr, wrappedKeyItem.len);
ScopedAutoSECItem pubKey(kPublicKeyLen);
UniqueSECItem param(PK11_ParamFromIV(CKM_NSS_AES_KEY_WRAP_PAD,
/* default IV */ nullptr));
CK_ATTRIBUTE_TYPE usages[] = {CKA_SIGN};
int usageCount = 1;
UniqueSECKEYPrivateKey unwrappedKey(
PK11_UnwrapPrivKey(aSlot.get(), wrapKey.get(), CKM_NSS_AES_KEY_WRAP_PAD,
param.get(), &wrappedKeyItem,
/* no nickname */ nullptr,
/* discard pubkey */ &pubKey,
/* not permanent */ false,
/* non-exportable */ true, CKK_EC, usages, usageCount,
/* wincx */ nullptr));
if (NS_WARN_IF(!unwrappedKey)) {
// Not our key.
MOZ_LOG(gNSSTokenLog, LogLevel::Debug,
("Could not unwrap key handle, NSS Error #%d", PORT_GetError()));
return nullptr;
}
return unwrappedKey;
}
// IsRegistered determines if the provided key handle is usable by this token.
nsresult U2FSoftTokenManager::IsRegistered(const nsTArray<uint8_t>& aKeyHandle,
const nsTArray<uint8_t>& aAppParam,
bool& aResult) {
if (!mInitialized) {
nsresult rv = Init();
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
}
UniquePK11SlotInfo slot(PK11_GetInternalSlot());
MOZ_ASSERT(slot.get());
// Decode the key handle
UniqueSECKEYPrivateKey privKey = PrivateKeyFromKeyHandle(
slot, mWrappingKey, const_cast<uint8_t*>(aKeyHandle.Elements()),
aKeyHandle.Length(), const_cast<uint8_t*>(aAppParam.Elements()),
aAppParam.Length());
aResult = privKey.get() != nullptr;
return NS_OK;
}
// A U2F Register operation causes a new key pair to be generated by the token.
// The token then returns the public key of the key pair, and a handle to the
// private key, which is a fancy way of saying "key wrapped private key", as
// well as the generated attestation certificate and a signature using that
// certificate's private key.
//
// The KeyHandleFromPrivateKey and PrivateKeyFromKeyHandle methods perform
// the actual key wrap/unwrap operations.
//
// The format of the return registration data is as follows:
//
// Bytes Value
// 1 0x05
// 65 public key
// 1 key handle length
// * key handle
// ASN.1 attestation certificate
// * attestation signature
//
RefPtr<U2FRegisterPromise> U2FSoftTokenManager::Register(
const WebAuthnMakeCredentialInfo& aInfo, bool aForceNoneAttestation,
void _ctap2_status_callback(rust_ctap2_status_update_res*)) {
if (!mInitialized) {
nsresult rv = Init();
if (NS_WARN_IF(NS_FAILED(rv))) {
return U2FRegisterPromise::CreateAndReject(rv, __func__);
}
}
if (aInfo.Extra().isSome()) {
const auto& extra = aInfo.Extra().ref();
const WebAuthnAuthenticatorSelection& sel = extra.AuthenticatorSelection();
UserVerificationRequirement userVerificaitonRequirement =
sel.userVerificationRequirement();
bool requireUserVerification =
userVerificaitonRequirement == UserVerificationRequirement::Required;
bool requirePlatformAttachment = false;
if (sel.authenticatorAttachment().isSome()) {
const AuthenticatorAttachment authenticatorAttachment =
sel.authenticatorAttachment().value();
if (authenticatorAttachment == AuthenticatorAttachment::Platform) {
requirePlatformAttachment = true;
}
}
// The U2F softtoken neither supports resident keys or
// user verification, nor is it a platform authenticator.
if (sel.requireResidentKey() || requireUserVerification ||
requirePlatformAttachment) {
return U2FRegisterPromise::CreateAndReject(NS_ERROR_DOM_NOT_ALLOWED_ERR,
__func__);
}
nsTArray<CoseAlg> coseAlgos;
for (const auto& coseAlg : extra.coseAlgs()) {
switch (static_cast<CoseAlgorithmIdentifier>(coseAlg.alg())) {
case CoseAlgorithmIdentifier::ES256:
coseAlgos.AppendElement(coseAlg);
break;
default:
continue;
}
}
// Only if no algorithms were specified, default to the one the soft token
// supports.
if (extra.coseAlgs().IsEmpty()) {
coseAlgos.AppendElement(
static_cast<int32_t>(CoseAlgorithmIdentifier::ES256));
}
// If there are no acceptable/supported algorithms, reject the promise.
if (coseAlgos.IsEmpty()) {
return U2FRegisterPromise::CreateAndReject(NS_ERROR_DOM_NOT_SUPPORTED_ERR,
__func__);
}
}
CryptoBuffer rpIdHash, clientDataHash;
NS_ConvertUTF16toUTF8 rpId(aInfo.RpId());
nsresult rv = BuildTransactionHashes(rpId, aInfo.ClientDataJSON(), rpIdHash,
clientDataHash);
if (NS_WARN_IF(NS_FAILED(rv))) {
return U2FRegisterPromise::CreateAndReject(NS_ERROR_DOM_UNKNOWN_ERR,
__func__);
}
// Optional exclusion list.
for (const WebAuthnScopedCredential& cred : aInfo.ExcludeList()) {
bool isRegistered = false;
nsresult rv = IsRegistered(cred.id(), rpIdHash, isRegistered);
if (NS_FAILED(rv)) {
return U2FRegisterPromise::CreateAndReject(rv, __func__);
}
if (isRegistered) {
return U2FRegisterPromise::CreateAndReject(NS_ERROR_DOM_INVALID_STATE_ERR,
__func__);
}
}
// We should already have a wrapping key
MOZ_ASSERT(mWrappingKey);
UniquePK11SlotInfo slot(PK11_GetInternalSlot());
MOZ_ASSERT(slot.get());
// Construct a one-time-use Attestation Certificate
UniqueSECKEYPrivateKey attestPrivKey;
UniqueCERTCertificate attestCert;
rv = GetAttestationCertificate(slot, attestPrivKey, attestCert);
if (NS_WARN_IF(NS_FAILED(rv))) {
return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
}
MOZ_ASSERT(attestCert);
MOZ_ASSERT(attestPrivKey);
// Generate a new keypair; the private will be wrapped into a Key Handle
UniqueSECKEYPrivateKey privKey;
UniqueSECKEYPublicKey pubKey;
rv = GenEcKeypair(slot, privKey, pubKey);
if (NS_WARN_IF(NS_FAILED(rv))) {
return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
}
// The key handle will be the result of keywrap(privKey, key=mWrappingKey)
UniqueSECItem keyHandleItem = KeyHandleFromPrivateKey(
slot, mWrappingKey, const_cast<uint8_t*>(rpIdHash.Elements()),
rpIdHash.Length(), privKey);
if (NS_WARN_IF(!keyHandleItem.get())) {
return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
}
// Sign the challenge using the Attestation privkey (from attestCert)
mozilla::dom::CryptoBuffer signedDataBuf;
if (NS_WARN_IF(!signedDataBuf.SetCapacity(
1 + rpIdHash.Length() + clientDataHash.Length() + keyHandleItem->len +
kPublicKeyLen,
mozilla::fallible))) {
return U2FRegisterPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY,
__func__);
}
// // It's OK to ignore the return values here because we're writing into
// // pre-allocated space
(void)signedDataBuf.AppendElement(0x00, mozilla::fallible);
(void)signedDataBuf.AppendElements(rpIdHash, mozilla::fallible);
(void)signedDataBuf.AppendElements(clientDataHash, mozilla::fallible);
signedDataBuf.AppendSECItem(keyHandleItem.get());
signedDataBuf.AppendSECItem(pubKey->u.ec.publicValue);
ScopedAutoSECItem signatureItem;
SECStatus srv = SEC_SignData(&signatureItem, signedDataBuf.Elements(),
signedDataBuf.Length(), attestPrivKey.get(),
SEC_OID_ANSIX962_ECDSA_SHA256_SIGNATURE);
if (NS_WARN_IF(srv != SECSuccess)) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
("Signature failure: %d", PORT_GetError()));
return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
}
// Serialize the registration data
mozilla::dom::CryptoBuffer registrationBuf;
if (NS_WARN_IF(!registrationBuf.SetCapacity(
1 + kPublicKeyLen + 1 + keyHandleItem->len +
attestCert.get()->derCert.len + signatureItem.len,
mozilla::fallible))) {
return U2FRegisterPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY,
__func__);
}
(void)registrationBuf.AppendElement(0x05, mozilla::fallible);
registrationBuf.AppendSECItem(pubKey->u.ec.publicValue);
(void)registrationBuf.AppendElement(keyHandleItem->len, mozilla::fallible);
registrationBuf.AppendSECItem(keyHandleItem.get());
registrationBuf.AppendSECItem(attestCert.get()->derCert);
registrationBuf.AppendSECItem(signatureItem);
CryptoBuffer keyHandleBuf;
if (!keyHandleBuf.AppendSECItem(keyHandleItem.get())) {
return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
}
CryptoBuffer attestCertBuf;
if (!attestCertBuf.AppendSECItem(attestCert.get()->derCert)) {
return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
}
CryptoBuffer signatureBuf;
if (!signatureBuf.AppendSECItem(signatureItem)) {
return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
}
CryptoBuffer pubKeyBuf;
if (!pubKeyBuf.AppendSECItem(pubKey->u.ec.publicValue)) {
return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
}
CryptoBuffer attObj;
rv = AssembleAttestationObject(rpIdHash, pubKeyBuf, keyHandleBuf,
attestCertBuf, signatureBuf,
aForceNoneAttestation, attObj);
if (NS_FAILED(rv)) {
return U2FRegisterPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
}
nsTArray<WebAuthnExtensionResult> extensions;
WebAuthnMakeCredentialResult result(aInfo.ClientDataJSON(), attObj,
keyHandleBuf, registrationBuf,
extensions);
return U2FRegisterPromise::CreateAndResolve(std::move(result), __func__);
}
bool U2FSoftTokenManager::FindRegisteredKeyHandle(
const nsTArray<nsTArray<uint8_t>>& aAppIds,
const nsTArray<WebAuthnScopedCredential>& aCredentials,
/*out*/ nsTArray<uint8_t>& aKeyHandle,
/*out*/ nsTArray<uint8_t>& aAppId) {
for (const nsTArray<uint8_t>& app_id : aAppIds) {
for (const WebAuthnScopedCredential& cred : aCredentials) {
bool isRegistered = false;
nsresult rv = IsRegistered(cred.id(), app_id, isRegistered);
if (NS_SUCCEEDED(rv) && isRegistered) {
aKeyHandle.Assign(cred.id());
aAppId.Assign(app_id);
return true;
}
}
}
return false;
}
// A U2F Sign operation creates a signature over the "param" arguments (plus
// some other stuff) using the private key indicated in the key handle argument.
//
// The format of the signed data is as follows:
//
// 32 Application parameter
// 1 User presence (0x01)
// 4 Counter
// 32 Challenge parameter
//
// The format of the signature data is as follows:
//
// 1 User presence
// 4 Counter
// * Signature
//
RefPtr<U2FSignPromise> U2FSoftTokenManager::Sign(
const WebAuthnGetAssertionInfo& aInfo,
void _ctap2_status_callback(rust_ctap2_status_update_res*)) {
if (!mInitialized) {
nsresult rv = Init();
if (NS_WARN_IF(NS_FAILED(rv))) {
return U2FSignPromise::CreateAndReject(rv, __func__);
}
}
CryptoBuffer rpIdHash, clientDataHash;
NS_ConvertUTF16toUTF8 rpId(aInfo.RpId());
nsresult rv = BuildTransactionHashes(rpId, aInfo.ClientDataJSON(), rpIdHash,
clientDataHash);
if (NS_WARN_IF(NS_FAILED(rv))) {
return U2FSignPromise::CreateAndReject(NS_ERROR_DOM_UNKNOWN_ERR, __func__);
}
nsTArray<nsTArray<uint8_t>> appIds;
appIds.AppendElement(std::move(rpIdHash));
Maybe<nsTArray<uint8_t>> appIdHashExt = Nothing();
if (aInfo.Extra().isSome()) {
const auto& extra = aInfo.Extra().ref();
UserVerificationRequirement userVerificaitonReq =
extra.userVerificationRequirement();
// The U2F softtoken doesn't support user verification.
if (userVerificaitonReq == UserVerificationRequirement::Required) {
return U2FSignPromise::CreateAndReject(NS_ERROR_DOM_NOT_ALLOWED_ERR,
__func__);
}
// Process extensions.
for (const WebAuthnExtension& ext : extra.Extensions()) {
if (ext.type() == WebAuthnExtension::TWebAuthnExtensionAppId) {
appIdHashExt = Some(ext.get_WebAuthnExtensionAppId().AppId().Clone());
appIds.AppendElement(appIdHashExt->Clone());
}
}
}
nsTArray<uint8_t> chosenAppId;
nsTArray<uint8_t> keyHandle;
// Fail if we can't find a valid key handle.
if (!FindRegisteredKeyHandle(appIds, aInfo.AllowList(), keyHandle,
chosenAppId)) {
return U2FSignPromise::CreateAndReject(NS_ERROR_DOM_INVALID_STATE_ERR,
__func__);
}
MOZ_ASSERT(mWrappingKey);
UniquePK11SlotInfo slot(PK11_GetInternalSlot());
MOZ_ASSERT(slot.get());
if (NS_WARN_IF((clientDataHash.Length() != kParamLen) ||
(chosenAppId.Length() != kParamLen))) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
("Parameter lengths are wrong! challenge=%d app=%d expected=%d",
(uint32_t)clientDataHash.Length(), (uint32_t)chosenAppId.Length(),
kParamLen));
return U2FSignPromise::CreateAndReject(NS_ERROR_ILLEGAL_VALUE, __func__);
}
// Decode the key handle
UniqueSECKEYPrivateKey privKey = PrivateKeyFromKeyHandle(
slot, mWrappingKey, const_cast<uint8_t*>(keyHandle.Elements()),
keyHandle.Length(), const_cast<uint8_t*>(chosenAppId.Elements()),
chosenAppId.Length());
if (NS_WARN_IF(!privKey.get())) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning, ("Couldn't get the priv key!"));
return U2FSignPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
}
// Increment the counter and turn it into a SECItem
mCounter += 1;
ScopedAutoSECItem counterItem(4);
counterItem.data[0] = (mCounter >> 24) & 0xFF;
counterItem.data[1] = (mCounter >> 16) & 0xFF;
counterItem.data[2] = (mCounter >> 8) & 0xFF;
counterItem.data[3] = (mCounter >> 0) & 0xFF;
uint32_t counter = mCounter;
GetMainThreadEventTarget()->Dispatch(
NS_NewRunnableFunction("dom::U2FSoftTokenManager::Sign", [counter]() {
MOZ_ASSERT(NS_IsMainThread());
Preferences::SetUint(PREF_U2F_NSSTOKEN_COUNTER, counter);
}));
// Compute the signature
mozilla::dom::CryptoBuffer signedDataBuf;
if (NS_WARN_IF(!signedDataBuf.SetCapacity(1 + 4 + (2 * kParamLen),
mozilla::fallible))) {
return U2FSignPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY, __func__);
}
// It's OK to ignore the return values here because we're writing into
// pre-allocated space
(void)signedDataBuf.AppendElements(chosenAppId.Elements(),
chosenAppId.Length(), mozilla::fallible);
(void)signedDataBuf.AppendElement(0x01, mozilla::fallible);
signedDataBuf.AppendSECItem(counterItem);
(void)signedDataBuf.AppendElements(
clientDataHash.Elements(), clientDataHash.Length(), mozilla::fallible);
if (MOZ_LOG_TEST(gNSSTokenLog, LogLevel::Debug)) {
nsAutoCString base64;
nsresult rv =
Base64URLEncode(signedDataBuf.Length(), signedDataBuf.Elements(),
Base64URLEncodePaddingPolicy::Omit, base64);
if (NS_WARN_IF(NS_FAILED(rv))) {
return U2FSignPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
}
MOZ_LOG(gNSSTokenLog, LogLevel::Debug,
("U2F Token signing bytes (base64): %s", base64.get()));
}
ScopedAutoSECItem signatureItem;
SECStatus srv = SEC_SignData(&signatureItem, signedDataBuf.Elements(),
signedDataBuf.Length(), privKey.get(),
SEC_OID_ANSIX962_ECDSA_SHA256_SIGNATURE);
if (NS_WARN_IF(srv != SECSuccess)) {
MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
("Signature failure: %d", PORT_GetError()));
return U2FSignPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
}
// Assemble the signature data into a buffer for return
mozilla::dom::CryptoBuffer signatureDataBuf;
if (NS_WARN_IF(!signatureDataBuf.SetCapacity(
1 + counterItem.len + signatureItem.len, mozilla::fallible))) {
return U2FSignPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY, __func__);
}
// It's OK to ignore the return values here because we're writing into
// pre-allocated space
(void)signatureDataBuf.AppendElement(0x01, mozilla::fallible);
signatureDataBuf.AppendSECItem(counterItem);
signatureDataBuf.AppendSECItem(signatureItem);
nsTArray<WebAuthnExtensionResult> extensions;
if (appIdHashExt) {
bool usedAppId = (chosenAppId == appIdHashExt.ref());
extensions.AppendElement(WebAuthnExtensionResultAppId(usedAppId));
}
CryptoBuffer counterBuf;
if (!counterBuf.AppendSECItem(counterItem)) {
return U2FSignPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY, __func__);
}
CryptoBuffer signatureBuf;
if (!signatureBuf.AppendSECItem(signatureItem)) {
return U2FSignPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY, __func__);
}
CryptoBuffer chosenAppIdBuf;
if (!chosenAppIdBuf.Assign(chosenAppId)) {
return U2FSignPromise::CreateAndReject(NS_ERROR_OUT_OF_MEMORY, __func__);
}
CryptoBuffer authenticatorData;
CryptoBuffer emptyAttestationData;
rv = AssembleAuthenticatorData(chosenAppIdBuf, 0x01, counterBuf,
emptyAttestationData, authenticatorData);
if (NS_WARN_IF(NS_FAILED(rv))) {
return U2FSignPromise::CreateAndReject(NS_ERROR_FAILURE, __func__);
}
nsTArray<uint8_t> userHandle;
WebAuthnGetAssertionResult result(aInfo.ClientDataJSON(), keyHandle,
signatureBuf, authenticatorData, extensions,
signatureDataBuf, userHandle);
nsTArray<WebAuthnGetAssertionResultWrapper> results = {
{result, mozilla::Nothing()}};
return U2FSignPromise::CreateAndResolve(std::move(results), __func__);
}
void U2FSoftTokenManager::Cancel() {
// This implementation is sync, requests can't be aborted.
}
} // namespace mozilla::dom
|