1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
//
// Copyright 2018 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// BlobCache: Stores keyed blobs in memory to support EGL_ANDROID_blob_cache.
// Can be used in conjunction with the platform layer to warm up the cache from
// disk. MemoryProgramCache uses this to handle caching of compiled programs.
#include "libANGLE/BlobCache.h"
#include "common/utilities.h"
#include "libANGLE/Context.h"
#include "libANGLE/Display.h"
#include "libANGLE/histogram_macros.h"
#include "platform/PlatformMethods.h"
#define USE_SYSTEM_ZLIB
#include "compression_utils_portable.h"
namespace egl
{
namespace
{
enum CacheResult
{
kCacheMiss,
kCacheHitMemory,
kCacheHitDisk,
kCacheResultMax,
};
} // anonymous namespace
// In oder to store more cache in blob cache, compress cacheData to compressedData
// before being stored.
bool CompressBlobCacheData(const size_t cacheSize,
const uint8_t *cacheData,
angle::MemoryBuffer *compressedData)
{
uLong uncompressedSize = static_cast<uLong>(cacheSize);
uLong expectedCompressedSize = zlib_internal::GzipExpectedCompressedSize(uncompressedSize);
// Allocate memory.
if (!compressedData->resize(expectedCompressedSize))
{
ERR() << "Failed to allocate memory for compression";
return false;
}
int zResult = zlib_internal::GzipCompressHelper(compressedData->data(), &expectedCompressedSize,
cacheData, uncompressedSize, nullptr, nullptr);
if (zResult != Z_OK)
{
ERR() << "Failed to compress cache data: " << zResult;
return false;
}
// Resize it to expected size.
if (!compressedData->resize(expectedCompressedSize))
{
return false;
}
return true;
}
bool DecompressBlobCacheData(const uint8_t *compressedData,
const size_t compressedSize,
angle::MemoryBuffer *uncompressedData)
{
// Call zlib function to decompress.
uint32_t uncompressedSize =
zlib_internal::GetGzipUncompressedSize(compressedData, compressedSize);
// Allocate enough memory.
if (!uncompressedData->resize(uncompressedSize))
{
ERR() << "Failed to allocate memory for decompression";
return false;
}
uLong destLen = uncompressedSize;
int zResult = zlib_internal::GzipUncompressHelper(
uncompressedData->data(), &destLen, compressedData, static_cast<uLong>(compressedSize));
if (zResult != Z_OK)
{
ERR() << "Failed to decompress data: " << zResult << "\n";
return false;
}
// Resize it to expected size.
if (!uncompressedData->resize(destLen))
{
return false;
}
return true;
}
BlobCache::BlobCache(size_t maxCacheSizeBytes)
: mBlobCache(maxCacheSizeBytes), mSetBlobFunc(nullptr), mGetBlobFunc(nullptr)
{}
BlobCache::~BlobCache() {}
void BlobCache::put(const BlobCache::Key &key, angle::MemoryBuffer &&value)
{
if (areBlobCacheFuncsSet())
{
// Store the result in the application's cache
mSetBlobFunc(key.data(), key.size(), value.data(), value.size());
}
else
{
populate(key, std::move(value), CacheSource::Memory);
}
}
void BlobCache::putApplication(const BlobCache::Key &key, const angle::MemoryBuffer &value)
{
std::lock_guard<std::mutex> lock(mBlobCacheMutex);
if (areBlobCacheFuncsSet())
{
mSetBlobFunc(key.data(), key.size(), value.data(), value.size());
}
}
void BlobCache::populate(const BlobCache::Key &key, angle::MemoryBuffer &&value, CacheSource source)
{
CacheEntry newEntry;
newEntry.first = std::move(value);
newEntry.second = source;
// Cache it inside blob cache only if caching inside the application is not possible.
mBlobCache.put(key, std::move(newEntry), newEntry.first.size());
}
bool BlobCache::get(angle::ScratchBuffer *scratchBuffer,
const BlobCache::Key &key,
BlobCache::Value *valueOut,
size_t *bufferSizeOut)
{
// Look into the application's cache, if there is such a cache
if (areBlobCacheFuncsSet())
{
EGLsizeiANDROID valueSize = mGetBlobFunc(key.data(), key.size(), nullptr, 0);
if (valueSize <= 0)
{
return false;
}
angle::MemoryBuffer *scratchMemory;
bool result = scratchBuffer->get(valueSize, &scratchMemory);
if (!result)
{
ERR() << "Failed to allocate memory for binary blob";
return false;
}
EGLsizeiANDROID originalValueSize = valueSize;
valueSize = mGetBlobFunc(key.data(), key.size(), scratchMemory->data(), valueSize);
// Make sure the key/value pair still exists/is unchanged after the second call
// (modifications to the application cache by another thread are a possibility)
if (valueSize != originalValueSize)
{
// This warning serves to find issues with the application cache, none of which are
// currently known to be thread-safe. If such a use ever arises, this WARN can be
// removed.
WARN() << "Binary blob no longer available in cache (removed by a thread?)";
return false;
}
*valueOut = BlobCache::Value(scratchMemory->data(), scratchMemory->size());
*bufferSizeOut = valueSize;
return true;
}
// Otherwise we are doing caching internally, so try to find it there
const CacheEntry *entry;
bool result = mBlobCache.get(key, &entry);
if (result)
{
if (entry->second == CacheSource::Memory)
{
ANGLE_HISTOGRAM_ENUMERATION("GPU.ANGLE.ProgramCache.CacheResult", kCacheHitMemory,
kCacheResultMax);
}
else
{
ANGLE_HISTOGRAM_ENUMERATION("GPU.ANGLE.ProgramCache.CacheResult", kCacheHitDisk,
kCacheResultMax);
}
*valueOut = BlobCache::Value(entry->first.data(), entry->first.size());
*bufferSizeOut = entry->first.size();
}
else
{
ANGLE_HISTOGRAM_ENUMERATION("GPU.ANGLE.ProgramCache.CacheResult", kCacheMiss,
kCacheResultMax);
}
return result;
}
bool BlobCache::getAt(size_t index, const BlobCache::Key **keyOut, BlobCache::Value *valueOut)
{
const CacheEntry *valueBuf;
bool result = mBlobCache.getAt(index, keyOut, &valueBuf);
if (result)
{
*valueOut = BlobCache::Value(valueBuf->first.data(), valueBuf->first.size());
}
return result;
}
void BlobCache::remove(const BlobCache::Key &key)
{
mBlobCache.eraseByKey(key);
}
void BlobCache::setBlobCacheFuncs(EGLSetBlobFuncANDROID set, EGLGetBlobFuncANDROID get)
{
mSetBlobFunc = set;
mGetBlobFunc = get;
}
bool BlobCache::areBlobCacheFuncsSet() const
{
// Either none or both of the callbacks should be set.
ASSERT((mSetBlobFunc != nullptr) == (mGetBlobFunc != nullptr));
return mSetBlobFunc != nullptr && mGetBlobFunc != nullptr;
}
} // namespace egl
|