1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// The SWGL depth buffer is roughly organized as a span buffer where each row
// of the depth buffer is a list of spans, and each span has a constant depth
// and a run length (represented by DepthRun). The span from start..start+count
// is placed directly at that start index in the row's array of runs, so that
// there is no need to explicitly record the start index at all. This also
// avoids the need to move items around in the run array to manage insertions
// since space is implicitly always available for a run between any two
// pre-existing runs. Linkage from one run to the next is implicitly defined by
// the count, so if a run exists from start..start+count, the next run will
// implicitly pick up right at index start+count where that preceding run left
// off. All of the DepthRun items that are after the head of the run can remain
// uninitialized until the run needs to be split and a new run needs to start
// somewhere in between.
// For uses like perspective-correct rasterization or with a discard mask, a
// run is not an efficient representation, and it is more beneficial to have
// a flattened array of individual depth samples that can be masked off easily.
// To support this case, the first run in a given row's run array may have a
// zero count, signaling that this entire row is flattened. Critically, the
// depth and count fields in DepthRun are ordered (endian-dependently) so that
// the DepthRun struct can be interpreted as a sign-extended int32_t depth. It
// is then possible to just treat the entire row as an array of int32_t depth
// samples that can be processed with SIMD comparisons, since the count field
// behaves as just the sign-extension of the depth field. The count field is
// limited to 8 bits so that we can support depth values up to 24 bits.
// When a depth buffer is cleared, each row is initialized to a maximal runs
// spanning the entire row. In the normal case, the depth buffer will continue
// to manage itself as a list of runs. If perspective or discard is used for
// a given row, the row will be converted to the flattened representation to
// support it, after which it will only ever revert back to runs if the depth
// buffer is cleared.
// The largest 24-bit depth value supported.
constexpr uint32_t MAX_DEPTH_VALUE = 0xFFFFFF;
// The longest 8-bit depth run that is supported, aligned to SIMD chunk size.
constexpr uint32_t MAX_DEPTH_RUN = 255 & ~3;
struct DepthRun {
// Ensure that depth always occupies the LSB and count the MSB so that we
// can sign-extend depth just by setting count to zero, marking it flat.
// When count is non-zero, then this is interpreted as an actual run and
// depth is read in isolation.
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
uint32_t depth : 24;
uint32_t count : 8;
#else
uint32_t count : 8;
uint32_t depth : 24;
#endif
DepthRun() = default;
DepthRun(uint32_t depth, uint8_t count) : depth(depth), count(count) {}
// If count is zero, this is actually a flat depth sample rather than a run.
bool is_flat() const { return !count; }
// Compare a source depth from rasterization with a stored depth value.
template <int FUNC>
ALWAYS_INLINE bool compare(uint32_t src) const {
switch (FUNC) {
case GL_LEQUAL:
return src <= depth;
case GL_LESS:
return src < depth;
case GL_ALWAYS:
return true;
default:
assert(false);
return false;
}
}
};
// Fills runs at the given position with the given depth up to the span width.
static ALWAYS_INLINE void set_depth_runs(DepthRun* runs, uint32_t depth,
uint32_t width) {
// If the width exceeds the maximum run size, then we need to output clamped
// runs first.
for (; width >= MAX_DEPTH_RUN;
runs += MAX_DEPTH_RUN, width -= MAX_DEPTH_RUN) {
*runs = DepthRun(depth, MAX_DEPTH_RUN);
}
// If there are still any left over samples to fill under the maximum run
// size, then output one last run for them.
if (width > 0) {
*runs = DepthRun(depth, width);
}
}
// A cursor for reading and modifying a row's depth run array. It locates
// and iterates through a desired span within all the runs, testing if
// the depth of this span passes or fails the depth test against existing
// runs. If desired, new runs may be inserted to represent depth occlusion
// from this span in the run array.
struct DepthCursor {
// Current position of run the cursor has advanced to.
DepthRun* cur = nullptr;
// The start of the remaining potential samples in the desired span.
DepthRun* start = nullptr;
// The end of the potential samples in the desired span.
DepthRun* end = nullptr;
DepthCursor() = default;
// Construct a cursor with runs for a given row's run array and the bounds
// of the span we wish to iterate within it.
DepthCursor(DepthRun* runs, int num_runs, int span_offset, int span_count)
: cur(runs), start(&runs[span_offset]), end(start + span_count) {
// This cursor should never iterate over flat runs
assert(!runs->is_flat());
DepthRun* end_runs = &runs[num_runs];
// Clamp end of span to end of row
if (end > end_runs) {
end = end_runs;
}
// If the span starts past the end of the row, just advance immediately
// to it to signal that we're done.
if (start >= end_runs) {
cur = end_runs;
start = end_runs;
return;
}
// Otherwise, find the first depth run that contains the start of the span.
// If the span starts after the given run, then we need to keep searching
// through the row to find an appropriate run. The check above already
// guaranteed that the span starts within the row's runs, and the search
// won't fall off the end.
for (;;) {
assert(cur < end);
DepthRun* next = cur + cur->count;
if (start < next) {
break;
}
cur = next;
}
}
// The cursor is valid if the current position is at the end or if the run
// contains the start position.
bool valid() const {
return cur >= end || (cur <= start && start < cur + cur->count);
}
// Skip past any initial runs that fail the depth test. If we find a run that
// would pass, then return the accumulated length between where we started
// and that position. Otherwise, if we fall off the end, return -1 to signal
// that there are no more passed runs at the end of this failed region and
// so it is safe for the caller to stop processing any more regions in this
// row.
template <int FUNC>
int skip_failed(uint32_t val) {
assert(valid());
DepthRun* prev = start;
while (cur < end) {
if (cur->compare<FUNC>(val)) {
return start - prev;
}
cur += cur->count;
start = cur;
}
return -1;
}
// Helper to convert function parameters into template parameters to hoist
// some checks out of inner loops.
ALWAYS_INLINE int skip_failed(uint32_t val, GLenum func) {
switch (func) {
case GL_LEQUAL:
return skip_failed<GL_LEQUAL>(val);
case GL_LESS:
return skip_failed<GL_LESS>(val);
default:
assert(false);
return -1;
}
}
// Find a region of runs that passes the depth test. It is assumed the caller
// has called skip_failed first to skip past any runs that failed the depth
// test. This stops when it finds a run that fails the depth test or we fall
// off the end of the row. If the write mask is enabled, this will insert runs
// to represent this new region that passed the depth test. The length of the
// region is returned.
template <int FUNC, bool MASK>
int check_passed(uint32_t val) {
assert(valid());
DepthRun* prev = cur;
while (cur < end) {
if (!cur->compare<FUNC>(val)) {
break;
}
DepthRun* next = cur + cur->count;
if (next > end) {
if (MASK) {
// Chop the current run where the end of the span falls, making a new
// run from the end of the span till the next run. The beginning of
// the current run will be folded into the run from the start of the
// passed region before returning below.
*end = DepthRun(cur->depth, next - end);
}
// If the next run starts past the end, then just advance the current
// run to the end to signal that we're now at the end of the row.
next = end;
}
cur = next;
}
// If we haven't advanced past the start of the span region, then we found
// nothing that passed.
if (cur <= start) {
return 0;
}
// If 'end' fell within the middle of a passing run, then 'cur' will end up
// pointing at the new partial run created at 'end' where the passing run
// was split to accommodate starting in the middle. The preceding runs will
// be fixed below to properly join with this new split.
int passed = cur - start;
if (MASK) {
// If the search started from a run before the start of the span, then
// edit that run to meet up with the start.
if (prev < start) {
prev->count = start - prev;
}
// Create a new run for the entirety of the passed samples.
set_depth_runs(start, val, passed);
}
start = cur;
return passed;
}
// Helper to convert function parameters into template parameters to hoist
// some checks out of inner loops.
template <bool MASK>
ALWAYS_INLINE int check_passed(uint32_t val, GLenum func) {
switch (func) {
case GL_LEQUAL:
return check_passed<GL_LEQUAL, MASK>(val);
case GL_LESS:
return check_passed<GL_LESS, MASK>(val);
default:
assert(false);
return 0;
}
}
ALWAYS_INLINE int check_passed(uint32_t val, GLenum func, bool mask) {
return mask ? check_passed<true>(val, func)
: check_passed<false>(val, func);
}
// Fill a region of runs with a given depth value, bypassing any depth test.
ALWAYS_INLINE void fill(uint32_t depth) {
check_passed<GL_ALWAYS, true>(depth);
}
};
// Initialize a depth texture by setting the first run in each row to encompass
// the entire row.
void Texture::init_depth_runs(uint32_t depth) {
if (!buf) return;
DepthRun* runs = (DepthRun*)buf;
for (int y = 0; y < height; y++) {
set_depth_runs(runs, depth, width);
runs += stride() / sizeof(DepthRun);
}
set_cleared(true);
}
// Fill a portion of the run array with flattened depth samples.
static ALWAYS_INLINE void fill_flat_depth(DepthRun* dst, size_t n,
uint32_t depth) {
fill_n((uint32_t*)dst, n, depth);
}
// Fills a scissored region of a depth texture with a given depth.
void Texture::fill_depth_runs(uint32_t depth, const IntRect& scissor) {
if (!buf) return;
assert(cleared());
IntRect bb = bounds().intersection(scissor - offset);
DepthRun* runs = (DepthRun*)sample_ptr(0, bb.y0);
for (int rows = bb.height(); rows > 0; rows--) {
if (bb.width() >= width) {
// If the scissor region encompasses the entire row, reset the row to a
// single run encompassing the entire row.
set_depth_runs(runs, depth, width);
} else if (runs->is_flat()) {
// If the row is flattened, just directly fill the portion of the row.
fill_flat_depth(&runs[bb.x0], bb.width(), depth);
} else {
// Otherwise, if we are still using runs, then set up a cursor to fill
// it with depth runs.
DepthCursor(runs, width, bb.x0, bb.width()).fill(depth);
}
runs += stride() / sizeof(DepthRun);
}
}
using ZMask = I32;
#if USE_SSE2
# define ZMASK_NONE_PASSED 0xFFFF
# define ZMASK_ALL_PASSED 0
static inline uint32_t zmask_code(ZMask mask) {
return _mm_movemask_epi8(mask);
}
#else
# define ZMASK_NONE_PASSED 0xFFFFFFFFU
# define ZMASK_ALL_PASSED 0
static inline uint32_t zmask_code(ZMask mask) {
return bit_cast<uint32_t>(CONVERT(mask, U8));
}
#endif
// Interprets items in the depth buffer as sign-extended 32-bit depth values
// instead of as runs. Returns a mask that signals which samples in the given
// chunk passed or failed the depth test with given Z value.
template <bool DISCARD>
static ALWAYS_INLINE bool check_depth(I32 src, DepthRun* zbuf, ZMask& outmask,
int span = 4) {
// SSE2 does not support unsigned comparison. So ensure Z value is
// sign-extended to int32_t.
I32 dest = unaligned_load<I32>(zbuf);
// Invert the depth test to check which pixels failed and should be discarded.
ZMask mask = ctx->depthfunc == GL_LEQUAL
?
// GL_LEQUAL: Not(LessEqual) = Greater
ZMask(src > dest)
:
// GL_LESS: Not(Less) = GreaterEqual
ZMask(src >= dest);
// Mask off any unused lanes in the span.
mask |= ZMask(span) < ZMask{1, 2, 3, 4};
if (zmask_code(mask) == ZMASK_NONE_PASSED) {
return false;
}
if (!DISCARD && ctx->depthmask) {
unaligned_store(zbuf, (mask & dest) | (~mask & src));
}
outmask = mask;
return true;
}
static ALWAYS_INLINE I32 packDepth() {
return cast(fragment_shader->gl_FragCoord.z * MAX_DEPTH_VALUE);
}
static ALWAYS_INLINE void discard_depth(I32 src, DepthRun* zbuf, I32 mask) {
if (ctx->depthmask) {
I32 dest = unaligned_load<I32>(zbuf);
mask |= fragment_shader->swgl_IsPixelDiscarded;
unaligned_store(zbuf, (mask & dest) | (~mask & src));
}
}
static ALWAYS_INLINE void mask_output(uint32_t* buf, ZMask zmask,
int span = 4) {
WideRGBA8 r = pack_pixels_RGBA8();
PackedRGBA8 dst = load_span<PackedRGBA8>(buf, span);
if (blend_key) r = blend_pixels(buf, dst, r, span);
PackedRGBA8 mask = bit_cast<PackedRGBA8>(zmask);
store_span(buf, (mask & dst) | (~mask & pack(r)), span);
}
template <bool DISCARD>
static ALWAYS_INLINE void discard_output(uint32_t* buf, int span = 4) {
mask_output(buf, fragment_shader->swgl_IsPixelDiscarded, span);
}
template <>
ALWAYS_INLINE void discard_output<false>(uint32_t* buf, int span) {
WideRGBA8 r = pack_pixels_RGBA8();
if (blend_key)
r = blend_pixels(buf, load_span<PackedRGBA8>(buf, span), r, span);
store_span(buf, pack(r), span);
}
static ALWAYS_INLINE void mask_output(uint8_t* buf, ZMask zmask, int span = 4) {
WideR8 r = pack_pixels_R8();
WideR8 dst = unpack(load_span<PackedR8>(buf, span));
if (blend_key) r = blend_pixels(buf, dst, r, span);
WideR8 mask = packR8(zmask);
store_span(buf, pack((mask & dst) | (~mask & r)), span);
}
template <bool DISCARD>
static ALWAYS_INLINE void discard_output(uint8_t* buf, int span = 4) {
mask_output(buf, fragment_shader->swgl_IsPixelDiscarded, span);
}
template <>
ALWAYS_INLINE void discard_output<false>(uint8_t* buf, int span) {
WideR8 r = pack_pixels_R8();
if (blend_key)
r = blend_pixels(buf, unpack(load_span<PackedR8>(buf, span)), r, span);
store_span(buf, pack(r), span);
}
struct ClipRect {
float x0;
float y0;
float x1;
float y1;
explicit ClipRect(const IntRect& i)
: x0(i.x0), y0(i.y0), x1(i.x1), y1(i.y1) {}
explicit ClipRect(const Texture& t) : ClipRect(ctx->apply_scissor(t)) {
// If blending is enabled, set blend_key to reflect the resolved blend
// state for the currently drawn primitive.
if (ctx->blend) {
blend_key = ctx->blend_key;
if (swgl_ClipFlags) {
// If there is a blend override set, replace the blend key with it.
if (swgl_ClipFlags & SWGL_CLIP_FLAG_BLEND_OVERRIDE) {
blend_key = swgl_BlendOverride;
}
// If a clip mask is available, set up blending state to use the clip
// mask.
if (swgl_ClipFlags & SWGL_CLIP_FLAG_MASK) {
assert(swgl_ClipMask->format == TextureFormat::R8);
// Constrain the clip mask bounds to always fall within the clip mask.
swgl_ClipMaskBounds.intersect(IntRect{0, 0, int(swgl_ClipMask->width),
int(swgl_ClipMask->height)});
// The clip mask offset is relative to the viewport.
swgl_ClipMaskOffset += ctx->viewport.origin() - t.offset;
// The clip mask bounds are relative to the clip mask offset.
swgl_ClipMaskBounds.offset(swgl_ClipMaskOffset);
// Finally, constrain the clip rectangle by the clip mask bounds.
intersect(swgl_ClipMaskBounds);
// Modify the blend key so that it will use the clip mask while
// blending.
restore_clip_mask();
}
if (swgl_ClipFlags & SWGL_CLIP_FLAG_AA) {
// Modify the blend key so that it will use AA while blending.
restore_aa();
}
}
} else {
blend_key = BLEND_KEY_NONE;
swgl_ClipFlags = 0;
}
}
FloatRange x_range() const { return {x0, x1}; }
void intersect(const IntRect& c) {
x0 = max(x0, float(c.x0));
y0 = max(y0, float(c.y0));
x1 = min(x1, float(c.x1));
y1 = min(y1, float(c.y1));
}
template <typename P>
void set_clip_mask(int x, int y, P* buf) const {
if (swgl_ClipFlags & SWGL_CLIP_FLAG_MASK) {
swgl_SpanBuf = buf;
swgl_ClipMaskBuf = (uint8_t*)swgl_ClipMask->buf +
(y - swgl_ClipMaskOffset.y) * swgl_ClipMask->stride +
(x - swgl_ClipMaskOffset.x);
}
}
template <typename P>
bool overlaps(int nump, const P* p) const {
// Generate a mask of which side of the clip rect all of a polygon's points
// fall inside of. This is a cheap conservative estimate of whether the
// bounding box of the polygon might overlap the clip rect, rather than an
// exact test that would require multiple slower line intersections.
int sides = 0;
for (int i = 0; i < nump; i++) {
sides |= p[i].x < x1 ? (p[i].x > x0 ? 1 | 2 : 1) : 2;
sides |= p[i].y < y1 ? (p[i].y > y0 ? 4 | 8 : 4) : 8;
}
return sides == 0xF;
}
};
// Given a current X position at the center Y position of a row, return the X
// position of the left and right intercepts of the row top and bottom.
template <typename E>
static ALWAYS_INLINE FloatRange x_intercepts(const E& e) {
float rad = 0.5f * abs(e.x_slope());
return {e.cur_x() - rad, e.cur_x() + rad};
}
// Return the AA sub-span corresponding to a given edge. If AA is requested,
// then this finds the X intercepts with the row clipped into range of the
// edge and finally conservatively rounds them out. If there is no AA, then
// it just returns the current rounded X position clipped within bounds.
template <typename E>
static ALWAYS_INLINE IntRange aa_edge(const E& e, const FloatRange& bounds) {
return e.edgeMask ? bounds.clip(x_intercepts(e)).round_out()
: bounds.clip({e.cur_x(), e.cur_x()}).round();
}
// Calculate the initial AA coverage as an approximation of the distance from
// the center of the pixel in the direction of the edge slope. Given an edge
// (x,y)..(x+dx,y+dy), then the normalized tangent vector along the edge is
// (dx,dy)/sqrt(dx^2+dy^2). We know that for dy=1 then dx=e.x_slope. We rotate
// the tangent vector either -90 or +90 degrees to get the edge normal vector,
// where 'dx=-dy and 'dy=dx. Once normalized by 1/sqrt(dx^2+dy^2), scale into
// the range of 0..256 so that we can cheaply convert to a fixed-point scale
// factor. It is assumed that at exactly the pixel center the opacity is half
// (128) and linearly decreases along the normal vector at 1:1 scale with the
// slope. While not entirely accurate, this gives a reasonably agreeable looking
// approximation of AA. For edges on which there is no AA, just force the
// opacity to maximum (256) with no slope, relying on the span clipping to trim
// pixels outside the span.
template <typename E>
static ALWAYS_INLINE FloatRange aa_dist(const E& e, float dir) {
if (e.edgeMask) {
float dx = (dir * 256.0f) * inversesqrt(1.0f + e.x_slope() * e.x_slope());
return {128.0f + dx * (e.cur_x() - 0.5f), -dx};
} else {
return {256.0f, 0.0f};
}
}
template <typename P, typename E>
static ALWAYS_INLINE IntRange aa_span(P* buf, const E& left, const E& right,
const FloatRange& bounds) {
// If there is no AA, just return the span from the rounded left edge X
// position to the rounded right edge X position. Clip the span to be within
// the valid bounds.
if (!(swgl_ClipFlags & SWGL_CLIP_FLAG_AA)) {
return bounds.clip({left.cur_x(), right.cur_x()}).round();
}
// Calculate the left and right AA spans along with the coverage distances
// and slopes necessary to do blending.
IntRange leftAA = aa_edge(left, bounds);
FloatRange leftDist = aa_dist(left, -1.0f);
IntRange rightAA = aa_edge(right, bounds);
FloatRange rightDist = aa_dist(right, 1.0f);
// Use the pointer into the destination buffer as a status indicator of the
// coverage offset. The pointer is calculated so that subtracting it with
// the current destination pointer will yield a negative value if the span
// is outside the opaque area and otherwise will yield a positive value
// above the opaque size. This pointer is stored as a uint8 pointer so that
// there are no hidden multiplication instructions and will just return a
// 1:1 linear memory address. Thus the size of the opaque region must also
// be scaled by the pixel size in bytes.
swgl_OpaqueStart = (const uint8_t*)(buf + leftAA.end);
swgl_OpaqueSize = max(rightAA.start - leftAA.end - 3, 0) * sizeof(P);
// Offset the coverage distances by the end of the left AA span, which
// corresponds to the opaque start pointer, so that pixels become opaque
// immediately after. The distances are also offset for each lane in the
// chunk.
Float offset = cast(leftAA.end + (I32){0, 1, 2, 3});
swgl_LeftAADist = leftDist.start + offset * leftDist.end;
swgl_RightAADist = rightDist.start + offset * rightDist.end;
swgl_AASlope =
(Float){leftDist.end, rightDist.end, 0.0f, 0.0f} / float(sizeof(P));
// Return the full span width from the start of the left span to the end of
// the right span.
return {leftAA.start, rightAA.end};
}
// Calculate the span the user clip distances occupy from the left and right
// edges at the current row.
template <typename E>
static ALWAYS_INLINE IntRange clip_distance_range(const E& left,
const E& right) {
Float leftClip = get_clip_distances(left.interp);
Float rightClip = get_clip_distances(right.interp);
// Get the change in clip dist per X step.
Float clipStep = (rightClip - leftClip) / (right.cur_x() - left.cur_x());
// Find the zero intercepts starting from the left edge.
Float clipDist =
clamp(left.cur_x() - leftClip * recip(clipStep), 0.0f, 1.0e6f);
// Find the distance to the start of the span for any clip distances that
// are increasing in value. If the clip distance is constant or decreasing
// in value, then check if it starts outside the clip volume.
Float start = if_then_else(clipStep > 0.0f, clipDist,
if_then_else(leftClip < 0.0f, 1.0e6f, 0.0f));
// Find the distance to the end of the span for any clip distances that are
// decreasing in value. If the clip distance is constant or increasing in
// value, then check if it ends inside the clip volume.
Float end = if_then_else(clipStep < 0.0f, clipDist,
if_then_else(rightClip >= 0.0f, 1.0e6f, 0.0f));
// Find the furthest start offset.
start = max(start, start.zwxy);
// Find the closest end offset.
end = min(end, end.zwxy);
// Finally, round the offsets to an integer span that can be used to bound
// the current span.
return FloatRange{max(start.x, start.y), min(end.x, end.y)}.round();
}
// Converts a run array into a flattened array of depth samples. This just
// walks through every run and fills the samples with the depth value from
// the run.
static void flatten_depth_runs(DepthRun* runs, size_t width) {
if (runs->is_flat()) {
return;
}
while (width > 0) {
size_t n = runs->count;
fill_flat_depth(runs, n, runs->depth);
runs += n;
width -= n;
}
}
// Helper function for drawing passed depth runs within the depth buffer.
// Flattened depth (perspective or discard) is not supported.
template <typename P>
static ALWAYS_INLINE void draw_depth_span(uint32_t z, P* buf,
DepthCursor& cursor) {
for (;;) {
// Get the span that passes the depth test. Assume on entry that
// any failed runs have already been skipped.
int span = cursor.check_passed(z, ctx->depthfunc, ctx->depthmask);
// If nothing passed, since we already skipped passed failed runs
// previously, we must have hit the end of the row. Bail out.
if (span <= 0) {
break;
}
if (span >= 4) {
// If we have a draw specialization, try to process as many 4-pixel
// chunks as possible using it.
if (fragment_shader->has_draw_span(buf)) {
int drawn = fragment_shader->draw_span(buf, span & ~3);
buf += drawn;
span -= drawn;
}
// Otherwise, just process each chunk individually.
while (span >= 4) {
fragment_shader->run();
discard_output<false>(buf);
buf += 4;
span -= 4;
}
}
// If we have a partial chunk left over, we still have to process it as if
// it were a full chunk. Mask off only the part of the chunk we want to
// use.
if (span > 0) {
fragment_shader->run();
discard_output<false>(buf, span);
buf += span;
}
// Skip past any runs that fail the depth test.
int skip = cursor.skip_failed(z, ctx->depthfunc);
// If there aren't any, that means we won't encounter any more passing runs
// and so it's safe to bail out.
if (skip <= 0) {
break;
}
// Advance interpolants for the fragment shader past the skipped region.
// If we processed a partial chunk above, we actually advanced the
// interpolants a full chunk in the fragment shader's run function. Thus,
// we need to first subtract off that 4-pixel chunk and only partially
// advance them to that partial chunk before we can add on the rest of the
// skips. This is combined with the skip here for efficiency's sake.
fragment_shader->skip(skip - (span > 0 ? 4 - span : 0));
buf += skip;
}
}
// Draw a simple span in 4-pixel wide chunks, optionally using depth.
template <bool DISCARD, bool W, typename P, typename Z>
static ALWAYS_INLINE void draw_span(P* buf, DepthRun* depth, int span, Z z) {
if (depth) {
// Depth testing is enabled. If perspective is used, Z values will vary
// across the span, we use packDepth to generate packed Z values suitable
// for depth testing based on current values from gl_FragCoord.z.
// Otherwise, for the no-perspective case, we just use the provided Z.
// Process 4-pixel chunks first.
for (; span >= 4; span -= 4, buf += 4, depth += 4) {
I32 zsrc = z();
ZMask zmask;
if (check_depth<DISCARD>(zsrc, depth, zmask)) {
fragment_shader->run<W>();
mask_output(buf, zmask);
if (DISCARD) discard_depth(zsrc, depth, zmask);
} else {
fragment_shader->skip<W>();
}
}
// If there are any remaining pixels, do a partial chunk.
if (span > 0) {
I32 zsrc = z();
ZMask zmask;
if (check_depth<DISCARD>(zsrc, depth, zmask, span)) {
fragment_shader->run<W>();
mask_output(buf, zmask, span);
if (DISCARD) discard_depth(zsrc, depth, zmask);
}
}
} else {
// Process 4-pixel chunks first.
for (; span >= 4; span -= 4, buf += 4) {
fragment_shader->run<W>();
discard_output<DISCARD>(buf);
}
// If there are any remaining pixels, do a partial chunk.
if (span > 0) {
fragment_shader->run<W>();
discard_output<DISCARD>(buf, span);
}
}
}
// Called during rasterization to forcefully clear a row on which delayed clear
// has been enabled. If we know that we are going to completely overwrite a part
// of the row, then we only need to clear the row outside of that part. However,
// if blending or discard is enabled, the values of that underlying part of the
// row may be used regardless to produce the final rasterization result, so we
// have to then clear the entire underlying row to prepare it.
template <typename P>
static inline void prepare_row(Texture& colortex, int y, int startx, int endx,
bool use_discard, DepthRun* depth,
uint32_t z = 0, DepthCursor* cursor = nullptr) {
assert(colortex.delay_clear > 0);
// Delayed clear is enabled for the color buffer. Check if needs clear.
uint32_t& mask = colortex.cleared_rows[y / 32];
if ((mask & (1 << (y & 31))) == 0) {
mask |= 1 << (y & 31);
colortex.delay_clear--;
if (blend_key || use_discard) {
// If depth test, blending, or discard is used, old color values
// might be sampled, so we need to clear the entire row to fill it.
force_clear_row<P>(colortex, y);
} else if (depth) {
if (depth->is_flat() || !cursor) {
// If flat depth is used, we can't cheaply predict if which samples will
// pass.
force_clear_row<P>(colortex, y);
} else {
// Otherwise if depth runs are used, see how many samples initially pass
// the depth test and only fill the row outside those. The fragment
// shader will fill the row within the passed samples.
int passed =
DepthCursor(*cursor).check_passed<false>(z, ctx->depthfunc);
if (startx > 0 || startx + passed < colortex.width) {
force_clear_row<P>(colortex, y, startx, startx + passed);
}
}
} else if (startx > 0 || endx < colortex.width) {
// Otherwise, we only need to clear the row outside of the span.
// The fragment shader will fill the row within the span itself.
force_clear_row<P>(colortex, y, startx, endx);
}
}
}
// Perpendicular dot-product is the dot-product of a vector with the
// perpendicular vector of the other, i.e. dot(a, {-b.y, b.x})
template <typename T>
static ALWAYS_INLINE auto perpDot(T a, T b) {
return a.x * b.y - a.y * b.x;
}
// Check if the winding of the initial edges is flipped, requiring us to swap
// the edges to avoid spans having negative lengths. Assume that l0.y == r0.y
// due to the initial edge scan in draw_quad/perspective_spans.
template <typename T>
static ALWAYS_INLINE bool checkIfEdgesFlipped(T l0, T l1, T r0, T r1) {
// If the starting point of the left edge is to the right of the starting
// point of the right edge, then just assume the edges are flipped. If the
// left and right starting points are the same, then check the sign of the
// cross-product of the edges to see if the edges are flipped. Otherwise,
// if the left starting point is actually just to the left of the right
// starting point, then assume no edge flip.
return l0.x > r0.x || (l0.x == r0.x && perpDot(l1 - l0, r1 - r0) > 0.0f);
}
// Draw spans for each row of a given quad (or triangle) with a constant Z
// value. The quad is assumed convex. It is clipped to fall within the given
// clip rect. In short, this function rasterizes a quad by first finding a
// top most starting point and then from there tracing down the left and right
// sides of this quad until it hits the bottom, outputting a span between the
// current left and right positions at each row along the way. Points are
// assumed to be ordered in either CW or CCW to support this, but currently
// both orders (CW and CCW) are supported and equivalent.
template <typename P>
static inline void draw_quad_spans(int nump, Point2D p[4], uint32_t z,
Interpolants interp_outs[4],
Texture& colortex, Texture& depthtex,
const ClipRect& clipRect) {
// Only triangles and convex quads supported.
assert(nump == 3 || nump == 4);
Point2D l0, r0, l1, r1;
int l0i, r0i, l1i, r1i;
{
// Find the index of the top-most (smallest Y) point from which
// rasterization can start.
int top = nump > 3 && p[3].y < p[2].y
? (p[0].y < p[1].y ? (p[0].y < p[3].y ? 0 : 3)
: (p[1].y < p[3].y ? 1 : 3))
: (p[0].y < p[1].y ? (p[0].y < p[2].y ? 0 : 2)
: (p[1].y < p[2].y ? 1 : 2));
// Helper to find next index in the points array, walking forward.
#define NEXT_POINT(idx) \
({ \
int cur = (idx) + 1; \
cur < nump ? cur : 0; \
})
// Helper to find the previous index in the points array, walking backward.
#define PREV_POINT(idx) \
({ \
int cur = (idx)-1; \
cur >= 0 ? cur : nump - 1; \
})
// Start looking for "left"-side and "right"-side descending edges starting
// from the determined top point.
int next = NEXT_POINT(top);
int prev = PREV_POINT(top);
if (p[top].y == p[next].y) {
// If the next point is on the same row as the top, then advance one more
// time to the next point and use that as the "left" descending edge.
l0i = next;
l1i = NEXT_POINT(next);
// Assume top and prev form a descending "right" edge, as otherwise this
// will be a collapsed polygon and harmlessly bail out down below.
r0i = top;
r1i = prev;
} else if (p[top].y == p[prev].y) {
// If the prev point is on the same row as the top, then advance to the
// prev again and use that as the "right" descending edge.
// Assume top and next form a non-empty descending "left" edge.
l0i = top;
l1i = next;
r0i = prev;
r1i = PREV_POINT(prev);
} else {
// Both next and prev are on distinct rows from top, so both "left" and
// "right" edges are non-empty/descending.
l0i = r0i = top;
l1i = next;
r1i = prev;
}
// Load the points from the indices.
l0 = p[l0i]; // Start of left edge
r0 = p[r0i]; // End of left edge
l1 = p[l1i]; // Start of right edge
r1 = p[r1i]; // End of right edge
// debugf("l0: %d(%f,%f), r0: %d(%f,%f) -> l1: %d(%f,%f), r1:
// %d(%f,%f)\n", l0i, l0.x, l0.y, r0i, r0.x, r0.y, l1i, l1.x, l1.y, r1i,
// r1.x, r1.y);
}
struct Edge {
float yScale;
float xSlope;
float x;
Interpolants interpSlope;
Interpolants interp;
bool edgeMask;
Edge(float y, const Point2D& p0, const Point2D& p1, const Interpolants& i0,
const Interpolants& i1, int edgeIndex)
: // Inverse Y scale for slope calculations. Avoid divide on 0-length
// edge. Later checks below ensure that Y <= p1.y, or otherwise we
// don't use this edge. We just need to guard against Y == p1.y ==
// p0.y. In that case, Y - p0.y == 0 and will cancel out the slopes
// below, except if yScale is Inf for some reason (or worse, NaN),
// which 1/(p1.y-p0.y) might produce if we don't bound it.
yScale(1.0f / max(p1.y - p0.y, 1.0f / 256)),
// Calculate dX/dY slope
xSlope((p1.x - p0.x) * yScale),
// Initialize current X based on Y and slope
x(p0.x + (y - p0.y) * xSlope),
// Calculate change in interpolants per change in Y
interpSlope((i1 - i0) * yScale),
// Initialize current interpolants based on Y and slope
interp(i0 + (y - p0.y) * interpSlope),
// Extract the edge mask status for this edge
edgeMask((swgl_AAEdgeMask >> edgeIndex) & 1) {}
void nextRow() {
// step current X and interpolants to next row from slope
x += xSlope;
interp += interpSlope;
}
float cur_x() const { return x; }
float x_slope() const { return xSlope; }
};
// Vertex selection above should result in equal left and right start rows
assert(l0.y == r0.y);
// Find the start y, clip to within the clip rect, and round to row center.
// If AA is enabled, round out conservatively rather than round to nearest.
float aaRound = swgl_ClipFlags & SWGL_CLIP_FLAG_AA ? 0.0f : 0.5f;
float y = floor(max(l0.y, clipRect.y0) + aaRound) + 0.5f;
// Initialize left and right edges from end points and start Y
Edge left(y, l0, l1, interp_outs[l0i], interp_outs[l1i], l1i);
Edge right(y, r0, r1, interp_outs[r0i], interp_outs[r1i], r0i);
// WR does not use backface culling, so check if edges are flipped.
bool flipped = checkIfEdgesFlipped(l0, l1, r0, r1);
if (flipped) swap(left, right);
// Get pointer to color buffer and depth buffer at current Y
P* fbuf = (P*)colortex.sample_ptr(0, int(y));
DepthRun* fdepth = depthtex.buf != nullptr
? (DepthRun*)depthtex.sample_ptr(0, int(y))
: nullptr;
// Loop along advancing Ys, rasterizing spans at each row
float checkY = min(min(l1.y, r1.y), clipRect.y1);
// Ensure we don't rasterize out edge bounds
FloatRange clipSpan =
clipRect.x_range().clip(x_range(l0, l1).merge(x_range(r0, r1)));
for (;;) {
// Check if we maybe passed edge ends or outside clip rect...
if (y > checkY) {
// If we're outside the clip rect, we're done.
if (y > clipRect.y1) break;
// Helper to find the next non-duplicate vertex that doesn't loop back.
#define STEP_EDGE(y, e0i, e0, e1i, e1, STEP_POINT, end) \
do { \
/* Set new start of edge to be end of old edge */ \
e0i = e1i; \
e0 = e1; \
/* Set new end of edge to next point */ \
e1i = STEP_POINT(e1i); \
e1 = p[e1i]; \
/* If the edge crossed the end, we're done. */ \
if (e0i == end) return; \
/* Otherwise, it doesn't advance, so keep searching. */ \
} while (y > e1.y)
// Check if Y advanced past the end of the left edge
if (y > l1.y) {
// Step to next left edge past Y and reset edge interpolants.
STEP_EDGE(y, l0i, l0, l1i, l1, NEXT_POINT, r1i);
(flipped ? right : left) =
Edge(y, l0, l1, interp_outs[l0i], interp_outs[l1i], l1i);
}
// Check if Y advanced past the end of the right edge
if (y > r1.y) {
// Step to next right edge past Y and reset edge interpolants.
STEP_EDGE(y, r0i, r0, r1i, r1, PREV_POINT, l1i);
(flipped ? left : right) =
Edge(y, r0, r1, interp_outs[r0i], interp_outs[r1i], r0i);
}
// Reset the clip bounds for the new edges
clipSpan =
clipRect.x_range().clip(x_range(l0, l1).merge(x_range(r0, r1)));
// Reset check condition for next time around.
checkY = min(ceil(min(l1.y, r1.y) - aaRound), clipRect.y1);
}
// Calculate a potentially AA'd span and check if it is non-empty.
IntRange span = aa_span(fbuf, left, right, clipSpan);
if (span.len() > 0) {
// If user clip planes are enabled, use them to bound the current span.
if (vertex_shader->use_clip_distance()) {
span = span.intersect(clip_distance_range(left, right));
if (span.len() <= 0) goto next_span;
}
ctx->shaded_rows++;
ctx->shaded_pixels += span.len();
// Advance color/depth buffer pointers to the start of the span.
P* buf = fbuf + span.start;
// Check if we will need to use depth-buffer or discard on this span.
DepthRun* depth =
depthtex.buf != nullptr && depthtex.cleared() ? fdepth : nullptr;
DepthCursor cursor;
bool use_discard = fragment_shader->use_discard();
if (use_discard) {
if (depth) {
// If we're using discard, we may have to unpredictably drop out some
// samples. Flatten the depth run array here to allow this.
if (!depth->is_flat()) {
flatten_depth_runs(depth, depthtex.width);
}
// Advance to the depth sample at the start of the span.
depth += span.start;
}
} else if (depth) {
if (!depth->is_flat()) {
// We're not using discard and the depth row is still organized into
// runs. Skip past any runs that would fail the depth test so we
// don't have to do any extra work to process them with the rest of
// the span.
cursor = DepthCursor(depth, depthtex.width, span.start, span.len());
int skipped = cursor.skip_failed(z, ctx->depthfunc);
// If we fell off the row, that means we couldn't find any passing
// runs. We can just skip the entire span.
if (skipped < 0) {
goto next_span;
}
buf += skipped;
span.start += skipped;
} else {
// The row is already flattened, so just advance to the span start.
depth += span.start;
}
}
if (colortex.delay_clear) {
// Delayed clear is enabled for the color buffer. Check if needs clear.
prepare_row<P>(colortex, int(y), span.start, span.end, use_discard,
depth, z, &cursor);
}
// Initialize fragment shader interpolants to current span position.
fragment_shader->gl_FragCoord.x = init_interp(span.start + 0.5f, 1);
fragment_shader->gl_FragCoord.y = y;
{
// Change in interpolants is difference between current right and left
// edges per the change in right and left X. If the left and right X
// positions are extremely close together, then avoid stepping the
// interpolants.
float stepScale = 1.0f / (right.x - left.x);
if (!isfinite(stepScale)) stepScale = 0.0f;
Interpolants step = (right.interp - left.interp) * stepScale;
// Advance current interpolants to X at start of span.
Interpolants o = left.interp + step * (span.start + 0.5f - left.x);
fragment_shader->init_span(&o, &step);
}
clipRect.set_clip_mask(span.start, y, buf);
if (!use_discard) {
// Fast paths for the case where fragment discard is not used.
if (depth) {
// If depth is used, we want to process entire depth runs if depth is
// not flattened.
if (!depth->is_flat()) {
draw_depth_span(z, buf, cursor);
goto next_span;
}
// Otherwise, flattened depth must fall back to the slightly slower
// per-chunk depth test path in draw_span below.
} else {
// Check if the fragment shader has an optimized draw specialization.
if (span.len() >= 4 && fragment_shader->has_draw_span(buf)) {
// Draw specialization expects 4-pixel chunks.
int drawn = fragment_shader->draw_span(buf, span.len() & ~3);
buf += drawn;
span.start += drawn;
}
}
draw_span<false, false>(buf, depth, span.len(), [=] { return z; });
} else {
// If discard is used, then use slower fallbacks. This should be rare.
// Just needs to work, doesn't need to be too fast yet...
draw_span<true, false>(buf, depth, span.len(), [=] { return z; });
}
}
next_span:
// Advance Y and edge interpolants to next row.
y++;
left.nextRow();
right.nextRow();
// Advance buffers to next row.
fbuf += colortex.stride() / sizeof(P);
fdepth += depthtex.stride() / sizeof(DepthRun);
}
}
// Draw perspective-correct spans for a convex quad that has been clipped to
// the near and far Z planes, possibly producing a clipped convex polygon with
// more than 4 sides. This assumes the Z value will vary across the spans and
// requires interpolants to factor in W values. This tends to be slower than
// the simpler 2D draw_quad_spans above, especially since we can't optimize the
// depth test easily when Z values, and should be used only rarely if possible.
template <typename P>
static inline void draw_perspective_spans(int nump, Point3D* p,
Interpolants* interp_outs,
Texture& colortex, Texture& depthtex,
const ClipRect& clipRect) {
Point3D l0, r0, l1, r1;
int l0i, r0i, l1i, r1i;
{
// Find the index of the top-most point (smallest Y) from which
// rasterization can start.
int top = 0;
for (int i = 1; i < nump; i++) {
if (p[i].y < p[top].y) {
top = i;
}
}
// Find left-most top point, the start of the left descending edge.
// Advance forward in the points array, searching at most nump points
// in case the polygon is flat.
l0i = top;
for (int i = top + 1; i < nump && p[i].y == p[top].y; i++) {
l0i = i;
}
if (l0i == nump - 1) {
for (int i = 0; i <= top && p[i].y == p[top].y; i++) {
l0i = i;
}
}
// Find right-most top point, the start of the right descending edge.
// Advance backward in the points array, searching at most nump points.
r0i = top;
for (int i = top - 1; i >= 0 && p[i].y == p[top].y; i--) {
r0i = i;
}
if (r0i == 0) {
for (int i = nump - 1; i >= top && p[i].y == p[top].y; i--) {
r0i = i;
}
}
// End of left edge is next point after left edge start.
l1i = NEXT_POINT(l0i);
// End of right edge is prev point after right edge start.
r1i = PREV_POINT(r0i);
l0 = p[l0i]; // Start of left edge
r0 = p[r0i]; // End of left edge
l1 = p[l1i]; // Start of right edge
r1 = p[r1i]; // End of right edge
}
struct Edge {
float yScale;
// Current coordinates for edge. Where in the 2D case of draw_quad_spans,
// it is enough to just track the X coordinate as we advance along the rows,
// for the perspective case we also need to keep track of Z and W. For
// simplicity, we just use the full 3D point to track all these coordinates.
Point3D pSlope;
Point3D p;
Interpolants interpSlope;
Interpolants interp;
bool edgeMask;
Edge(float y, const Point3D& p0, const Point3D& p1, const Interpolants& i0,
const Interpolants& i1, int edgeIndex)
: // Inverse Y scale for slope calculations. Avoid divide on 0-length
// edge.
yScale(1.0f / max(p1.y - p0.y, 1.0f / 256)),
// Calculate dX/dY slope
pSlope((p1 - p0) * yScale),
// Initialize current coords based on Y and slope
p(p0 + (y - p0.y) * pSlope),
// Crucially, these interpolants must be scaled by the point's 1/w
// value, which allows linear interpolation in a perspective-correct
// manner. This will be canceled out inside the fragment shader later.
// Calculate change in interpolants per change in Y
interpSlope((i1 * p1.w - i0 * p0.w) * yScale),
// Initialize current interpolants based on Y and slope
interp(i0 * p0.w + (y - p0.y) * interpSlope),
// Extract the edge mask status for this edge
edgeMask((swgl_AAEdgeMask >> edgeIndex) & 1) {}
float x() const { return p.x; }
vec2_scalar zw() const { return {p.z, p.w}; }
void nextRow() {
// step current coords and interpolants to next row from slope
p += pSlope;
interp += interpSlope;
}
float cur_x() const { return p.x; }
float x_slope() const { return pSlope.x; }
};
// Vertex selection above should result in equal left and right start rows
assert(l0.y == r0.y);
// Find the start y, clip to within the clip rect, and round to row center.
// If AA is enabled, round out conservatively rather than round to nearest.
float aaRound = swgl_ClipFlags & SWGL_CLIP_FLAG_AA ? 0.0f : 0.5f;
float y = floor(max(l0.y, clipRect.y0) + aaRound) + 0.5f;
// Initialize left and right edges from end points and start Y
Edge left(y, l0, l1, interp_outs[l0i], interp_outs[l1i], l1i);
Edge right(y, r0, r1, interp_outs[r0i], interp_outs[r1i], r0i);
// WR does not use backface culling, so check if edges are flipped.
bool flipped = checkIfEdgesFlipped(l0, l1, r0, r1);
if (flipped) swap(left, right);
// Get pointer to color buffer and depth buffer at current Y
P* fbuf = (P*)colortex.sample_ptr(0, int(y));
DepthRun* fdepth = depthtex.buf != nullptr
? (DepthRun*)depthtex.sample_ptr(0, int(y))
: nullptr;
// Loop along advancing Ys, rasterizing spans at each row
float checkY = min(min(l1.y, r1.y), clipRect.y1);
// Ensure we don't rasterize out edge bounds
FloatRange clipSpan =
clipRect.x_range().clip(x_range(l0, l1).merge(x_range(r0, r1)));
for (;;) {
// Check if we maybe passed edge ends or outside clip rect...
if (y > checkY) {
// If we're outside the clip rect, we're done.
if (y > clipRect.y1) break;
// Check if Y advanced past the end of the left edge
if (y > l1.y) {
// Step to next left edge past Y and reset edge interpolants.
STEP_EDGE(y, l0i, l0, l1i, l1, NEXT_POINT, r1i);
(flipped ? right : left) =
Edge(y, l0, l1, interp_outs[l0i], interp_outs[l1i], l1i);
}
// Check if Y advanced past the end of the right edge
if (y > r1.y) {
// Step to next right edge past Y and reset edge interpolants.
STEP_EDGE(y, r0i, r0, r1i, r1, PREV_POINT, l1i);
(flipped ? left : right) =
Edge(y, r0, r1, interp_outs[r0i], interp_outs[r1i], r0i);
}
// Reset the clip bounds for the new edges
clipSpan =
clipRect.x_range().clip(x_range(l0, l1).merge(x_range(r0, r1)));
// Reset check condition for next time around.
checkY = min(ceil(min(l1.y, r1.y) - aaRound), clipRect.y1);
}
// Calculate a potentially AA'd span and check if it is non-empty.
IntRange span = aa_span(fbuf, left, right, clipSpan);
if (span.len() > 0) {
// If user clip planes are enabled, use them to bound the current span.
if (vertex_shader->use_clip_distance()) {
span = span.intersect(clip_distance_range(left, right));
if (span.len() <= 0) goto next_span;
}
ctx->shaded_rows++;
ctx->shaded_pixels += span.len();
// Advance color/depth buffer pointers to the start of the span.
P* buf = fbuf + span.start;
// Check if the we will need to use depth-buffer or discard on this span.
DepthRun* depth =
depthtex.buf != nullptr && depthtex.cleared() ? fdepth : nullptr;
bool use_discard = fragment_shader->use_discard();
if (depth) {
// Perspective may cause the depth value to vary on a per sample basis.
// Ensure the depth row is flattened to allow testing of individual
// samples
if (!depth->is_flat()) {
flatten_depth_runs(depth, depthtex.width);
}
// Advance to the depth sample at the start of the span.
depth += span.start;
}
if (colortex.delay_clear) {
// Delayed clear is enabled for the color buffer. Check if needs clear.
prepare_row<P>(colortex, int(y), span.start, span.end, use_discard,
depth);
}
// Initialize fragment shader interpolants to current span position.
fragment_shader->gl_FragCoord.x = init_interp(span.start + 0.5f, 1);
fragment_shader->gl_FragCoord.y = y;
{
// Calculate the fragment Z and W change per change in fragment X step.
// If the left and right X positions are extremely close together, then
// avoid stepping.
float stepScale = 1.0f / (right.x() - left.x());
if (!isfinite(stepScale)) stepScale = 0.0f;
vec2_scalar stepZW = (right.zw() - left.zw()) * stepScale;
// Calculate initial Z and W values for span start.
vec2_scalar zw = left.zw() + stepZW * (span.start + 0.5f - left.x());
// Set fragment shader's Z and W values so that it can use them to
// cancel out the 1/w baked into the interpolants.
fragment_shader->gl_FragCoord.z = init_interp(zw.x, stepZW.x);
fragment_shader->gl_FragCoord.w = init_interp(zw.y, stepZW.y);
fragment_shader->swgl_StepZW = stepZW;
// Change in interpolants is difference between current right and left
// edges per the change in right and left X. The left and right
// interpolant values were previously multipled by 1/w, so the step and
// initial span values take this into account.
Interpolants step = (right.interp - left.interp) * stepScale;
// Advance current interpolants to X at start of span.
Interpolants o = left.interp + step * (span.start + 0.5f - left.x());
fragment_shader->init_span<true>(&o, &step);
}
clipRect.set_clip_mask(span.start, y, buf);
if (!use_discard) {
// No discard is used. Common case.
draw_span<false, true>(buf, depth, span.len(), packDepth);
} else {
// Discard is used. Rare.
draw_span<true, true>(buf, depth, span.len(), packDepth);
}
}
next_span:
// Advance Y and edge interpolants to next row.
y++;
left.nextRow();
right.nextRow();
// Advance buffers to next row.
fbuf += colortex.stride() / sizeof(P);
fdepth += depthtex.stride() / sizeof(DepthRun);
}
}
// Clip a primitive against both sides of a view-frustum axis, producing
// intermediate vertexes with interpolated attributes that will no longer
// intersect the selected axis planes. This assumes the primitive is convex
// and should produce at most N+2 vertexes for each invocation (only in the
// worst case where one point falls outside on each of the opposite sides
// with the rest of the points inside). The supplied AA edge mask will be
// modified such that it corresponds to the clipped polygon edges.
template <XYZW AXIS>
static int clip_side(int nump, Point3D* p, Interpolants* interp, Point3D* outP,
Interpolants* outInterp, int& outEdgeMask) {
// Potential mask bits of which side of a plane a coordinate falls on.
enum SIDE { POSITIVE = 1, NEGATIVE = 2 };
int numClip = 0;
int edgeMask = outEdgeMask;
Point3D prev = p[nump - 1];
Interpolants prevInterp = interp[nump - 1];
float prevCoord = prev.select(AXIS);
// Coordinate must satisfy -W <= C <= W. Determine if it is outside, and
// if so, remember which side it is outside of. In the special case that W is
// negative and |C| < |W|, both -W <= C and C <= W will be false, such that
// we must consider the coordinate as falling outside of both plane sides
// simultaneously. We test each condition separately and combine them to form
// a mask of which plane sides we exceeded. If we neglect to consider both
// sides simultaneously, points can erroneously oscillate from one plane side
// to the other and exceed the supported maximum number of clip outputs.
int prevMask = (prevCoord < -prev.w ? NEGATIVE : 0) |
(prevCoord > prev.w ? POSITIVE : 0);
// Loop through points, finding edges that cross the planes by evaluating
// the side at each point.
outEdgeMask = 0;
for (int i = 0; i < nump; i++, edgeMask >>= 1) {
Point3D cur = p[i];
Interpolants curInterp = interp[i];
float curCoord = cur.select(AXIS);
int curMask =
(curCoord < -cur.w ? NEGATIVE : 0) | (curCoord > cur.w ? POSITIVE : 0);
// Check if the previous and current end points are on different sides. If
// the masks of sides intersect, then we consider them to be on the same
// side. So in the case the masks do not intersect, we then consider them
// to fall on different sides.
if (!(curMask & prevMask)) {
// One of the edge's end points is outside the plane with the other
// inside the plane. Find the offset where it crosses the plane and
// adjust the point and interpolants to there.
if (prevMask) {
// Edge that was previously outside crosses inside.
// Evaluate plane equation for previous and current end-point
// based on previous side and calculate relative offset.
if (numClip >= nump + 2) {
// If for some reason we produced more vertexes than we support, just
// bail out.
assert(false);
return 0;
}
// The positive plane is assigned the sign 1, and the negative plane is
// assigned -1. If the point falls outside both planes, that means W is
// negative. To compensate for this, we must interpolate the coordinate
// till W=0, at which point we can choose a single plane side for the
// coordinate to fall on since W will no longer be negative. To compute
// the coordinate where W=0, we compute K = prev.w / (prev.w-cur.w) and
// interpolate C = prev.C + K*(cur.C - prev.C). The sign of C will be
// the side of the plane we need to consider. Substituting K into the
// comparison C < 0, we can then avoid the division in K with a
// cross-multiplication.
float prevSide =
(prevMask & NEGATIVE) && (!(prevMask & POSITIVE) ||
prevCoord * (cur.w - prev.w) <
prev.w * (curCoord - prevCoord))
? -1
: 1;
float prevDist = prevCoord - prevSide * prev.w;
float curDist = curCoord - prevSide * cur.w;
// It may happen that after we interpolate by the weight k that due to
// floating point rounding we've underestimated the value necessary to
// push it over the clipping boundary. Just in case, nudge the mantissa
// by a single increment so that we essentially round it up and move it
// further inside the clipping boundary. We use nextafter to do this in
// a portable fashion.
float k = prevDist / (prevDist - curDist);
Point3D clipped = prev + (cur - prev) * k;
if (prevSide * clipped.select(AXIS) > clipped.w) {
k = nextafterf(k, 1.0f);
clipped = prev + (cur - prev) * k;
}
outP[numClip] = clipped;
outInterp[numClip] = prevInterp + (curInterp - prevInterp) * k;
// Don't output the current edge mask since start point was outside.
numClip++;
}
if (curMask) {
// Edge that was previously inside crosses outside.
// Evaluate plane equation for previous and current end-point
// based on current side and calculate relative offset.
if (numClip >= nump + 2) {
assert(false);
return 0;
}
// In the case the coordinate falls on both plane sides, the computation
// here is much the same as for prevSide, but since we are going from a
// previous W that is positive to current W that is negative, then the
// sign of cur.w - prev.w will flip in the equation. The resulting sign
// is negated to compensate for this.
float curSide =
(curMask & POSITIVE) && (!(curMask & NEGATIVE) ||
prevCoord * (cur.w - prev.w) <
prev.w * (curCoord - prevCoord))
? 1
: -1;
float prevDist = prevCoord - curSide * prev.w;
float curDist = curCoord - curSide * cur.w;
// Calculate interpolation weight k and the nudge it inside clipping
// boundary with nextafter. Note that since we were previously inside
// and now crossing outside, we have to flip the nudge direction for
// the weight towards 0 instead of 1.
float k = prevDist / (prevDist - curDist);
Point3D clipped = prev + (cur - prev) * k;
if (curSide * clipped.select(AXIS) > clipped.w) {
k = nextafterf(k, 0.0f);
clipped = prev + (cur - prev) * k;
}
outP[numClip] = clipped;
outInterp[numClip] = prevInterp + (curInterp - prevInterp) * k;
// Output the current edge mask since the end point is inside.
outEdgeMask |= (edgeMask & 1) << numClip;
numClip++;
}
}
if (!curMask) {
// The current end point is inside the plane, so output point unmodified.
if (numClip >= nump + 2) {
assert(false);
return 0;
}
outP[numClip] = cur;
outInterp[numClip] = curInterp;
// Output the current edge mask since the end point is inside.
outEdgeMask |= (edgeMask & 1) << numClip;
numClip++;
}
prev = cur;
prevInterp = curInterp;
prevCoord = curCoord;
prevMask = curMask;
}
return numClip;
}
// Helper function to dispatch to perspective span drawing with points that
// have already been transformed and clipped.
static inline void draw_perspective_clipped(int nump, Point3D* p_clip,
Interpolants* interp_clip,
Texture& colortex,
Texture& depthtex) {
// If polygon is ouside clip rect, nothing to draw.
ClipRect clipRect(colortex);
if (!clipRect.overlaps(nump, p_clip)) {
return;
}
// Finally draw perspective-correct spans for the polygon.
if (colortex.internal_format == GL_RGBA8) {
draw_perspective_spans<uint32_t>(nump, p_clip, interp_clip, colortex,
depthtex, clipRect);
} else if (colortex.internal_format == GL_R8) {
draw_perspective_spans<uint8_t>(nump, p_clip, interp_clip, colortex,
depthtex, clipRect);
} else {
assert(false);
}
}
// Draws a perspective-correct 3D primitive with varying Z value, as opposed
// to a simple 2D planar primitive with a constant Z value that could be
// trivially Z rejected. This requires clipping the primitive against the near
// and far planes to ensure it stays within the valid Z-buffer range. The Z
// and W of each fragment of the primitives are interpolated across the
// generated spans and then depth-tested as appropriate.
// Additionally, vertex attributes must be interpolated with perspective-
// correction by dividing by W before interpolation, and then later multiplied
// by W again to produce the final correct attribute value for each fragment.
// This process is expensive and should be avoided if possible for primitive
// batches that are known ahead of time to not need perspective-correction.
static void draw_perspective(int nump, Interpolants interp_outs[4],
Texture& colortex, Texture& depthtex) {
// Lines are not supported with perspective.
assert(nump >= 3);
// Convert output of vertex shader to screen space.
vec4 pos = vertex_shader->gl_Position;
vec3_scalar scale =
vec3_scalar(ctx->viewport.width(), ctx->viewport.height(), 1) * 0.5f;
vec3_scalar offset =
make_vec3(make_vec2(ctx->viewport.origin() - colortex.offset), 0.0f) +
scale;
// Verify if point is between near and far planes, rejecting NaN.
if (test_all(pos.z > -pos.w && pos.z < pos.w)) {
// No points cross the near or far planes, so no clipping required.
// Just divide coords by W and convert to viewport. We assume the W
// coordinate is non-zero and the reciprocal is finite since it would
// otherwise fail the test_none condition.
Float w = 1.0f / pos.w;
vec3 screen = pos.sel(X, Y, Z) * w * scale + offset;
Point3D p[4] = {{screen.x.x, screen.y.x, screen.z.x, w.x},
{screen.x.y, screen.y.y, screen.z.y, w.y},
{screen.x.z, screen.y.z, screen.z.z, w.z},
{screen.x.w, screen.y.w, screen.z.w, w.w}};
draw_perspective_clipped(nump, p, interp_outs, colortex, depthtex);
} else {
// Points cross the near or far planes, so we need to clip.
// Start with the original 3 or 4 points...
Point3D p[4] = {{pos.x.x, pos.y.x, pos.z.x, pos.w.x},
{pos.x.y, pos.y.y, pos.z.y, pos.w.y},
{pos.x.z, pos.y.z, pos.z.z, pos.w.z},
{pos.x.w, pos.y.w, pos.z.w, pos.w.w}};
// Clipping can expand the points by 1 for each of 6 view frustum planes.
Point3D p_clip[4 + 6];
Interpolants interp_clip[4 + 6];
// Clip against near and far Z planes.
nump = clip_side<Z>(nump, p, interp_outs, p_clip, interp_clip,
swgl_AAEdgeMask);
// If no points are left inside the view frustum, there's nothing to draw.
if (nump < 3) {
return;
}
// After clipping against only the near and far planes, we might still
// produce points where W = 0, exactly at the camera plane. OpenGL specifies
// that for clip coordinates, points must satisfy:
// -W <= X <= W
// -W <= Y <= W
// -W <= Z <= W
// When Z = W = 0, this is trivially satisfied, but when we transform and
// divide by W below it will produce a divide by 0. Usually we want to only
// clip Z to avoid the extra work of clipping X and Y. We can still project
// points that fall outside the view frustum X and Y so long as Z is valid.
// The span drawing code will then ensure X and Y are clamped to viewport
// boundaries. However, in the Z = W = 0 case, sometimes clipping X and Y,
// will push W further inside the view frustum so that it is no longer 0,
// allowing us to finally proceed to projecting the points to the screen.
for (int i = 0; i < nump; i++) {
// Found an invalid W, so need to clip against X and Y...
if (p_clip[i].w <= 0.0f) {
// Ping-pong p_clip -> p_tmp -> p_clip.
Point3D p_tmp[4 + 6];
Interpolants interp_tmp[4 + 6];
nump = clip_side<X>(nump, p_clip, interp_clip, p_tmp, interp_tmp,
swgl_AAEdgeMask);
if (nump < 3) return;
nump = clip_side<Y>(nump, p_tmp, interp_tmp, p_clip, interp_clip,
swgl_AAEdgeMask);
if (nump < 3) return;
// After clipping against X and Y planes, there's still points left
// to draw, so proceed to trying projection now...
break;
}
}
// Divide coords by W and convert to viewport.
for (int i = 0; i < nump; i++) {
float w = 1.0f / p_clip[i].w;
// If the W coord is essentially zero, small enough that division would
// result in Inf/NaN, then just set the reciprocal itself to zero so that
// the coordinates becomes zeroed out, as the only valid point that
// satisfies -W <= X/Y/Z <= W is all zeroes.
if (!isfinite(w)) w = 0.0f;
p_clip[i] = Point3D(p_clip[i].sel(X, Y, Z) * w * scale + offset, w);
}
draw_perspective_clipped(nump, p_clip, interp_clip, colortex, depthtex);
}
}
static void draw_quad(int nump, Texture& colortex, Texture& depthtex) {
// Run vertex shader once for the primitive's vertices.
// Reserve space for 6 sets of interpolants, in case we need to clip against
// near and far planes in the perspective case.
Interpolants interp_outs[4];
swgl_ClipFlags = 0;
vertex_shader->run_primitive((char*)interp_outs, sizeof(Interpolants));
vec4 pos = vertex_shader->gl_Position;
// Check if any vertex W is different from another. If so, use perspective.
if (test_any(pos.w != pos.w.x)) {
draw_perspective(nump, interp_outs, colortex, depthtex);
return;
}
// Convert output of vertex shader to screen space.
// Divide coords by W and convert to viewport.
float w = 1.0f / pos.w.x;
// If the W coord is essentially zero, small enough that division would
// result in Inf/NaN, then just set the reciprocal itself to zero so that
// the coordinates becomes zeroed out, as the only valid point that
// satisfies -W <= X/Y/Z <= W is all zeroes.
if (!isfinite(w)) w = 0.0f;
vec2 screen = (pos.sel(X, Y) * w + 1) * 0.5f *
vec2_scalar(ctx->viewport.width(), ctx->viewport.height()) +
make_vec2(ctx->viewport.origin() - colortex.offset);
Point2D p[4] = {{screen.x.x, screen.y.x},
{screen.x.y, screen.y.y},
{screen.x.z, screen.y.z},
{screen.x.w, screen.y.w}};
// If quad is ouside clip rect, nothing to draw.
ClipRect clipRect(colortex);
if (!clipRect.overlaps(nump, p)) {
return;
}
// Since the quad is assumed 2D, Z is constant across the quad.
float screenZ = (pos.z.x * w + 1) * 0.5f;
if (screenZ < 0 || screenZ > 1) {
// Z values would cross the near or far plane, so just bail.
return;
}
// Since Z doesn't need to be interpolated, just set the fragment shader's
// Z and W values here, once and for all fragment shader invocations.
uint32_t z = uint32_t(MAX_DEPTH_VALUE * screenZ);
fragment_shader->gl_FragCoord.z = screenZ;
fragment_shader->gl_FragCoord.w = w;
// If supplied a line, adjust it so that it is a quad at least 1 pixel thick.
// Assume that for a line that all 4 SIMD lanes were actually filled with
// vertexes 0, 1, 1, 0.
if (nump == 2) {
// Nudge Y height to span at least 1 pixel by advancing to next pixel
// boundary so that we step at least 1 row when drawing spans.
if (int(p[0].y + 0.5f) == int(p[1].y + 0.5f)) {
p[2].y = 1 + int(p[1].y + 0.5f);
p[3].y = p[2].y;
// Nudge X width to span at least 1 pixel so that rounded coords fall on
// separate pixels.
if (int(p[0].x + 0.5f) == int(p[1].x + 0.5f)) {
p[1].x += 1.0f;
p[2].x += 1.0f;
}
} else {
// If the line already spans at least 1 row, then assume line is vertical
// or diagonal and just needs to be dilated horizontally.
p[2].x += 1.0f;
p[3].x += 1.0f;
}
// Pretend that it's a quad now...
nump = 4;
}
// Finally draw 2D spans for the quad. Currently only supports drawing to
// RGBA8 and R8 color buffers.
if (colortex.internal_format == GL_RGBA8) {
draw_quad_spans<uint32_t>(nump, p, z, interp_outs, colortex, depthtex,
clipRect);
} else if (colortex.internal_format == GL_R8) {
draw_quad_spans<uint8_t>(nump, p, z, interp_outs, colortex, depthtex,
clipRect);
} else {
assert(false);
}
}
template <typename INDEX>
static inline void draw_elements(GLsizei count, GLsizei instancecount,
size_t offset, VertexArray& v,
Texture& colortex, Texture& depthtex) {
Buffer& indices_buf = ctx->buffers[v.element_array_buffer_binding];
if (!indices_buf.buf || offset >= indices_buf.size) {
return;
}
assert((offset & (sizeof(INDEX) - 1)) == 0);
INDEX* indices = (INDEX*)(indices_buf.buf + offset);
count = min(count, (GLsizei)((indices_buf.size - offset) / sizeof(INDEX)));
// Triangles must be indexed at offsets 0, 1, 2.
// Quads must be successive triangles indexed at offsets 0, 1, 2, 2, 1, 3.
if (count == 6 && indices[1] == indices[0] + 1 &&
indices[2] == indices[0] + 2 && indices[5] == indices[0] + 3) {
assert(indices[3] == indices[0] + 2 && indices[4] == indices[0] + 1);
// Fast path - since there is only a single quad, we only load per-vertex
// attribs once for all instances, as they won't change across instances
// or within an instance.
vertex_shader->load_attribs(v.attribs, indices[0], 0, 4);
draw_quad(4, colortex, depthtex);
for (GLsizei instance = 1; instance < instancecount; instance++) {
vertex_shader->load_attribs(v.attribs, indices[0], instance, 0);
draw_quad(4, colortex, depthtex);
}
} else {
for (GLsizei instance = 0; instance < instancecount; instance++) {
for (GLsizei i = 0; i + 3 <= count; i += 3) {
if (indices[i + 1] != indices[i] + 1 ||
indices[i + 2] != indices[i] + 2) {
continue;
}
if (i + 6 <= count && indices[i + 5] == indices[i] + 3) {
assert(indices[i + 3] == indices[i] + 2 &&
indices[i + 4] == indices[i] + 1);
vertex_shader->load_attribs(v.attribs, indices[i], instance, 4);
draw_quad(4, colortex, depthtex);
i += 3;
} else {
vertex_shader->load_attribs(v.attribs, indices[i], instance, 3);
draw_quad(3, colortex, depthtex);
}
}
}
}
}
|