1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "DataPipe.h"
#include "mozilla/AlreadyAddRefed.h"
#include "mozilla/Assertions.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/ErrorNames.h"
#include "mozilla/Logging.h"
#include "mozilla/MoveOnlyFunction.h"
#include "mozilla/ipc/InputStreamParams.h"
#include "nsIAsyncInputStream.h"
#include "nsStreamUtils.h"
#include "nsThreadUtils.h"
namespace mozilla {
namespace ipc {
LazyLogModule gDataPipeLog("DataPipe");
namespace data_pipe_detail {
// Helper for queueing up actions to be run once the mutex has been unlocked.
// Actions will be run in-order.
class MOZ_SCOPED_CAPABILITY DataPipeAutoLock {
public:
explicit DataPipeAutoLock(Mutex& aMutex) MOZ_CAPABILITY_ACQUIRE(aMutex)
: mMutex(aMutex) {
mMutex.Lock();
}
DataPipeAutoLock(const DataPipeAutoLock&) = delete;
DataPipeAutoLock& operator=(const DataPipeAutoLock&) = delete;
template <typename F>
void AddUnlockAction(F aAction) {
mActions.AppendElement(std::move(aAction));
}
~DataPipeAutoLock() MOZ_CAPABILITY_RELEASE() {
mMutex.Unlock();
for (auto& action : mActions) {
action();
}
}
private:
Mutex& mMutex;
AutoTArray<MoveOnlyFunction<void()>, 4> mActions;
};
static void DoNotifyOnUnlock(DataPipeAutoLock& aLock,
already_AddRefed<nsIRunnable> aCallback,
already_AddRefed<nsIEventTarget> aTarget) {
nsCOMPtr<nsIRunnable> callback{std::move(aCallback)};
nsCOMPtr<nsIEventTarget> target{std::move(aTarget)};
if (callback) {
aLock.AddUnlockAction(
[callback = std::move(callback), target = std::move(target)]() mutable {
if (target) {
target->Dispatch(callback.forget());
} else {
NS_DispatchBackgroundTask(callback.forget());
}
});
}
}
class DataPipeLink : public NodeController::PortObserver {
public:
DataPipeLink(bool aReceiverSide, std::shared_ptr<Mutex> aMutex,
ScopedPort aPort, SharedMemory* aShmem, uint32_t aCapacity,
nsresult aPeerStatus, uint32_t aOffset, uint32_t aAvailable)
: mMutex(std::move(aMutex)),
mPort(std::move(aPort)),
mShmem(aShmem),
mCapacity(aCapacity),
mReceiverSide(aReceiverSide),
mPeerStatus(aPeerStatus),
mOffset(aOffset),
mAvailable(aAvailable) {}
void Init() MOZ_EXCLUDES(*mMutex) {
{
DataPipeAutoLock lock(*mMutex);
if (NS_FAILED(mPeerStatus)) {
return;
}
MOZ_ASSERT(mPort.IsValid());
mPort.Controller()->SetPortObserver(mPort.Port(), this);
}
OnPortStatusChanged();
}
void OnPortStatusChanged() final MOZ_EXCLUDES(*mMutex);
// Add a task to notify the callback after `aLock` is unlocked.
//
// This method is safe to call multiple times, as after the first time it is
// called, `mCallback` will be cleared.
void NotifyOnUnlock(DataPipeAutoLock& aLock) MOZ_REQUIRES(*mMutex) {
DoNotifyOnUnlock(aLock, mCallback.forget(), mCallbackTarget.forget());
}
void SendBytesConsumedOnUnlock(DataPipeAutoLock& aLock, uint32_t aBytes)
MOZ_REQUIRES(*mMutex) {
MOZ_LOG(gDataPipeLog, LogLevel::Verbose,
("SendOnUnlock CONSUMED(%u) %s", aBytes, Describe(aLock).get()));
if (NS_FAILED(mPeerStatus)) {
return;
}
// `mPort` may be destroyed by `SetPeerError` after the DataPipe is unlocked
// but before we send the message. The strong controller and port references
// will allow us to try to send the message anyway, and it will be safely
// dropped if the port has already been closed. CONSUMED messages are safe
// to deliver out-of-order, so we don't need to worry about ordering here.
aLock.AddUnlockAction([controller = RefPtr{mPort.Controller()},
port = mPort.Port(), aBytes]() mutable {
auto message = MakeUnique<IPC::Message>(
MSG_ROUTING_NONE, DATA_PIPE_BYTES_CONSUMED_MESSAGE_TYPE);
IPC::MessageWriter writer(*message);
WriteParam(&writer, aBytes);
controller->SendUserMessage(port, std::move(message));
});
}
void SetPeerError(DataPipeAutoLock& aLock, nsresult aStatus,
bool aSendClosed = false) MOZ_REQUIRES(*mMutex) {
MOZ_LOG(gDataPipeLog, LogLevel::Debug,
("SetPeerError(%s%s) %s", GetStaticErrorName(aStatus),
aSendClosed ? ", send" : "", Describe(aLock).get()));
// The pipe was closed or errored. Clear the observer reference back
// to this type from the port layer, and ensure we notify waiters.
MOZ_ASSERT(NS_SUCCEEDED(mPeerStatus));
mPeerStatus = NS_SUCCEEDED(aStatus) ? NS_BASE_STREAM_CLOSED : aStatus;
aLock.AddUnlockAction([port = std::move(mPort), aStatus, aSendClosed] {
if (aSendClosed) {
auto message = MakeUnique<IPC::Message>(MSG_ROUTING_NONE,
DATA_PIPE_CLOSED_MESSAGE_TYPE);
IPC::MessageWriter writer(*message);
WriteParam(&writer, aStatus);
port.Controller()->SendUserMessage(port.Port(), std::move(message));
}
// The `ScopedPort` being destroyed with this action will close it,
// clearing the observer reference from the ports layer.
});
NotifyOnUnlock(aLock);
}
nsCString Describe(DataPipeAutoLock& aLock) const MOZ_REQUIRES(*mMutex) {
return nsPrintfCString(
"[%s(%p) c=%u e=%s o=%u a=%u, cb=%s]",
mReceiverSide ? "Receiver" : "Sender", this, mCapacity,
GetStaticErrorName(mPeerStatus), mOffset, mAvailable,
mCallback ? (mCallbackClosureOnly ? "clo" : "yes") : "no");
}
// This mutex is shared with the `DataPipeBase` which owns this
// `DataPipeLink`.
std::shared_ptr<Mutex> mMutex;
ScopedPort mPort MOZ_GUARDED_BY(*mMutex);
const RefPtr<SharedMemory> mShmem;
const uint32_t mCapacity;
const bool mReceiverSide;
bool mProcessingSegment MOZ_GUARDED_BY(*mMutex) = false;
nsresult mPeerStatus MOZ_GUARDED_BY(*mMutex) = NS_OK;
uint32_t mOffset MOZ_GUARDED_BY(*mMutex) = 0;
uint32_t mAvailable MOZ_GUARDED_BY(*mMutex) = 0;
bool mCallbackClosureOnly MOZ_GUARDED_BY(*mMutex) = false;
nsCOMPtr<nsIRunnable> mCallback MOZ_GUARDED_BY(*mMutex);
nsCOMPtr<nsIEventTarget> mCallbackTarget MOZ_GUARDED_BY(*mMutex);
};
void DataPipeLink::OnPortStatusChanged() {
DataPipeAutoLock lock(*mMutex);
while (NS_SUCCEEDED(mPeerStatus)) {
UniquePtr<IPC::Message> message;
if (!mPort.Controller()->GetMessage(mPort.Port(), &message)) {
SetPeerError(lock, NS_BASE_STREAM_CLOSED);
return;
}
if (!message) {
return; // no more messages
}
IPC::MessageReader reader(*message);
switch (message->type()) {
case DATA_PIPE_CLOSED_MESSAGE_TYPE: {
nsresult status = NS_OK;
if (!ReadParam(&reader, &status)) {
NS_WARNING("Unable to parse nsresult error from peer");
status = NS_ERROR_UNEXPECTED;
}
MOZ_LOG(gDataPipeLog, LogLevel::Debug,
("Got CLOSED(%s) %s", GetStaticErrorName(status),
Describe(lock).get()));
SetPeerError(lock, status);
return;
}
case DATA_PIPE_BYTES_CONSUMED_MESSAGE_TYPE: {
uint32_t consumed = 0;
if (!ReadParam(&reader, &consumed)) {
NS_WARNING("Unable to parse bytes consumed from peer");
SetPeerError(lock, NS_ERROR_UNEXPECTED);
return;
}
MOZ_LOG(gDataPipeLog, LogLevel::Verbose,
("Got CONSUMED(%u) %s", consumed, Describe(lock).get()));
auto newAvailable = CheckedUint32{mAvailable} + consumed;
if (!newAvailable.isValid() || newAvailable.value() > mCapacity) {
NS_WARNING("Illegal bytes consumed message received from peer");
SetPeerError(lock, NS_ERROR_UNEXPECTED);
return;
}
mAvailable = newAvailable.value();
if (!mCallbackClosureOnly) {
NotifyOnUnlock(lock);
}
break;
}
default: {
NS_WARNING("Illegal message type received from peer");
SetPeerError(lock, NS_ERROR_UNEXPECTED);
return;
}
}
}
}
DataPipeBase::DataPipeBase(bool aReceiverSide, nsresult aError)
: mMutex(std::make_shared<Mutex>(aReceiverSide ? "DataPipeReceiver"
: "DataPipeSender")),
mStatus(NS_SUCCEEDED(aError) ? NS_BASE_STREAM_CLOSED : aError) {}
DataPipeBase::DataPipeBase(bool aReceiverSide, ScopedPort aPort,
SharedMemory* aShmem, uint32_t aCapacity,
nsresult aPeerStatus, uint32_t aOffset,
uint32_t aAvailable)
: mMutex(std::make_shared<Mutex>(aReceiverSide ? "DataPipeReceiver"
: "DataPipeSender")),
mStatus(NS_OK),
mLink(new DataPipeLink(aReceiverSide, mMutex, std::move(aPort), aShmem,
aCapacity, aPeerStatus, aOffset, aAvailable)) {
mLink->Init();
}
DataPipeBase::~DataPipeBase() {
DataPipeAutoLock lock(*mMutex);
CloseInternal(lock, NS_BASE_STREAM_CLOSED);
}
void DataPipeBase::CloseInternal(DataPipeAutoLock& aLock, nsresult aStatus) {
if (NS_FAILED(mStatus)) {
return;
}
MOZ_LOG(
gDataPipeLog, LogLevel::Debug,
("Closing(%s) %s", GetStaticErrorName(aStatus), Describe(aLock).get()));
// Set our status to an errored status.
mStatus = NS_SUCCEEDED(aStatus) ? NS_BASE_STREAM_CLOSED : aStatus;
RefPtr<DataPipeLink> link = mLink.forget();
AssertSameMutex(link->mMutex);
link->NotifyOnUnlock(aLock);
// If our peer hasn't disappeared yet, clean up our connection to it.
if (NS_SUCCEEDED(link->mPeerStatus)) {
link->SetPeerError(aLock, mStatus, /* aSendClosed */ true);
}
}
nsresult DataPipeBase::ProcessSegmentsInternal(
uint32_t aCount, ProcessSegmentFun aProcessSegment,
uint32_t* aProcessedCount) {
*aProcessedCount = 0;
while (*aProcessedCount < aCount) {
DataPipeAutoLock lock(*mMutex);
mMutex->AssertCurrentThreadOwns();
MOZ_LOG(gDataPipeLog, LogLevel::Verbose,
("ProcessSegments(%u of %u) %s", *aProcessedCount, aCount,
Describe(lock).get()));
nsresult status = CheckStatus(lock);
if (NS_FAILED(status)) {
if (*aProcessedCount > 0) {
return NS_OK;
}
return status == NS_BASE_STREAM_CLOSED ? NS_OK : status;
}
RefPtr<DataPipeLink> link = mLink;
AssertSameMutex(link->mMutex);
if (!link->mAvailable) {
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(link->mPeerStatus),
"CheckStatus will have returned an error");
return *aProcessedCount > 0 ? NS_OK : NS_BASE_STREAM_WOULD_BLOCK;
}
MOZ_RELEASE_ASSERT(!link->mProcessingSegment,
"Only one thread may be processing a segment at a time");
// Extract an iterator over the next contiguous region of the shared memory
// buffer which will be used .
char* start = static_cast<char*>(link->mShmem->memory()) + link->mOffset;
char* iter = start;
char* end = start + std::min({aCount - *aProcessedCount, link->mAvailable,
link->mCapacity - link->mOffset});
// Record the consumed region from our segment when exiting this scope,
// telling our peer how many bytes were consumed. Hold on to `mLink` to keep
// the shmem mapped and make sure we can clean up even if we're closed while
// processing the shmem region.
link->mProcessingSegment = true;
auto scopeExit = MakeScopeExit([&] {
mMutex->AssertCurrentThreadOwns(); // should still be held
AssertSameMutex(link->mMutex);
MOZ_RELEASE_ASSERT(link->mProcessingSegment);
link->mProcessingSegment = false;
uint32_t totalProcessed = iter - start;
if (totalProcessed > 0) {
link->mOffset += totalProcessed;
MOZ_RELEASE_ASSERT(link->mOffset <= link->mCapacity);
if (link->mOffset == link->mCapacity) {
link->mOffset = 0;
}
link->mAvailable -= totalProcessed;
link->SendBytesConsumedOnUnlock(lock, totalProcessed);
}
MOZ_LOG(gDataPipeLog, LogLevel::Verbose,
("Processed Segment(%u of %zu) %s", totalProcessed, end - start,
Describe(lock).get()));
});
{
MutexAutoUnlock unlock(*mMutex);
while (iter < end) {
uint32_t processed = 0;
Span segment{iter, end};
nsresult rv = aProcessSegment(segment, *aProcessedCount, &processed);
if (NS_FAILED(rv) || processed == 0) {
return NS_OK;
}
MOZ_RELEASE_ASSERT(processed <= segment.Length());
iter += processed;
*aProcessedCount += processed;
}
}
}
MOZ_DIAGNOSTIC_ASSERT(*aProcessedCount == aCount,
"Must have processed exactly aCount");
return NS_OK;
}
void DataPipeBase::AsyncWaitInternal(already_AddRefed<nsIRunnable> aCallback,
already_AddRefed<nsIEventTarget> aTarget,
bool aClosureOnly) {
RefPtr<nsIRunnable> callback = std::move(aCallback);
RefPtr<nsIEventTarget> target = std::move(aTarget);
DataPipeAutoLock lock(*mMutex);
MOZ_LOG(gDataPipeLog, LogLevel::Debug,
("AsyncWait %s %p %s", aClosureOnly ? "(closure)" : "(ready)",
callback.get(), Describe(lock).get()));
if (NS_FAILED(CheckStatus(lock))) {
#ifdef DEBUG
if (mLink) {
AssertSameMutex(mLink->mMutex);
MOZ_ASSERT(!mLink->mCallback);
}
#endif
DoNotifyOnUnlock(lock, callback.forget(), target.forget());
return;
}
AssertSameMutex(mLink->mMutex);
// NOTE: After this point, `mLink` may have previously had a callback which is
// now being cancelled, make sure we clear `mCallback` even if we're going to
// call `aCallback` immediately.
mLink->mCallback = callback.forget();
mLink->mCallbackTarget = target.forget();
mLink->mCallbackClosureOnly = aClosureOnly;
if (!aClosureOnly && mLink->mAvailable) {
mLink->NotifyOnUnlock(lock);
}
}
nsresult DataPipeBase::CheckStatus(DataPipeAutoLock& aLock) {
// If our peer has closed or errored, we may need to close our local side to
// reflect the error code our peer provided. If we're a sender, we want to
// become closed immediately, whereas if we're a receiver we want to wait
// until our available buffer has been exhausted.
//
// NOTE: There may still be 2-stage writes/reads ongoing at this point, which
// will continue due to `mLink` being kept alive by the
// `ProcessSegmentsInternal` function.
if (NS_FAILED(mStatus)) {
return mStatus;
}
AssertSameMutex(mLink->mMutex);
if (NS_FAILED(mLink->mPeerStatus) &&
(!mLink->mReceiverSide || !mLink->mAvailable)) {
CloseInternal(aLock, mLink->mPeerStatus);
}
return mStatus;
}
nsCString DataPipeBase::Describe(DataPipeAutoLock& aLock) {
if (mLink) {
AssertSameMutex(mLink->mMutex);
return mLink->Describe(aLock);
}
return nsPrintfCString("[status=%s]", GetStaticErrorName(mStatus));
}
template <typename T>
void DataPipeWrite(IPC::MessageWriter* aWriter, T* aParam) {
DataPipeAutoLock lock(*aParam->mMutex);
MOZ_LOG(gDataPipeLog, LogLevel::Debug,
("IPC Write: %s", aParam->Describe(lock).get()));
WriteParam(aWriter, aParam->mStatus);
if (NS_FAILED(aParam->mStatus)) {
return;
}
aParam->AssertSameMutex(aParam->mLink->mMutex);
MOZ_RELEASE_ASSERT(!aParam->mLink->mProcessingSegment,
"cannot transfer while processing a segment");
// Serialize relevant parameters to our peer.
WriteParam(aWriter, std::move(aParam->mLink->mPort));
if (!aParam->mLink->mShmem->WriteHandle(aWriter)) {
aWriter->FatalError("failed to write DataPipe shmem handle");
MOZ_CRASH("failed to write DataPipe shmem handle");
}
WriteParam(aWriter, aParam->mLink->mCapacity);
WriteParam(aWriter, aParam->mLink->mPeerStatus);
WriteParam(aWriter, aParam->mLink->mOffset);
WriteParam(aWriter, aParam->mLink->mAvailable);
// Mark our peer as closed so we don't try to send to it when closing.
aParam->mLink->mPeerStatus = NS_ERROR_NOT_INITIALIZED;
aParam->CloseInternal(lock, NS_ERROR_NOT_INITIALIZED);
}
template <typename T>
bool DataPipeRead(IPC::MessageReader* aReader, RefPtr<T>* aResult) {
nsresult rv = NS_OK;
if (!ReadParam(aReader, &rv)) {
aReader->FatalError("failed to read DataPipe status");
return false;
}
if (NS_FAILED(rv)) {
*aResult = new T(rv);
MOZ_LOG(gDataPipeLog, LogLevel::Debug,
("IPC Read: [status=%s]", GetStaticErrorName(rv)));
return true;
}
ScopedPort port;
if (!ReadParam(aReader, &port)) {
aReader->FatalError("failed to read DataPipe port");
return false;
}
RefPtr shmem = new SharedMemoryBasic();
if (!shmem->ReadHandle(aReader)) {
aReader->FatalError("failed to read DataPipe shmem");
return false;
}
uint32_t capacity = 0;
nsresult peerStatus = NS_OK;
uint32_t offset = 0;
uint32_t available = 0;
if (!ReadParam(aReader, &capacity) || !ReadParam(aReader, &peerStatus) ||
!ReadParam(aReader, &offset) || !ReadParam(aReader, &available)) {
aReader->FatalError("failed to read DataPipe fields");
return false;
}
if (!capacity || offset >= capacity || available > capacity) {
aReader->FatalError("received DataPipe state values are inconsistent");
return false;
}
if (!shmem->Map(SharedMemory::PageAlignedSize(capacity))) {
aReader->FatalError("failed to map DataPipe shared memory region");
return false;
}
*aResult =
new T(std::move(port), shmem, capacity, peerStatus, offset, available);
if (MOZ_LOG_TEST(gDataPipeLog, LogLevel::Debug)) {
DataPipeAutoLock lock(*(*aResult)->mMutex);
MOZ_LOG(gDataPipeLog, LogLevel::Debug,
("IPC Read: %s", (*aResult)->Describe(lock).get()));
}
return true;
}
} // namespace data_pipe_detail
//-----------------------------------------------------------------------------
// DataPipeSender
//-----------------------------------------------------------------------------
NS_IMPL_ISUPPORTS(DataPipeSender, nsIOutputStream, nsIAsyncOutputStream,
DataPipeSender)
// nsIOutputStream
NS_IMETHODIMP DataPipeSender::Close() {
return CloseWithStatus(NS_BASE_STREAM_CLOSED);
}
NS_IMETHODIMP DataPipeSender::Flush() { return NS_OK; }
NS_IMETHODIMP DataPipeSender::Write(const char* aBuf, uint32_t aCount,
uint32_t* aWriteCount) {
return WriteSegments(NS_CopyBufferToSegment, (void*)aBuf, aCount,
aWriteCount);
}
NS_IMETHODIMP DataPipeSender::WriteFrom(nsIInputStream* aFromStream,
uint32_t aCount,
uint32_t* aWriteCount) {
return WriteSegments(NS_CopyStreamToSegment, aFromStream, aCount,
aWriteCount);
}
NS_IMETHODIMP DataPipeSender::WriteSegments(nsReadSegmentFun aReader,
void* aClosure, uint32_t aCount,
uint32_t* aWriteCount) {
auto processSegment = [&](Span<char> aSpan, uint32_t aToOffset,
uint32_t* aReadCount) -> nsresult {
return aReader(this, aClosure, aSpan.data(), aToOffset, aSpan.Length(),
aReadCount);
};
return ProcessSegmentsInternal(aCount, processSegment, aWriteCount);
}
NS_IMETHODIMP DataPipeSender::IsNonBlocking(bool* _retval) {
*_retval = true;
return NS_OK;
}
// nsIAsyncOutputStream
NS_IMETHODIMP DataPipeSender::CloseWithStatus(nsresult reason) {
data_pipe_detail::DataPipeAutoLock lock(*mMutex);
CloseInternal(lock, reason);
return NS_OK;
}
NS_IMETHODIMP DataPipeSender::AsyncWait(nsIOutputStreamCallback* aCallback,
uint32_t aFlags,
uint32_t aRequestedCount,
nsIEventTarget* aTarget) {
AsyncWaitInternal(
aCallback ? NS_NewCancelableRunnableFunction(
"DataPipeReceiver::AsyncWait",
[self = RefPtr{this}, callback = RefPtr{aCallback}] {
MOZ_LOG(gDataPipeLog, LogLevel::Debug,
("Calling OnOutputStreamReady(%p, %p)",
callback.get(), self.get()));
callback->OnOutputStreamReady(self);
})
: nullptr,
do_AddRef(aTarget), aFlags & WAIT_CLOSURE_ONLY);
return NS_OK;
}
//-----------------------------------------------------------------------------
// DataPipeReceiver
//-----------------------------------------------------------------------------
NS_IMPL_ISUPPORTS(DataPipeReceiver, nsIInputStream, nsIAsyncInputStream,
nsIIPCSerializableInputStream, DataPipeReceiver)
// nsIInputStream
NS_IMETHODIMP DataPipeReceiver::Close() {
return CloseWithStatus(NS_BASE_STREAM_CLOSED);
}
NS_IMETHODIMP DataPipeReceiver::Available(uint64_t* _retval) {
data_pipe_detail::DataPipeAutoLock lock(*mMutex);
nsresult rv = CheckStatus(lock);
if (NS_FAILED(rv)) {
return rv;
}
AssertSameMutex(mLink->mMutex);
*_retval = mLink->mAvailable;
return NS_OK;
}
NS_IMETHODIMP DataPipeReceiver::Read(char* aBuf, uint32_t aCount,
uint32_t* aReadCount) {
return ReadSegments(NS_CopySegmentToBuffer, aBuf, aCount, aReadCount);
}
NS_IMETHODIMP DataPipeReceiver::ReadSegments(nsWriteSegmentFun aWriter,
void* aClosure, uint32_t aCount,
uint32_t* aReadCount) {
auto processSegment = [&](Span<char> aSpan, uint32_t aToOffset,
uint32_t* aWriteCount) -> nsresult {
return aWriter(this, aClosure, aSpan.data(), aToOffset, aSpan.Length(),
aWriteCount);
};
return ProcessSegmentsInternal(aCount, processSegment, aReadCount);
}
NS_IMETHODIMP DataPipeReceiver::IsNonBlocking(bool* _retval) {
*_retval = true;
return NS_OK;
}
// nsIAsyncInputStream
NS_IMETHODIMP DataPipeReceiver::CloseWithStatus(nsresult aStatus) {
data_pipe_detail::DataPipeAutoLock lock(*mMutex);
CloseInternal(lock, aStatus);
return NS_OK;
}
NS_IMETHODIMP DataPipeReceiver::AsyncWait(nsIInputStreamCallback* aCallback,
uint32_t aFlags,
uint32_t aRequestedCount,
nsIEventTarget* aTarget) {
AsyncWaitInternal(
aCallback ? NS_NewCancelableRunnableFunction(
"DataPipeReceiver::AsyncWait",
[self = RefPtr{this}, callback = RefPtr{aCallback}] {
MOZ_LOG(gDataPipeLog, LogLevel::Debug,
("Calling OnInputStreamReady(%p, %p)",
callback.get(), self.get()));
callback->OnInputStreamReady(self);
})
: nullptr,
do_AddRef(aTarget), aFlags & WAIT_CLOSURE_ONLY);
return NS_OK;
}
// nsIIPCSerializableInputStream
void DataPipeReceiver::SerializedComplexity(uint32_t aMaxSize,
uint32_t* aSizeUsed,
uint32_t* aPipes,
uint32_t* aTransferables) {
// We report DataPipeReceiver as taking one transferrable to serialize, rather
// than one pipe, as we aren't starting a new pipe for this purpose, and are
// instead transferring an existing pipe.
*aTransferables = 1;
}
void DataPipeReceiver::Serialize(InputStreamParams& aParams, uint32_t aMaxSize,
uint32_t* aSizeUsed) {
*aSizeUsed = 0;
aParams = DataPipeReceiverStreamParams(this);
}
bool DataPipeReceiver::Deserialize(const InputStreamParams& aParams) {
MOZ_CRASH("Handled directly in `DeserializeInputStream`");
}
//-----------------------------------------------------------------------------
// NewDataPipe
//-----------------------------------------------------------------------------
nsresult NewDataPipe(uint32_t aCapacity, DataPipeSender** aSender,
DataPipeReceiver** aReceiver) {
if (!aCapacity) {
aCapacity = kDefaultDataPipeCapacity;
}
RefPtr<NodeController> controller = NodeController::GetSingleton();
if (!controller) {
return NS_ERROR_ILLEGAL_DURING_SHUTDOWN;
}
auto [senderPort, receiverPort] = controller->CreatePortPair();
auto shmem = MakeRefPtr<SharedMemoryBasic>();
size_t alignedCapacity = SharedMemory::PageAlignedSize(aCapacity);
if (!shmem->Create(alignedCapacity) || !shmem->Map(alignedCapacity)) {
return NS_ERROR_OUT_OF_MEMORY;
}
RefPtr sender = new DataPipeSender(std::move(senderPort), shmem, aCapacity,
NS_OK, 0, aCapacity);
RefPtr receiver = new DataPipeReceiver(std::move(receiverPort), shmem,
aCapacity, NS_OK, 0, 0);
sender.forget(aSender);
receiver.forget(aReceiver);
return NS_OK;
}
} // namespace ipc
} // namespace mozilla
void IPC::ParamTraits<mozilla::ipc::DataPipeSender*>::Write(
MessageWriter* aWriter, mozilla::ipc::DataPipeSender* aParam) {
mozilla::ipc::data_pipe_detail::DataPipeWrite(aWriter, aParam);
}
bool IPC::ParamTraits<mozilla::ipc::DataPipeSender*>::Read(
MessageReader* aReader, RefPtr<mozilla::ipc::DataPipeSender>* aResult) {
return mozilla::ipc::data_pipe_detail::DataPipeRead(aReader, aResult);
}
void IPC::ParamTraits<mozilla::ipc::DataPipeReceiver*>::Write(
MessageWriter* aWriter, mozilla::ipc::DataPipeReceiver* aParam) {
mozilla::ipc::data_pipe_detail::DataPipeWrite(aWriter, aParam);
}
bool IPC::ParamTraits<mozilla::ipc::DataPipeReceiver*>::Read(
MessageReader* aReader, RefPtr<mozilla::ipc::DataPipeReceiver>* aResult) {
return mozilla::ipc::data_pipe_detail::DataPipeRead(aReader, aResult);
}
|