1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/MIRGraph.h"
#include "jit/CompileInfo.h"
#include "jit/InlineScriptTree.h"
#include "jit/JitSpewer.h"
#include "jit/MIR.h"
#include "jit/MIRGenerator.h"
using namespace js;
using namespace js::jit;
MIRGenerator::MIRGenerator(CompileRealm* realm,
const JitCompileOptions& options,
TempAllocator* alloc, MIRGraph* graph,
const CompileInfo* info,
const OptimizationInfo* optimizationInfo)
: realm(realm),
runtime(realm ? realm->runtime() : nullptr),
outerInfo_(info),
optimizationInfo_(optimizationInfo),
alloc_(alloc),
graph_(graph),
offThreadStatus_(Ok()),
cancelBuild_(false),
wasmMaxStackArgBytes_(0),
needsOverrecursedCheck_(false),
needsStaticStackAlignment_(false),
instrumentedProfiling_(false),
instrumentedProfilingIsCached_(false),
stringsCanBeInNursery_(realm ? realm->zone()->canNurseryAllocateStrings()
: false),
bigIntsCanBeInNursery_(realm ? realm->zone()->canNurseryAllocateBigInts()
: false),
minWasmHeapLength_(0),
options(options),
gs_(alloc) {}
mozilla::GenericErrorResult<AbortReason> MIRGenerator::abort(AbortReason r) {
if (JitSpewEnabled(JitSpew_IonAbort)) {
switch (r) {
case AbortReason::Alloc:
JitSpew(JitSpew_IonAbort, "AbortReason::Alloc");
break;
case AbortReason::Disable:
JitSpew(JitSpew_IonAbort, "AbortReason::Disable");
break;
case AbortReason::Error:
JitSpew(JitSpew_IonAbort, "AbortReason::Error");
break;
case AbortReason::NoAbort:
MOZ_CRASH("Abort with AbortReason::NoAbort");
break;
}
}
return Err(std::move(r));
}
mozilla::GenericErrorResult<AbortReason> MIRGenerator::abortFmt(
AbortReason r, const char* message, va_list ap) {
JitSpewVA(JitSpew_IonAbort, message, ap);
return Err(std::move(r));
}
mozilla::GenericErrorResult<AbortReason> MIRGenerator::abort(
AbortReason r, const char* message, ...) {
va_list ap;
va_start(ap, message);
auto forward = abortFmt(r, message, ap);
va_end(ap);
return forward;
}
void MIRGraph::addBlock(MBasicBlock* block) {
MOZ_ASSERT(block);
block->setId(blockIdGen_++);
blocks_.pushBack(block);
numBlocks_++;
}
void MIRGraph::insertBlockAfter(MBasicBlock* at, MBasicBlock* block) {
block->setId(blockIdGen_++);
blocks_.insertAfter(at, block);
numBlocks_++;
}
void MIRGraph::insertBlockBefore(MBasicBlock* at, MBasicBlock* block) {
block->setId(blockIdGen_++);
blocks_.insertBefore(at, block);
numBlocks_++;
}
void MIRGraph::removeBlock(MBasicBlock* block) {
// Remove a block from the graph. It will also cleanup the block.
if (block == osrBlock_) {
osrBlock_ = nullptr;
}
if (returnAccumulator_) {
size_t i = 0;
while (i < returnAccumulator_->length()) {
if ((*returnAccumulator_)[i] == block) {
returnAccumulator_->erase(returnAccumulator_->begin() + i);
} else {
i++;
}
}
}
block->clear();
block->markAsDead();
if (block->isInList()) {
blocks_.remove(block);
numBlocks_--;
}
}
void MIRGraph::unmarkBlocks() {
for (MBasicBlockIterator i(blocks_.begin()); i != blocks_.end(); i++) {
i->unmark();
}
}
MBasicBlock* MBasicBlock::New(MIRGraph& graph, size_t stackDepth,
const CompileInfo& info, MBasicBlock* maybePred,
BytecodeSite* site, Kind kind) {
MOZ_ASSERT(site->pc() != nullptr);
MBasicBlock* block = new (graph.alloc()) MBasicBlock(graph, info, site, kind);
if (!block->init()) {
return nullptr;
}
if (!block->inherit(graph.alloc(), stackDepth, maybePred, 0)) {
return nullptr;
}
return block;
}
MBasicBlock* MBasicBlock::NewPopN(MIRGraph& graph, const CompileInfo& info,
MBasicBlock* pred, BytecodeSite* site,
Kind kind, uint32_t popped) {
MOZ_ASSERT(site->pc() != nullptr);
MBasicBlock* block = new (graph.alloc()) MBasicBlock(graph, info, site, kind);
if (!block->init()) {
return nullptr;
}
if (!block->inherit(graph.alloc(), pred->stackDepth(), pred, popped)) {
return nullptr;
}
return block;
}
MBasicBlock* MBasicBlock::NewPendingLoopHeader(MIRGraph& graph,
const CompileInfo& info,
MBasicBlock* pred,
BytecodeSite* site) {
MOZ_ASSERT(site->pc() != nullptr);
MBasicBlock* block =
new (graph.alloc()) MBasicBlock(graph, info, site, PENDING_LOOP_HEADER);
if (!block->init()) {
return nullptr;
}
if (!block->inherit(graph.alloc(), pred->stackDepth(), pred, 0)) {
return nullptr;
}
return block;
}
MBasicBlock* MBasicBlock::NewSplitEdge(MIRGraph& graph, MBasicBlock* pred,
size_t predEdgeIdx, MBasicBlock* succ) {
MBasicBlock* split = nullptr;
if (!succ->pc()) {
// The predecessor does not have a PC, this is a Wasm compilation.
split = MBasicBlock::New(graph, succ->info(), pred, SPLIT_EDGE);
if (!split) {
return nullptr;
}
// Insert the split edge block in-between.
split->end(MGoto::New(graph.alloc(), succ));
} else {
// The predecessor has a PC, this is a Warp compilation.
MResumePoint* succEntry = succ->entryResumePoint();
BytecodeSite* site =
new (graph.alloc()) BytecodeSite(succ->trackedTree(), succEntry->pc());
split =
new (graph.alloc()) MBasicBlock(graph, succ->info(), site, SPLIT_EDGE);
if (!split->init()) {
return nullptr;
}
// A split edge is used to simplify the graph to avoid having a
// predecessor with multiple successors as well as a successor with
// multiple predecessors. As instructions can be moved in this
// split-edge block, we need to give this block a resume point. To do
// so, we copy the entry resume points of the successor and filter the
// phis to keep inputs from the current edge.
// Propagate the caller resume point from the inherited block.
split->callerResumePoint_ = succ->callerResumePoint();
// Split-edge are created after the interpreter stack emulation. Thus,
// there is no need for creating slots.
split->stackPosition_ = succEntry->stackDepth();
// Create a resume point using our initial stack position.
MResumePoint* splitEntry = new (graph.alloc())
MResumePoint(split, succEntry->pc(), ResumeMode::ResumeAt);
if (!splitEntry->init(graph.alloc())) {
return nullptr;
}
split->entryResumePoint_ = splitEntry;
// Insert the split edge block in-between.
split->end(MGoto::New(graph.alloc(), succ));
// The target entry resume point might have phi operands, keep the
// operands of the phi coming from our edge.
size_t succEdgeIdx = succ->indexForPredecessor(pred);
for (size_t i = 0, e = splitEntry->numOperands(); i < e; i++) {
MDefinition* def = succEntry->getOperand(i);
// This early in the pipeline, we have no recover instructions in
// any entry resume point.
if (def->block() == succ) {
if (def->isPhi()) {
def = def->toPhi()->getOperand(succEdgeIdx);
} else {
// The phi-operand may already have been optimized out.
MOZ_ASSERT(def->isConstant());
MOZ_ASSERT(def->type() == MIRType::MagicOptimizedOut);
def = split->optimizedOutConstant(graph.alloc());
}
}
splitEntry->initOperand(i, def);
}
// This is done in the New variant for wasm, so we cannot keep this
// line below, where the rest of the graph is modified.
if (!split->predecessors_.append(pred)) {
return nullptr;
}
}
split->setLoopDepth(succ->loopDepth());
graph.insertBlockAfter(pred, split);
pred->replaceSuccessor(predEdgeIdx, split);
succ->replacePredecessor(pred, split);
return split;
}
MBasicBlock* MBasicBlock::New(MIRGraph& graph, const CompileInfo& info,
MBasicBlock* pred, Kind kind) {
BytecodeSite* site = new (graph.alloc()) BytecodeSite();
MBasicBlock* block = new (graph.alloc()) MBasicBlock(graph, info, site, kind);
if (!block->init()) {
return nullptr;
}
if (pred) {
block->stackPosition_ = pred->stackPosition_;
if (block->kind_ == PENDING_LOOP_HEADER) {
size_t nphis = block->stackPosition_;
size_t nfree = graph.phiFreeListLength();
TempAllocator& alloc = graph.alloc();
MPhi* phis = nullptr;
if (nphis > nfree) {
phis = alloc.allocateArray<MPhi>(nphis - nfree);
if (!phis) {
return nullptr;
}
}
// Note: Phis are inserted in the same order as the slots.
for (size_t i = 0; i < nphis; i++) {
MDefinition* predSlot = pred->getSlot(i);
MOZ_ASSERT(predSlot->type() != MIRType::Value);
MPhi* phi;
if (i < nfree) {
phi = graph.takePhiFromFreeList();
} else {
phi = phis + (i - nfree);
}
new (phi) MPhi(alloc, predSlot->type());
phi->addInlineInput(predSlot);
// Add append Phis in the block.
block->addPhi(phi);
block->setSlot(i, phi);
}
} else {
if (!block->ensureHasSlots(0)) {
return nullptr;
}
block->copySlots(pred);
}
if (!block->predecessors_.append(pred)) {
return nullptr;
}
}
return block;
}
// Create an empty and unreachable block which jumps to |header|. Used
// when the normal entry into a loop is removed (but the loop is still
// reachable due to OSR) to preserve the invariant that every loop
// header has two predecessors, which is needed for building the
// dominator tree. The new block is inserted immediately before the
// header, which preserves the graph ordering (post-order/RPO). These
// blocks will all be removed before lowering.
MBasicBlock* MBasicBlock::NewFakeLoopPredecessor(MIRGraph& graph,
MBasicBlock* header) {
MOZ_ASSERT(graph.osrBlock());
MBasicBlock* backedge = header->backedge();
MBasicBlock* fake = MBasicBlock::New(graph, header->info(), nullptr,
MBasicBlock::FAKE_LOOP_PRED);
if (!fake) {
return nullptr;
}
graph.insertBlockBefore(header, fake);
fake->setUnreachable();
// Create fake defs to use as inputs for any phis in |header|.
for (MPhiIterator iter(header->phisBegin()), end(header->phisEnd());
iter != end; ++iter) {
MPhi* phi = *iter;
auto* fakeDef = MUnreachableResult::New(graph.alloc(), phi->type());
fake->add(fakeDef);
if (!phi->addInputSlow(fakeDef)) {
return nullptr;
}
}
fake->end(MGoto::New(graph.alloc(), header));
if (!header->addPredecessorWithoutPhis(fake)) {
return nullptr;
}
// The backedge is always the last predecessor, but we have added a
// new pred. Restore |backedge| as |header|'s loop backedge.
header->clearLoopHeader();
header->setLoopHeader(backedge);
return fake;
}
void MIRGraph::removeFakeLoopPredecessors() {
MOZ_ASSERT(osrBlock());
size_t id = 0;
for (ReversePostorderIterator it = rpoBegin(); it != rpoEnd();) {
MBasicBlock* block = *it++;
if (block->isFakeLoopPred()) {
MOZ_ASSERT(block->unreachable());
MBasicBlock* succ = block->getSingleSuccessor();
succ->removePredecessor(block);
removeBlock(block);
} else {
block->setId(id++);
}
}
#ifdef DEBUG
canBuildDominators_ = false;
#endif
}
MBasicBlock::MBasicBlock(MIRGraph& graph, const CompileInfo& info,
BytecodeSite* site, Kind kind)
: graph_(graph),
info_(info),
predecessors_(graph.alloc()),
stackPosition_(info_.firstStackSlot()),
id_(0),
domIndex_(0),
numDominated_(0),
lir_(nullptr),
callerResumePoint_(nullptr),
entryResumePoint_(nullptr),
outerResumePoint_(nullptr),
successorWithPhis_(nullptr),
positionInPhiSuccessor_(0),
loopDepth_(0),
kind_(kind),
mark_(false),
immediatelyDominated_(graph.alloc()),
immediateDominator_(nullptr),
trackedSite_(site),
lineno_(0u),
columnIndex_(0u) {
MOZ_ASSERT(trackedSite_, "trackedSite_ is non-nullptr");
}
bool MBasicBlock::init() { return slots_.init(graph_.alloc(), info_.nslots()); }
bool MBasicBlock::increaseSlots(size_t num) {
return slots_.growBy(graph_.alloc(), num);
}
bool MBasicBlock::ensureHasSlots(size_t num) {
size_t depth = stackDepth() + num;
if (depth > nslots()) {
if (!increaseSlots(depth - nslots())) {
return false;
}
}
return true;
}
void MBasicBlock::copySlots(MBasicBlock* from) {
MOZ_ASSERT(stackPosition_ <= from->stackPosition_);
MOZ_ASSERT(stackPosition_ <= nslots());
MDefinition** thisSlots = slots_.begin();
MDefinition** fromSlots = from->slots_.begin();
for (size_t i = 0, e = stackPosition_; i < e; ++i) {
thisSlots[i] = fromSlots[i];
}
}
bool MBasicBlock::inherit(TempAllocator& alloc, size_t stackDepth,
MBasicBlock* maybePred, uint32_t popped) {
MOZ_ASSERT_IF(maybePred, maybePred->stackDepth() == stackDepth);
MOZ_ASSERT(stackDepth >= popped);
stackDepth -= popped;
stackPosition_ = stackDepth;
if (maybePred && kind_ != PENDING_LOOP_HEADER) {
copySlots(maybePred);
}
MOZ_ASSERT(info_.nslots() >= stackPosition_);
MOZ_ASSERT(!entryResumePoint_);
// Propagate the caller resume point from the inherited block.
callerResumePoint_ = maybePred ? maybePred->callerResumePoint() : nullptr;
// Create a resume point using our initial stack state.
entryResumePoint_ =
new (alloc) MResumePoint(this, pc(), ResumeMode::ResumeAt);
if (!entryResumePoint_->init(alloc)) {
return false;
}
if (maybePred) {
if (!predecessors_.append(maybePred)) {
return false;
}
if (kind_ == PENDING_LOOP_HEADER) {
for (size_t i = 0; i < stackDepth; i++) {
MPhi* phi = MPhi::New(alloc.fallible());
if (!phi) {
return false;
}
phi->addInlineInput(maybePred->getSlot(i));
addPhi(phi);
setSlot(i, phi);
entryResumePoint()->initOperand(i, phi);
}
} else {
for (size_t i = 0; i < stackDepth; i++) {
entryResumePoint()->initOperand(i, getSlot(i));
}
}
} else {
/*
* Don't leave the operands uninitialized for the caller, as it may not
* initialize them later on.
*/
for (size_t i = 0; i < stackDepth; i++) {
entryResumePoint()->clearOperand(i);
}
}
return true;
}
void MBasicBlock::inheritSlots(MBasicBlock* parent) {
stackPosition_ = parent->stackPosition_;
copySlots(parent);
}
bool MBasicBlock::initEntrySlots(TempAllocator& alloc) {
// Remove the previous resume point.
discardResumePoint(entryResumePoint_);
// Create a resume point using our initial stack state.
entryResumePoint_ =
MResumePoint::New(alloc, this, pc(), ResumeMode::ResumeAt);
if (!entryResumePoint_) {
return false;
}
return true;
}
MDefinition* MBasicBlock::environmentChain() {
return getSlot(info().environmentChainSlot());
}
MDefinition* MBasicBlock::argumentsObject() {
return getSlot(info().argsObjSlot());
}
void MBasicBlock::setEnvironmentChain(MDefinition* scopeObj) {
setSlot(info().environmentChainSlot(), scopeObj);
}
void MBasicBlock::setArgumentsObject(MDefinition* argsObj) {
setSlot(info().argsObjSlot(), argsObj);
}
void MBasicBlock::pick(int32_t depth) {
// pick takes a value and moves it to the top.
// pick(-2):
// A B C D E
// A B D C E [ swapAt(-2) ]
// A B D E C [ swapAt(-1) ]
for (; depth < 0; depth++) {
swapAt(depth);
}
}
void MBasicBlock::unpick(int32_t depth) {
// unpick takes the value on top of the stack and moves it under the depth-th
// element;
// unpick(-2):
// A B C D E
// A B C E D [ swapAt(-1) ]
// A B E C D [ swapAt(-2) ]
for (int32_t n = -1; n >= depth; n--) {
swapAt(n);
}
}
void MBasicBlock::swapAt(int32_t depth) {
uint32_t lhsDepth = stackPosition_ + depth - 1;
uint32_t rhsDepth = stackPosition_ + depth;
MDefinition* temp = slots_[lhsDepth];
slots_[lhsDepth] = slots_[rhsDepth];
slots_[rhsDepth] = temp;
}
void MBasicBlock::discardLastIns() { discard(lastIns()); }
MConstant* MBasicBlock::optimizedOutConstant(TempAllocator& alloc) {
// If the first instruction is a MConstant(MagicValue(JS_OPTIMIZED_OUT))
// then reuse it.
MInstruction* ins = *begin();
if (ins->type() == MIRType::MagicOptimizedOut) {
return ins->toConstant();
}
MConstant* constant = MConstant::New(alloc, MagicValue(JS_OPTIMIZED_OUT));
insertBefore(ins, constant);
return constant;
}
void MBasicBlock::moveBefore(MInstruction* at, MInstruction* ins) {
// Remove |ins| from the current block.
MOZ_ASSERT(ins->block() == this);
instructions_.remove(ins);
// Insert into new block, which may be distinct.
// Uses and operands are untouched.
ins->setInstructionBlock(at->block(), at->trackedSite());
at->block()->instructions_.insertBefore(at, ins);
}
MInstruction* MBasicBlock::safeInsertTop(MDefinition* ins, IgnoreTop ignore) {
MOZ_ASSERT(graph().osrBlock() != this,
"We are not supposed to add any instruction in OSR blocks.");
// Beta nodes and interrupt checks are required to be located at the
// beginnings of basic blocks, so we must insert new instructions after any
// such instructions.
MInstructionIterator insertIter =
!ins || ins->isPhi() ? begin() : begin(ins->toInstruction());
while (insertIter->isBeta() || insertIter->isInterruptCheck() ||
insertIter->isConstant() || insertIter->isParameter() ||
(!(ignore & IgnoreRecover) && insertIter->isRecoveredOnBailout())) {
insertIter++;
}
return *insertIter;
}
void MBasicBlock::discardResumePoint(
MResumePoint* rp, ReferencesType refType /* = RefType_Default */) {
if (refType & RefType_DiscardOperands) {
rp->releaseUses();
}
rp->setDiscarded();
#ifdef DEBUG
MResumePointIterator iter = resumePointsBegin();
while (*iter != rp) {
// We should reach it before reaching the end.
MOZ_ASSERT(iter != resumePointsEnd());
iter++;
}
resumePoints_.removeAt(iter);
#endif
}
void MBasicBlock::prepareForDiscard(
MInstruction* ins, ReferencesType refType /* = RefType_Default */) {
// Only remove instructions from the same basic block. This is needed for
// correctly removing the resume point if any.
MOZ_ASSERT(ins->block() == this);
MResumePoint* rp = ins->resumePoint();
if ((refType & RefType_DiscardResumePoint) && rp) {
discardResumePoint(rp, refType);
}
// We need to assert that instructions have no uses after removing the their
// resume points operands as they could be captured by their own resume
// point.
MOZ_ASSERT_IF(refType & RefType_AssertNoUses, !ins->hasUses());
const uint32_t InstructionOperands =
RefType_DiscardOperands | RefType_DiscardInstruction;
if ((refType & InstructionOperands) == InstructionOperands) {
for (size_t i = 0, e = ins->numOperands(); i < e; i++) {
ins->releaseOperand(i);
}
}
ins->setDiscarded();
}
void MBasicBlock::discard(MInstruction* ins) {
prepareForDiscard(ins);
instructions_.remove(ins);
}
void MBasicBlock::discardIgnoreOperands(MInstruction* ins) {
#ifdef DEBUG
for (size_t i = 0, e = ins->numOperands(); i < e; i++) {
MOZ_ASSERT(!ins->hasOperand(i));
}
#endif
prepareForDiscard(ins, RefType_IgnoreOperands);
instructions_.remove(ins);
}
void MBasicBlock::discardAllInstructions() {
MInstructionIterator iter = begin();
discardAllInstructionsStartingAt(iter);
}
void MBasicBlock::discardAllInstructionsStartingAt(MInstructionIterator iter) {
while (iter != end()) {
// Discard operands and resume point operands and flag the instruction
// as discarded. Also we do not assert that we have no uses as blocks
// might be removed in reverse post order.
MInstruction* ins = *iter++;
prepareForDiscard(ins, RefType_DefaultNoAssert);
instructions_.remove(ins);
}
}
void MBasicBlock::discardAllPhis() {
for (MPhiIterator iter = phisBegin(); iter != phisEnd(); iter++) {
iter->removeAllOperands();
}
for (MBasicBlock** pred = predecessors_.begin(); pred != predecessors_.end();
pred++) {
(*pred)->clearSuccessorWithPhis();
}
phis_.clear();
}
void MBasicBlock::discardAllResumePoints(bool discardEntry) {
if (outerResumePoint_) {
clearOuterResumePoint();
}
if (discardEntry && entryResumePoint_) {
clearEntryResumePoint();
}
#ifdef DEBUG
if (!entryResumePoint()) {
MOZ_ASSERT(resumePointsEmpty());
} else {
MResumePointIterator iter(resumePointsBegin());
MOZ_ASSERT(iter != resumePointsEnd());
iter++;
MOZ_ASSERT(iter == resumePointsEnd());
}
#endif
}
void MBasicBlock::clear() {
discardAllInstructions();
discardAllResumePoints();
discardAllPhis();
}
void MBasicBlock::insertBefore(MInstruction* at, MInstruction* ins) {
MOZ_ASSERT(at->block() == this);
ins->setInstructionBlock(this, at->trackedSite());
graph().allocDefinitionId(ins);
instructions_.insertBefore(at, ins);
}
void MBasicBlock::insertAfter(MInstruction* at, MInstruction* ins) {
MOZ_ASSERT(at->block() == this);
ins->setInstructionBlock(this, at->trackedSite());
graph().allocDefinitionId(ins);
instructions_.insertAfter(at, ins);
}
void MBasicBlock::insertAtEnd(MInstruction* ins) {
if (hasLastIns()) {
insertBefore(lastIns(), ins);
} else {
add(ins);
}
}
void MBasicBlock::addPhi(MPhi* phi) {
phis_.pushBack(phi);
phi->setPhiBlock(this);
graph().allocDefinitionId(phi);
}
void MBasicBlock::discardPhi(MPhi* phi) {
MOZ_ASSERT(!phis_.empty());
phi->removeAllOperands();
phi->setDiscarded();
phis_.remove(phi);
if (phis_.empty()) {
for (MBasicBlock* pred : predecessors_) {
pred->clearSuccessorWithPhis();
}
}
}
void MBasicBlock::flagOperandsOfPrunedBranches(MInstruction* ins) {
// Find the previous resume point which would be used for bailing out.
MResumePoint* rp = nullptr;
for (MInstructionReverseIterator iter = rbegin(ins); iter != rend(); iter++) {
rp = iter->resumePoint();
if (rp) {
break;
}
}
// If none, take the entry resume point.
if (!rp) {
rp = entryResumePoint();
}
// The only blocks which do not have any entryResumePoint in Ion, are the
// SplitEdge blocks. SplitEdge blocks only have a Goto instruction before
// Range Analysis phase. In adjustInputs, we are manipulating instructions
// which have a TypePolicy. So, as a Goto has no operand and no type
// policy, the entry resume point should exist.
MOZ_ASSERT(rp);
// Flag all operands as being potentially used.
while (rp) {
for (size_t i = 0, end = rp->numOperands(); i < end; i++) {
rp->getOperand(i)->setImplicitlyUsedUnchecked();
}
rp = rp->caller();
}
}
bool MBasicBlock::addPredecessor(TempAllocator& alloc, MBasicBlock* pred) {
return addPredecessorPopN(alloc, pred, 0);
}
bool MBasicBlock::addPredecessorPopN(TempAllocator& alloc, MBasicBlock* pred,
uint32_t popped) {
MOZ_ASSERT(pred);
MOZ_ASSERT(predecessors_.length() > 0);
// Predecessors must be finished, and at the correct stack depth.
MOZ_ASSERT(pred->hasLastIns());
MOZ_ASSERT(pred->stackPosition_ == stackPosition_ + popped);
for (uint32_t i = 0, e = stackPosition_; i < e; ++i) {
MDefinition* mine = getSlot(i);
MDefinition* other = pred->getSlot(i);
if (mine != other) {
MIRType phiType = mine->type();
if (phiType != other->type()) {
phiType = MIRType::Value;
}
// If the current instruction is a phi, and it was created in this
// basic block, then we have already placed this phi and should
// instead append to its operands.
if (mine->isPhi() && mine->block() == this) {
MOZ_ASSERT(predecessors_.length());
MOZ_ASSERT(!mine->hasDefUses(),
"should only change type of newly created phis");
mine->setResultType(phiType);
if (!mine->toPhi()->addInputSlow(other)) {
return false;
}
} else {
// Otherwise, create a new phi node.
MPhi* phi = MPhi::New(alloc.fallible(), phiType);
if (!phi) {
return false;
}
addPhi(phi);
// Prime the phi for each predecessor, so input(x) comes from
// predecessor(x).
if (!phi->reserveLength(predecessors_.length() + 1)) {
return false;
}
for (size_t j = 0, numPreds = predecessors_.length(); j < numPreds;
++j) {
MOZ_ASSERT(predecessors_[j]->getSlot(i) == mine);
phi->addInput(mine);
}
phi->addInput(other);
setSlot(i, phi);
if (entryResumePoint()) {
entryResumePoint()->replaceOperand(i, phi);
}
}
}
}
return predecessors_.append(pred);
}
bool MBasicBlock::addPredecessorSameInputsAs(MBasicBlock* pred,
MBasicBlock* existingPred) {
MOZ_ASSERT(pred);
MOZ_ASSERT(predecessors_.length() > 0);
// Predecessors must be finished, and at the correct stack depth.
MOZ_ASSERT(pred->hasLastIns());
MOZ_ASSERT(!pred->successorWithPhis());
if (!phisEmpty()) {
size_t existingPosition = indexForPredecessor(existingPred);
for (MPhiIterator iter = phisBegin(); iter != phisEnd(); iter++) {
if (!iter->addInputSlow(iter->getOperand(existingPosition))) {
return false;
}
}
}
if (!predecessors_.append(pred)) {
return false;
}
return true;
}
bool MBasicBlock::addPredecessorWithoutPhis(MBasicBlock* pred) {
// Predecessors must be finished.
MOZ_ASSERT(pred && pred->hasLastIns());
return predecessors_.append(pred);
}
bool MBasicBlock::addImmediatelyDominatedBlock(MBasicBlock* child) {
return immediatelyDominated_.append(child);
}
void MBasicBlock::removeImmediatelyDominatedBlock(MBasicBlock* child) {
for (size_t i = 0;; ++i) {
MOZ_ASSERT(i < immediatelyDominated_.length(),
"Dominated block to remove not present");
if (immediatelyDominated_[i] == child) {
immediatelyDominated_[i] = immediatelyDominated_.back();
immediatelyDominated_.popBack();
return;
}
}
}
bool MBasicBlock::setBackedge(MBasicBlock* pred) {
// Predecessors must be finished, and at the correct stack depth.
MOZ_ASSERT(hasLastIns());
MOZ_ASSERT(pred->hasLastIns());
MOZ_ASSERT(pred->stackDepth() == entryResumePoint()->stackDepth());
// We must be a pending loop header
MOZ_ASSERT(kind_ == PENDING_LOOP_HEADER);
// Add exit definitions to each corresponding phi at the entry.
if (!inheritPhisFromBackedge(pred)) {
return false;
}
// We are now a loop header proper
kind_ = LOOP_HEADER;
return predecessors_.append(pred);
}
bool MBasicBlock::setBackedgeWasm(MBasicBlock* pred, size_t paramCount) {
// Predecessors must be finished, and at the correct stack depth.
MOZ_ASSERT(hasLastIns());
MOZ_ASSERT(pred->hasLastIns());
MOZ_ASSERT(stackDepth() + paramCount == pred->stackDepth());
// We must be a pending loop header
MOZ_ASSERT(kind_ == PENDING_LOOP_HEADER);
// Add exit definitions to each corresponding phi at the entry.
// Note: Phis are inserted in the same order as the slots. (see
// MBasicBlock::New)
size_t slot = 0;
for (MPhiIterator phi = phisBegin(); phi != phisEnd(); phi++, slot++) {
MPhi* entryDef = *phi;
MDefinition* exitDef = pred->getSlot(slot);
// Assert that we already placed phis for each slot.
MOZ_ASSERT(entryDef->block() == this);
// Assert that the phi already has the correct type.
MOZ_ASSERT(entryDef->type() == exitDef->type());
MOZ_ASSERT(entryDef->type() != MIRType::Value);
if (entryDef == exitDef) {
// If the exit def is the same as the entry def, make a redundant
// phi. Since loop headers have exactly two incoming edges, we
// know that that's just the first input.
//
// Note that we eliminate later rather than now, to avoid any
// weirdness around pending continue edges which might still hold
// onto phis.
exitDef = entryDef->getOperand(0);
}
// Phis always have room for 2 operands, so this can't fail.
MOZ_ASSERT(phi->numOperands() == 1);
entryDef->addInlineInput(exitDef);
// Two cases here: phis that correspond to locals, and phis that correspond
// to loop parameters. Only phis for locals go in slots.
if (slot < stackDepth()) {
setSlot(slot, entryDef);
}
}
// We are now a loop header proper
kind_ = LOOP_HEADER;
return predecessors_.append(pred);
}
void MBasicBlock::clearLoopHeader() {
MOZ_ASSERT(isLoopHeader());
kind_ = NORMAL;
}
void MBasicBlock::setLoopHeader(MBasicBlock* newBackedge) {
MOZ_ASSERT(!isLoopHeader());
kind_ = LOOP_HEADER;
size_t numPreds = numPredecessors();
MOZ_ASSERT(numPreds != 0);
size_t lastIndex = numPreds - 1;
size_t oldIndex = 0;
for (;; ++oldIndex) {
MOZ_ASSERT(oldIndex < numPreds);
MBasicBlock* pred = getPredecessor(oldIndex);
if (pred == newBackedge) {
break;
}
}
// Set the loop backedge to be the last element in predecessors_.
std::swap(predecessors_[oldIndex], predecessors_[lastIndex]);
// If we have phis, reorder their operands accordingly.
if (!phisEmpty()) {
getPredecessor(oldIndex)->setSuccessorWithPhis(this, oldIndex);
getPredecessor(lastIndex)->setSuccessorWithPhis(this, lastIndex);
for (MPhiIterator iter(phisBegin()), end(phisEnd()); iter != end; ++iter) {
MPhi* phi = *iter;
MDefinition* last = phi->getOperand(oldIndex);
MDefinition* old = phi->getOperand(lastIndex);
phi->replaceOperand(oldIndex, old);
phi->replaceOperand(lastIndex, last);
}
}
MOZ_ASSERT(newBackedge->loopHeaderOfBackedge() == this);
MOZ_ASSERT(backedge() == newBackedge);
}
size_t MBasicBlock::getSuccessorIndex(MBasicBlock* block) const {
MOZ_ASSERT(lastIns());
for (size_t i = 0; i < numSuccessors(); i++) {
if (getSuccessor(i) == block) {
return i;
}
}
MOZ_CRASH("Invalid successor");
}
size_t MBasicBlock::getPredecessorIndex(MBasicBlock* block) const {
for (size_t i = 0, e = numPredecessors(); i < e; ++i) {
if (getPredecessor(i) == block) {
return i;
}
}
MOZ_CRASH("Invalid predecessor");
}
void MBasicBlock::replaceSuccessor(size_t pos, MBasicBlock* split) {
MOZ_ASSERT(lastIns());
// Note, during split-critical-edges, successors-with-phis is not yet set.
// During PAA, this case is handled before we enter.
MOZ_ASSERT_IF(successorWithPhis_, successorWithPhis_ != getSuccessor(pos));
lastIns()->replaceSuccessor(pos, split);
}
void MBasicBlock::replacePredecessor(MBasicBlock* old, MBasicBlock* split) {
for (size_t i = 0; i < numPredecessors(); i++) {
if (getPredecessor(i) == old) {
predecessors_[i] = split;
#ifdef DEBUG
// The same block should not appear twice in the predecessor list.
for (size_t j = i; j < numPredecessors(); j++) {
MOZ_ASSERT(predecessors_[j] != old);
}
#endif
return;
}
}
MOZ_CRASH("predecessor was not found");
}
void MBasicBlock::clearDominatorInfo() {
setImmediateDominator(nullptr);
immediatelyDominated_.clear();
numDominated_ = 0;
}
void MBasicBlock::removePredecessorWithoutPhiOperands(MBasicBlock* pred,
size_t predIndex) {
// If we're removing the last backedge, this is no longer a loop.
if (isLoopHeader() && hasUniqueBackedge() && backedge() == pred) {
clearLoopHeader();
}
// Adjust phis. Note that this can leave redundant phis behind.
// Don't adjust successorWithPhis() if we haven't constructed this
// information yet.
if (pred->successorWithPhis()) {
MOZ_ASSERT(pred->positionInPhiSuccessor() == predIndex);
pred->clearSuccessorWithPhis();
for (size_t j = predIndex + 1; j < numPredecessors(); j++) {
getPredecessor(j)->setSuccessorWithPhis(this, j - 1);
}
}
// Remove from pred list.
predecessors_.erase(predecessors_.begin() + predIndex);
}
void MBasicBlock::removePredecessor(MBasicBlock* pred) {
size_t predIndex = getPredecessorIndex(pred);
// Remove the phi operands.
for (MPhiIterator iter(phisBegin()), end(phisEnd()); iter != end; ++iter) {
iter->removeOperand(predIndex);
}
// Now we can call the underlying function, which expects that phi
// operands have been removed.
removePredecessorWithoutPhiOperands(pred, predIndex);
}
bool MBasicBlock::inheritPhisFromBackedge(MBasicBlock* backedge) {
// We must be a pending loop header
MOZ_ASSERT(kind_ == PENDING_LOOP_HEADER);
size_t stackDepth = entryResumePoint()->stackDepth();
for (size_t slot = 0; slot < stackDepth; slot++) {
// Get the value stack-slot of the back edge.
MDefinition* exitDef = backedge->getSlot(slot);
// Get the value of the loop header.
MDefinition* loopDef = entryResumePoint()->getOperand(slot);
if (loopDef->block() != this) {
// If we are finishing a pending loop header, then we need to ensure
// that all operands are phis. This is usualy the case, except for
// object/arrays build with generators, in which case we share the
// same allocations across all blocks.
MOZ_ASSERT(loopDef->block()->id() < id());
MOZ_ASSERT(loopDef == exitDef);
continue;
}
// Phis are allocated by NewPendingLoopHeader.
MPhi* entryDef = loopDef->toPhi();
MOZ_ASSERT(entryDef->block() == this);
if (entryDef == exitDef) {
// If the exit def is the same as the entry def, make a redundant
// phi. Since loop headers have exactly two incoming edges, we
// know that that's just the first input.
//
// Note that we eliminate later rather than now, to avoid any
// weirdness around pending continue edges which might still hold
// onto phis.
exitDef = entryDef->getOperand(0);
}
if (!entryDef->addInputSlow(exitDef)) {
return false;
}
}
return true;
}
MTest* MBasicBlock::immediateDominatorBranch(BranchDirection* pdirection) {
*pdirection = FALSE_BRANCH;
if (numPredecessors() != 1) {
return nullptr;
}
MBasicBlock* dom = immediateDominator();
if (dom != getPredecessor(0)) {
return nullptr;
}
// Look for a trailing MTest branching to this block.
MInstruction* ins = dom->lastIns();
if (ins->isTest()) {
MTest* test = ins->toTest();
MOZ_ASSERT(test->ifTrue() == this || test->ifFalse() == this);
if (test->ifTrue() == this && test->ifFalse() == this) {
return nullptr;
}
*pdirection = (test->ifTrue() == this) ? TRUE_BRANCH : FALSE_BRANCH;
return test;
}
return nullptr;
}
void MBasicBlock::dumpStack(GenericPrinter& out) {
#ifdef DEBUG
out.printf(" %-3s %-16s %-6s %-10s\n", "#", "name", "copyOf", "first/next");
out.printf("-------------------------------------------\n");
for (uint32_t i = 0; i < stackPosition_; i++) {
out.printf(" %-3u", i);
out.printf(" %-16p\n", (void*)slots_[i]);
}
#endif
}
void MBasicBlock::dumpStack() {
Fprinter out(stderr);
dumpStack(out);
out.finish();
}
void MIRGraph::dump(GenericPrinter& out) {
#ifdef JS_JITSPEW
for (MBasicBlockIterator iter(begin()); iter != end(); iter++) {
iter->dump(out);
out.printf("\n");
}
#endif
}
void MIRGraph::dump() {
Fprinter out(stderr);
dump(out);
out.finish();
}
void MBasicBlock::dump(GenericPrinter& out) {
#ifdef JS_JITSPEW
out.printf("block%u:%s%s%s\n", id(), isLoopHeader() ? " (loop header)" : "",
unreachable() ? " (unreachable)" : "",
isMarked() ? " (marked)" : "");
if (MResumePoint* resume = entryResumePoint()) {
resume->dump(out);
}
for (MPhiIterator iter(phisBegin()); iter != phisEnd(); iter++) {
iter->dump(out);
}
for (MInstructionIterator iter(begin()); iter != end(); iter++) {
iter->dump(out);
}
#endif
}
void MBasicBlock::dump() {
Fprinter out(stderr);
dump(out);
out.finish();
}
|