1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/MotionPathUtils.h"
#include "gfxPlatform.h"
#include "mozilla/dom/SVGPathData.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/Matrix.h"
#include "mozilla/layers/LayersMessages.h"
#include "mozilla/RefPtr.h"
#include "nsIFrame.h"
#include "nsLayoutUtils.h"
#include "nsStyleTransformMatrix.h"
#include <math.h>
namespace mozilla {
using nsStyleTransformMatrix::TransformReferenceBox;
RayReferenceData::RayReferenceData(const nsIFrame* aFrame) {
// We use GetContainingBlock() for now. TYLin said this function is buggy in
// modern CSS layout, but is ok for most cases.
// FIXME: Bug 1581237: This is still not clear that which box we should use
// for calculating the path length. We may need to update this.
// https://github.com/w3c/fxtf-drafts/issues/369
// FIXME: Bug 1579294: SVG layout may get a |container| with empty mRect
// (e.g. SVGOuterSVGAnonChildFrame), which makes the path length zero.
const nsIFrame* container = aFrame->GetContainingBlock();
if (!container) {
// If there is no parent frame, it's impossible to calculate the path
// length, so does the path.
return;
}
// The initial position is (0, 0) in |aFrame|, and we have to transform it
// into the space of |container|, so use GetOffsetsTo() to get the delta
// value.
// FIXME: Bug 1559232: The initial position will be adjusted after
// supporting `offset-position`.
mInitialPosition = CSSPoint::FromAppUnits(aFrame->GetOffsetTo(container));
// FIXME: We need a better definition for containing box in the spec. For now,
// we use border box for calculation.
// https://github.com/w3c/fxtf-drafts/issues/369
mContainingBlockRect =
CSSRect::FromAppUnits(container->GetRectRelativeToSelf());
}
// The distance is measured between the initial position and the intersection of
// the ray with the box
// https://drafts.fxtf.org/motion-1/#size-sides
static CSSCoord ComputeSides(const CSSPoint& aInitialPosition,
const CSSSize& aContainerSize,
const StyleAngle& aAngle) {
// Given an acute angle |theta| (i.e. |t|) of a right-angled triangle, the
// hypotenuse |h| is the side that connects the two acute angles. The side
// |b| adjacent to |theta| is the side of the triangle that connects |theta|
// to the right angle.
//
// e.g. if the angle |t| is 0 ~ 90 degrees, and b * tan(theta) <= b',
// h = b / cos(t):
// b*tan(t)
// (0, 0) #--------*-----*--# (aContainerSize.width, 0)
// | | / |
// | | / |
// | b h |
// | |t/ |
// | |/ |
// (aInitialPosition) *---b'---* (aContainerSize.width, aInitialPosition.y)
// | | |
// | | |
// | | |
// | | |
// | | |
// #-----------------# (aContainerSize.width,
// (0, aContainerSize.height) aContainerSize.height)
double theta = aAngle.ToRadians();
double sint = std::sin(theta);
double cost = std::cos(theta);
double b = cost >= 0 ? aInitialPosition.y.value
: aContainerSize.height - aInitialPosition.y.value;
double bPrime = sint >= 0 ? aContainerSize.width - aInitialPosition.x.value
: aInitialPosition.x.value;
sint = std::fabs(sint);
cost = std::fabs(cost);
// If |b * tan(theta)| is larger than |bPrime|, the intersection is
// on the other side, and |b'| is the opposite side of angle |theta| in this
// case.
//
// e.g. If b * tan(theta) > b', h = b' / sin(theta):
// *----*
// | |
// | /|
// b /t|
// |t/ |
// |/ |
// *-b'-*
if (b * sint > bPrime * cost) {
return bPrime / sint;
}
return b / cost;
}
static CSSCoord ComputeRayPathLength(const StyleRaySize aRaySizeType,
const StyleAngle& aAngle,
const RayReferenceData& aRayData) {
if (aRaySizeType == StyleRaySize::Sides) {
// If the initial position is not within the box, the distance is 0.
if (!aRayData.mContainingBlockRect.Contains(aRayData.mInitialPosition)) {
return 0.0;
}
return ComputeSides(aRayData.mInitialPosition,
aRayData.mContainingBlockRect.Size(), aAngle);
}
// left: the length between the initial point and the left side.
// right: the length between the initial point and the right side.
// top: the length between the initial point and the top side.
// bottom: the lenght between the initial point and the bottom side.
CSSCoord left = std::abs(aRayData.mInitialPosition.x);
CSSCoord right = std::abs(aRayData.mContainingBlockRect.width -
aRayData.mInitialPosition.x);
CSSCoord top = std::abs(aRayData.mInitialPosition.y);
CSSCoord bottom = std::abs(aRayData.mContainingBlockRect.height -
aRayData.mInitialPosition.y);
switch (aRaySizeType) {
case StyleRaySize::ClosestSide:
return std::min({left, right, top, bottom});
case StyleRaySize::FarthestSide:
return std::max({left, right, top, bottom});
case StyleRaySize::ClosestCorner:
case StyleRaySize::FarthestCorner: {
CSSCoord h = 0;
CSSCoord v = 0;
if (aRaySizeType == StyleRaySize::ClosestCorner) {
h = std::min(left, right);
v = std::min(top, bottom);
} else {
h = std::max(left, right);
v = std::max(top, bottom);
}
return sqrt(h.value * h.value + v.value * v.value);
}
default:
MOZ_ASSERT_UNREACHABLE("Unsupported ray size");
}
return 0.0;
}
static void ApplyRotationAndMoveRayToXAxis(
const StyleOffsetRotate& aOffsetRotate, const StyleAngle& aRayAngle,
AutoTArray<gfx::Point, 4>& aVertices) {
const StyleAngle directionAngle = aRayAngle - StyleAngle{90.0f};
// Get the final rotation which includes the direction angle and
// offset-rotate.
const StyleAngle rotateAngle =
(aOffsetRotate.auto_ ? directionAngle : StyleAngle{0.0f}) +
aOffsetRotate.angle;
// This is the rotation to rotate ray to positive x-axis (i.e. 90deg).
const StyleAngle rayToXAxis = StyleAngle{90.0} - aRayAngle;
gfx::Matrix m;
m.PreRotate((rotateAngle + rayToXAxis).ToRadians());
for (gfx::Point& p : aVertices) {
p = m.TransformPoint(p);
}
}
class RayPointComparator {
public:
bool Equals(const gfx::Point& a, const gfx::Point& b) const {
return std::fabs(a.y) == std::fabs(b.y);
}
bool LessThan(const gfx::Point& a, const gfx::Point& b) const {
return std::fabs(a.y) > std::fabs(b.y);
}
};
// Note: the calculation of contain doesn't take other transform-like properties
// into account. The spec doesn't mention the co-operation for this, so for now,
// we assume we only need to take motion-path into account.
static CSSCoord ComputeRayUsedDistance(const RayFunction& aRay,
const LengthPercentage& aDistance,
const StyleOffsetRotate& aRotate,
const StylePositionOrAuto& aAnchor,
const CSSPoint& aTransformOrigin,
TransformReferenceBox& aRefBox,
const CSSCoord& aPathLength) {
CSSCoord usedDistance = aDistance.ResolveToCSSPixels(aPathLength);
if (!aRay.contain) {
return usedDistance;
}
// We have to simulate the 4 vertices to check if any of them is outside the
// path circle. Here, we create a 2D Cartesian coordinate system and its
// origin is at the anchor point of the box. And then apply the rotation on
// these 4 vertices, calculate the range of |usedDistance| which makes the box
// entirely contained within the path.
// Note:
// "Contained within the path" means the rectangle is inside a circle whose
// radius is |aPathLength|.
CSSPoint usedAnchor = aTransformOrigin;
CSSSize size =
CSSPixel::FromAppUnits(nsSize(aRefBox.Width(), aRefBox.Height()));
if (!aAnchor.IsAuto()) {
const StylePosition& anchor = aAnchor.AsPosition();
usedAnchor.x = anchor.horizontal.ResolveToCSSPixels(size.width);
usedAnchor.y = anchor.vertical.ResolveToCSSPixels(size.height);
}
AutoTArray<gfx::Point, 4> vertices = {
{-usedAnchor.x, -usedAnchor.y},
{size.width - usedAnchor.x, -usedAnchor.y},
{size.width - usedAnchor.x, size.height - usedAnchor.y},
{-usedAnchor.x, size.height - usedAnchor.y}};
ApplyRotationAndMoveRayToXAxis(aRotate, aRay.angle, vertices);
// We have to check if all 4 vertices are inside the circle with radius |r|.
// Assume the position of the vertex is (x, y), and the box is moved by
// |usedDistance| along the path:
//
// (usedDistance + x)^2 + y^2 <= r^2
// ==> (usedDistance + x)^2 <= r^2 - y^2 = d
// ==> -x - sqrt(d) <= used distance <= -x + sqrt(d)
//
// Note: |usedDistance| is added into |x| because we convert the ray function
// to 90deg, x-axis):
float upperMin = std::numeric_limits<float>::max();
float lowerMax = std::numeric_limits<float>::min();
bool shouldIncreasePathLength = false;
for (const gfx::Point& p : vertices) {
float d = aPathLength.value * aPathLength.value - p.y.value * p.y.value;
if (d < 0) {
// Impossible to make the box inside the path circle. Need to increase
// the path length.
shouldIncreasePathLength = true;
break;
}
float sqrtD = sqrt(d);
upperMin = std::min(upperMin, -p.x + sqrtD);
lowerMax = std::max(lowerMax, -p.x - sqrtD);
}
if (!shouldIncreasePathLength) {
return std::max(lowerMax, std::min(upperMin, (float)usedDistance));
}
// Sort by the absolute value of y, so the first vertex of the each pair of
// vertices we check has a larger y value. (i.e. |yi| is always larger than or
// equal to |yj|.)
vertices.Sort(RayPointComparator());
// Assume we set |usedDistance| to |-vertices[0].x|, so the current radius is
// fabs(vertices[0].y). This is a possible solution.
double radius = std::fabs(vertices[0].y);
usedDistance = -vertices[0].x.value;
const double epsilon = 1e-5;
for (size_t i = 0; i < 3; ++i) {
for (size_t j = i + 1; j < 4; ++j) {
double xi = vertices[i].x;
double yi = vertices[i].y;
double xj = vertices[j].x;
double yj = vertices[j].y;
double dx = xi - xj;
// Check if any path that enclosed vertices[i] would also enclose
// vertices[j].
//
// For example, the initial setup:
// * (0, yi)
// |
// r
// | * (xj - xi, yj)
// xi | dx
// ----*-----------*----------*---
// (anchor point) | (0, 0)
//
// Assuming (0, yi) is on the path and (xj - xi, yj) is inside the path
// circle, we should use the inequality to check this:
// (xj - xi)^2 + yj^2 <= yi^2
//
// After the first iterations, the updated inequality is:
// (dx + d)^2 + yj^2 <= yi^2 + d^2
// ==> dx^2 + 2dx*d + yj^2 <= yi^2
// ==> dx^2 + yj^2 <= yi^2 - 2dx*d <= yi^2
// , |d| is the difference (or offset) between the old |usedDistance| and
// new |usedDistance|.
//
// Note: `2dx * d` must be positive because
// 1. if |xj| is larger than |xi|, only negative |d| could be used to get
// a new path length which encloses both vertices.
// 2. if |xj| is smaller than |xi|, only positive |d| could be used to get
// a new path length which encloses both vertices.
if (dx * dx + yj * yj <= yi * yi + epsilon) {
continue;
}
// We have to find a new usedDistance which let both vertices[i] and
// vertices[j] be on the path.
// (usedDistance + xi)^2 + yi^2 = (usedDistance + xj)^2 + yj^2
// = radius^2
// ==> usedDistance = (xj^2 + yj^2 - xi^2 - yi^2) / 2(xi-xj)
//
// Note: it's impossible to have a "divide by zero" problem here.
// If |dx| is zero, the if-condition above should always be true and so
// we skip the calculation.
double newUsedDistance =
(xj * xj + yj * yj - xi * xi - yi * yi) / dx / 2.0;
// Then, move vertices[i] and vertices[j] by |newUsedDistance|.
xi += newUsedDistance; // or xj += newUsedDistance; if we use |xj| to get
// |newRadius|.
double newRadius = sqrt(xi * xi + yi * yi);
if (newRadius > radius) {
// We have to increase the path length to make sure both vertices[i] and
// vertices[j] are contained by this new path length.
radius = newRadius;
usedDistance = (float)newUsedDistance;
}
}
}
return usedDistance;
}
/* static */
CSSPoint MotionPathUtils::ComputeAnchorPointAdjustment(const nsIFrame& aFrame) {
if (!aFrame.HasAnyStateBits(NS_FRAME_SVG_LAYOUT)) {
return {};
}
auto transformBox = aFrame.StyleDisplay()->mTransformBox;
if (transformBox == StyleGeometryBox::ViewBox ||
transformBox == StyleGeometryBox::BorderBox) {
return {};
}
if (aFrame.IsFrameOfType(nsIFrame::eSVGContainer)) {
nsRect boxRect = nsLayoutUtils::ComputeGeometryBox(
const_cast<nsIFrame*>(&aFrame), StyleGeometryBox::FillBox);
return CSSPoint::FromAppUnits(boxRect.TopLeft());
}
return CSSPoint::FromAppUnits(aFrame.GetPosition());
}
/* static */
Maybe<ResolvedMotionPathData> MotionPathUtils::ResolveMotionPath(
const OffsetPathData& aPath, const LengthPercentage& aDistance,
const StyleOffsetRotate& aRotate, const StylePositionOrAuto& aAnchor,
const CSSPoint& aTransformOrigin, TransformReferenceBox& aRefBox,
const CSSPoint& aAnchorPointAdjustment) {
if (aPath.IsNone()) {
return Nothing();
}
// Compute the point and angle for creating the equivalent translate and
// rotate.
double directionAngle = 0.0;
gfx::Point point;
if (aPath.IsPath()) {
const auto& path = aPath.AsPath();
if (!path.mGfxPath) {
// Empty gfx::Path means it is path('') (i.e. empty path string).
return Nothing();
}
// Per the spec, we have to convert offset distance to pixels, with 100%
// being converted to total length. So here |gfxPath| is built with CSS
// pixel, and we calculate |pathLength| and |computedDistance| with CSS
// pixel as well.
gfx::Float pathLength = path.mGfxPath->ComputeLength();
gfx::Float usedDistance =
aDistance.ResolveToCSSPixels(CSSCoord(pathLength));
if (path.mIsClosedIntervals) {
// Per the spec, let used offset distance be equal to offset distance
// modulus the total length of the path. If the total length of the path
// is 0, used offset distance is also 0.
usedDistance = pathLength > 0.0 ? fmod(usedDistance, pathLength) : 0.0;
// We make sure |usedDistance| is 0.0 or a positive value.
// https://github.com/w3c/fxtf-drafts/issues/339
if (usedDistance < 0.0) {
usedDistance += pathLength;
}
} else {
// Per the spec, for unclosed interval, let used offset distance be equal
// to offset distance clamped by 0 and the total length of the path.
usedDistance = clamped(usedDistance, 0.0f, pathLength);
}
gfx::Point tangent;
point = path.mGfxPath->ComputePointAtLength(usedDistance, &tangent);
directionAngle = (double)atan2(tangent.y, tangent.x); // In Radian.
} else if (aPath.IsRay()) {
const auto& ray = aPath.AsRay();
MOZ_ASSERT(ray.mRay);
CSSCoord pathLength =
ComputeRayPathLength(ray.mRay->size, ray.mRay->angle, ray.mData);
CSSCoord usedDistance =
ComputeRayUsedDistance(*ray.mRay, aDistance, aRotate, aAnchor,
aTransformOrigin, aRefBox, pathLength);
// 0deg pointing up and positive angles representing clockwise rotation.
directionAngle =
StyleAngle{ray.mRay->angle.ToDegrees() - 90.0f}.ToRadians();
point.x = usedDistance * cos(directionAngle);
point.y = usedDistance * sin(directionAngle);
} else {
MOZ_ASSERT_UNREACHABLE("Unsupported offset-path value");
return Nothing();
}
// If |rotate.auto_| is true, the element should be rotated by the angle of
// the direction (i.e. directional tangent vector) of the offset-path, and the
// computed value of <angle> is added to this.
// Otherwise, the element has a constant clockwise rotation transformation
// applied to it by the specified rotation angle. (i.e. Don't need to
// consider the direction of the path.)
gfx::Float angle = static_cast<gfx::Float>(
(aRotate.auto_ ? directionAngle : 0.0) + aRotate.angle.ToRadians());
// Compute the offset for motion path translate.
// Bug 1559232: the translate parameters will be adjusted more after we
// support offset-position.
// Per the spec, the default offset-anchor is `auto`, so initialize the anchor
// point to transform-origin.
CSSPoint anchorPoint(aTransformOrigin);
gfx::Point shift;
if (!aAnchor.IsAuto()) {
const auto& pos = aAnchor.AsPosition();
anchorPoint = nsStyleTransformMatrix::Convert2DPosition(
pos.horizontal, pos.vertical, aRefBox);
// We need this value to shift the origin from transform-origin to
// offset-anchor (and vice versa).
// See nsStyleTransformMatrix::ReadTransform for more details.
shift = (anchorPoint - aTransformOrigin).ToUnknownPoint();
}
anchorPoint += aAnchorPointAdjustment;
return Some(ResolvedMotionPathData{point - anchorPoint.ToUnknownPoint(),
angle, shift});
}
static OffsetPathData GenerateOffsetPathData(const nsIFrame* aFrame) {
const StyleOffsetPath& path = aFrame->StyleDisplay()->mOffsetPath;
switch (path.tag) {
case StyleOffsetPath::Tag::Path: {
const StyleSVGPathData& pathData = path.AsPath();
RefPtr<gfx::Path> gfxPath =
aFrame->GetProperty(nsIFrame::OffsetPathCache());
MOZ_ASSERT(
gfxPath || pathData._0.IsEmpty(),
"Should have a valid cached gfx::Path or an empty path string");
return OffsetPathData::Path(pathData, gfxPath.forget());
}
case StyleOffsetPath::Tag::Ray:
return OffsetPathData::Ray(path.AsRay(), RayReferenceData(aFrame));
case StyleOffsetPath::Tag::None:
return OffsetPathData::None();
default:
MOZ_ASSERT_UNREACHABLE("Unknown offset-path");
return OffsetPathData::None();
}
}
/* static*/
Maybe<ResolvedMotionPathData> MotionPathUtils::ResolveMotionPath(
const nsIFrame* aFrame, TransformReferenceBox& aRefBox) {
MOZ_ASSERT(aFrame);
const nsStyleDisplay* display = aFrame->StyleDisplay();
// FIXME: It's possible to refactor the calculation of transform-origin, so we
// could calculate from the caller, and reuse the value in nsDisplayList.cpp.
CSSPoint transformOrigin = nsStyleTransformMatrix::Convert2DPosition(
display->mTransformOrigin.horizontal, display->mTransformOrigin.vertical,
aRefBox);
return ResolveMotionPath(GenerateOffsetPathData(aFrame),
display->mOffsetDistance, display->mOffsetRotate,
display->mOffsetAnchor, transformOrigin, aRefBox,
ComputeAnchorPointAdjustment(*aFrame));
}
static OffsetPathData GenerateOffsetPathData(
const StyleOffsetPath& aPath, const RayReferenceData& aRayReferenceData,
gfx::Path* aCachedMotionPath) {
switch (aPath.tag) {
case StyleOffsetPath::Tag::Path: {
const StyleSVGPathData& pathData = aPath.AsPath();
// If aCachedMotionPath is valid, we have a fixed path.
// This means we have pre-built it already and no need to update.
RefPtr<gfx::Path> path = aCachedMotionPath;
if (!path) {
RefPtr<gfx::PathBuilder> builder =
MotionPathUtils::GetCompositorPathBuilder();
path = MotionPathUtils::BuildPath(pathData, builder);
}
return OffsetPathData::Path(pathData, path.forget());
}
case StyleOffsetPath::Tag::Ray:
return OffsetPathData::Ray(aPath.AsRay(), aRayReferenceData);
case StyleOffsetPath::Tag::None:
default:
return OffsetPathData::None();
}
}
/* static */
Maybe<ResolvedMotionPathData> MotionPathUtils::ResolveMotionPath(
const StyleOffsetPath* aPath, const StyleLengthPercentage* aDistance,
const StyleOffsetRotate* aRotate, const StylePositionOrAuto* aAnchor,
const Maybe<layers::MotionPathData>& aMotionPathData,
TransformReferenceBox& aRefBox, gfx::Path* aCachedMotionPath) {
if (!aPath) {
return Nothing();
}
MOZ_ASSERT(aMotionPathData);
auto zeroOffsetDistance = LengthPercentage::Zero();
auto autoOffsetRotate = StyleOffsetRotate{true, StyleAngle::Zero()};
auto autoOffsetAnchor = StylePositionOrAuto::Auto();
return ResolveMotionPath(
GenerateOffsetPathData(*aPath, aMotionPathData->rayReferenceData(),
aCachedMotionPath),
aDistance ? *aDistance : zeroOffsetDistance,
aRotate ? *aRotate : autoOffsetRotate,
aAnchor ? *aAnchor : autoOffsetAnchor, aMotionPathData->origin(), aRefBox,
aMotionPathData->anchorAdjustment());
}
/* static */
StyleSVGPathData MotionPathUtils::NormalizeSVGPathData(
const StyleSVGPathData& aPath) {
StyleSVGPathData n;
Servo_SVGPathData_Normalize(&aPath, &n);
return n;
}
/* static */
already_AddRefed<gfx::Path> MotionPathUtils::BuildPath(
const StyleSVGPathData& aPath, gfx::PathBuilder* aPathBuilder) {
if (!aPathBuilder) {
return nullptr;
}
const Span<const StylePathCommand>& path = aPath._0.AsSpan();
return SVGPathData::BuildPath(path, aPathBuilder, StyleStrokeLinecap::Butt,
0.0);
}
/* static */
already_AddRefed<gfx::PathBuilder> MotionPathUtils::GetCompositorPathBuilder() {
// FIXME: Perhaps we need a PathBuilder which is independent on the backend.
RefPtr<gfx::PathBuilder> builder =
gfxPlatform::Initialized()
? gfxPlatform::GetPlatform()
->ScreenReferenceDrawTarget()
->CreatePathBuilder(gfx::FillRule::FILL_WINDING)
: gfx::Factory::CreateSimplePathBuilder();
return builder.forget();
}
} // namespace mozilla
|